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ABSTRACT

Cigarette smoke is a complex mixture consisting of more than 4500 chemicals,
including several tobacco-specific nitrosamines (TSNA). TSNA typically form in
tobacco during the post-harvest period, with some fraction being transferred into
mainstream smoke when a cigarette is burned during use. The most studied of the
TSNA is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). NNK has been
shown to be carcinogenic in laboratory animals. Studies examining the carcinoge-
nicity of NNK frequently are conducted by injecting rodents with a single dose of 2.5
to 10 umol of pure NNK; the amount of NNK contained in all of the mainstream
smoke from about 3700 to 14,800 typical U.S. cigarettes. Extrapolated to a 70-kg
smoker, the carcinogenic dose of pure NNK administered to rodents would be
equivalent to the amount of NNK in all of the mainstream smoke of 22 to 87 million
typical U.S. cigarettes. Furthermore, extrapolating results from rodent studies based
on a single injection of pure NNK to establish a causative role for NNK in the
carcinogenicity of chronic tobacco smoke exposure in humans is not consistent with
basic pharmacological and toxicological principles. For example, such an approach
fails to consider the effect of other smoke constituents upon the toxicity of NNK. /n
vitro studies demonstrate that nicotine, cotinine, and aqueous cigarette “tar” extract
(ACTE) all inhibit the mutagenic activity of NNK. In vivo studies reveal that the
formation of pulmonary DNA adducts in mice injected with NNK is inhibited by the
administration of cotinine and mainstream cigarette smoke. Cigarette smoke has
been shown to modulate the metabolism of NNK, providing a mechanism for the
inhibitory effects of cigarette smoke and cigarette smoke constituents on NNK-
induced tumorigenesis. NNK-related pulmonary DNA adducts have not been de-
tected in rodents exposed to cigarette smoke, nor has the toxicity of tobacco smoke
or tobacco smoke condensate containing marked reductions in TSNA concentra-
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tions been shown to be reduced in any biological assay. In summary, there is no
experimental evidence to suggest that reduction of TSNA will reduce the mu-
tagenic, cytotoxic, or carcinogenic potential of tobacco smoke.

Key Words: mainstream cigarette smoke, tobacco-specific nitrosamines,
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK).

NNK AND OTHER TSNA IN TOBACCO AND TOBACCO SMOKE

Nitrosamines have been reported to be constituents of food, beverages, air,
cosmetics, and industrial environments; accordingly, these chemicals have been an
intensive topic of research and review for many years (IARC 17 1978; Banbury
Report 1982; Loeppky and Michejda 1984; Magee 1996; Tricker 1997; Lin 1990;
Preussmann and Eisenbrand 1984; Preston-Martin and Correa 1989; Magee 1989;
Tricker el al. 1989; Startin 1996; Eisenbrand ef al. 1996; Scanlan 1999;). It is com-
monly accepted that humans are exposed to nitrosamines on a daily basis; however,
the precise levels of exposure and the significance of such exposure remains
inconctusive (Tricker 1997).

Tobacco consumption represents an additional source of nitrosamine exposure.
Tobacco-specific nitrosamines (TSNA) are a class of nitrosamines believed to occur
only in tobacco, and have been reported as being present in a wide variety of
tobacco-related products (Hoffmann ef al. 1980; Adams & al. 1984; IARC 38 1985;
Surgeon General’s Report 1989; Hoffmann ef al. 1991; Tricker et al. 1991; Hoffmann
el al. 1994; Hoffmann and Hoffmann 1997; Hoffmann ¢ al. 1997; Hoffmann and
Hoftmann 1998; Hecht 1999). Known TSNA include 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone [NNK], 4-(methylnitrosamino)-4-(3-pyridyl) butanal [NNA],
N’-nitrosonornicotine [NNN}, N’-nitrosoanabasine [NAB], N’-nitrosoanatabine
[NAT], 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol [NNAL], 4-(methylnitrosamino)-
4-(3-pyridyl)-1-butanol [isoNNALY], and 4-(methylnitrosamino)-4-(3-pyridyl) butanoic
acid [isoNNAC] (Hecht and Tricker 1999). isoNNAL and iso NNAC rarely occur in
mainstream cigarette smoke (Hecht and Tricker 1999). NNK, NNN, and NNAL are
mutagenic n vilro and carcinogenic when administered to laboratory rodents
(Boyland et al. 1964; Hoffmann et al. 1984). NAT and NAB demonstrate little or no
mutagenic potential during in vifro testing nor carcinogenic activity in laboratory
animals (Hoffmann et al. 1984; Padma et al. 1989).

Green and freshly harvested tobaccos are virtually free of TSNA (Green and
Rodgman 1996; Caldwell and Conner 1990; Parsons et al. 1986; Spiegelhalder and
Bartsch 1996; Brunnemann et al. 1982; Fischer ef al. 1990). It is recognized that
TSNA form during the post-harvest processing (e.g., curing) to which tobacco is
subjected (Andersen et al. 1989; Djordjevic et al. 1989). Significant efforts have been
expended toward studying the mechanism by which TSNA are formed (Peele 1995).
TSNA are recognized as being formed when tobacco alkaloids (e.g., nicotine and
nornicotine) are nitrosated (Tricker and Preussmann 1988). It has been postulated
that, in the case of air curing of Burley tobacco, TSNA form as a result of microbial-
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mediated conversion of nitrate to nitrite, coupled with the subsequent reaction of
nitrate-derived chemical species with alkaloids present in the tobacco (Pecle ¢/ al.
1995; Chamberlain and Chortyk 1992; Hecht 1998; Hamilton et al. 1982; Burton e
al. 1992; Bush ef al. 1995; Wiernik ef al. 1995). In addition, there have been studies
examining the potential impact of factors such as temperature of curing barns,
humidity, amount of nitrogenous fertilizer used in growing, and amount of shade
vs. sunlight on TSNA formation (Tso 1990; Davis and Nielsen 1999). More recently,
the presence of NO, gases produced from heating units used during flue-curing
processes of Virginia tobacco has been shown to be a contributing factor to TSNA
formation (Peele et al. 1999).

Typically, TSNA are not formed from tobacco pyrolysis; rather some fraction of
the TSNA formed within tobacco during its curing process is transferred in main-
stream tobacco smoke as preformed TSNA (Fisher et al. 1990). This is supported by
* the fact that the smoke generated by cigarettes made from low TSNA tobacco
delivers low yields of TSNA in mainstream smoke (Peele el al. 1995; Doolittle et al.
2001). The amount of TSNA reported to be present in tobacco smoke varies among
publications; probably due in part to differences in agricultural variations inherent
in different crop years, tobacco curing techniques, the designs of the tested ciga-
rette, the blends of tobacco used in cigarette manufacture, and smoking conditions.
Furthermore, the various analytical methods employed to measure TSNA levels may
contribute to this observed variability, leading some investigators to point out that
earlier values reported in the scientific literature may be exaggerated due to artifact
formation inherentin the earlier methodologies (Green and Rodgiman 1996; Caldwell
and Conner 1990).

Recent investigations have focused on the amount of TSNA, especially NNK, that
a smoker is exposed to during smoking. Djordjevic e al. (2000) examined observed
delivery of NNK and compared these data with delivery calculated using Federal
Trade Commission (FTC) data. The actual observed delivery was nearly two times
higher than delivery calculated using FTC data. Using observed delivery values
(Djordjevic et al. 2000), a smoker of low-yield nicotine cigarettes (< 0.8 mg/ciga-
rette) would be exposed to approximately 187 ng NNK/ cigarette, while a smoker of
medium-yield nicotine cigarettes (0.9 to 1.2 mg/cigarette) would be exposed to
approximately 251 ng NNK/cigarette.

Some scientists have hypothesized that ingested tobacco alkaloids, such as
nicotine, might contribute to TSNA formation within the human body
(Hoffmann et al. 1994; Hecht and Hoffmann 1989). Others have published
data that support the conclusion that endogenous TSNA formation does not
occur (Fischer ¢ al. 1990; Caldwell ef al. 1991; Meger e al. 1995; Adlkofer 1995;
Spiegelhalder and Fischer 1990; Hecht et al. 1999; Tricker e al. 1993). The
hypothesis of endogenous TSNA formation conflicts with recent evidence that
smoking cessation therapies that involve the administration of nicotine in the
form of gum, patch, and/or inhalers do not lead to endogenous TSNA forma-
tion (Hecht ef al. 1999).
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GENOTOXICITY OF NNK

Mnitrosamines require metabolic activation by cytochromes P, for the expres-
sion of genotoxicity. NNK metabolism by a P,;-mediated o-hydroxylation pathway
leads to several intermediates, some of which are genotoxic (Figure 1) (Hecht and
Tricker 1999; Atalla and Maser 1999; Ren ¢t al. 1999; Hecht et al. 1997). Moreover,
NNAL, a genotoxic product of NNK carbonyl reduction may undergo o-hydroxyla-
tion resulting in the formation of additional genotoxic metabolites (Hecht and
Tricker 1999; Atalla and Maser 1999; Ren et al. 1999; Hecht et al. 1997). Detoxication
pathways include glucuronidation of NNAL and pyridine-N-oxidation of both NNK
and NNAL (Hecht and Tricker 1999; Atalla and Maser 1999; Ren ¢t al. 1999; Hecht
el al. 1997).

TSNA and cigarette smoke condensate are both mutagenic in the Ames assay in
the presence of S9 metabolic activation (Palma et al. 1989; Lee et al. 1996). However,
there is no evidence to suggest that the small amount of NNK in cigarette smoke
contributes to the mutagenicity observed for cigarette smoke condensate. Approxi-
mately 200 pg of pure NNK is required to demonstrate mutagenicity in the Ames
assay using strain TA1535, the most sensitive strain for base pair mutagens com-
monly associated with Mnitrosamines (Lee et al. 1996). The dose of NNK required
to elicit a moderate mutagenic response (200 ug) is equivalent to the amount of
NNK yielded by approximately 2985 Kentucky 1R4F reference cigarettes smoked
under standard FT'C smoking conditions (Borderding et al. 1997). Since the amount
of cigarette smoke condensate present in approximately 0.01 1R4F cigarettes (100
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Figure 1.  NNKmetabolism pathways based on studies in laboratory animals. (From Hecht
and Tricker, 1999.)
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pug of CSC) is sufficient to demonstrate a substantial mutagenic response in the
Ames test, it follows that the mutagenic response is not being driven by the level of
TSNA in CSC. Furthermore, mainstream smoke from cigarettes generated using low
TSNA tobacco failed to demonstrate reduced mutagenic potential within the Ames
assay (Doolittle et al. 2001). Therefore, several lines of experimental evidence
indicate that there are insufficient quantities of TSNA in tobacco smoke to contrib-
ute to the mutagenicity of tobacco smoke observed in the Ames test.

TUMORIGENICITY OF NNK IN LABORATORY ANIMALS

Tobacco-specific nitrosamines such as NNK are rodent carcinogens (Hecht and
Tricker 1999; Hecht et al. 1978; Hecht et al. 1988; Belinsky ef al. 1990; Hoffmann et
al. 1993; Hecht et al. 1989; Hecht ¢t al. 1986; Hecht et al. 1983) when administered
- in pure form. Hecht ef al. (1989) has shown that NNK induces lung adenomas in A/
J mice in a dose-response manner within 4 months of a single intraperitoneal (i.p.)
injection. Tobacco-specific nitrosamines have also been shown to be carcinogenic as
a consequence of oral cavity implantation and skin painting (Hecht ef al. 1986). At
present, there are no published data demonstrating TSNA to be carcinogenic via
inhalation or respiratory tract exposure.

The fact that systemically administered TSNA produce lung adenomas in rodents
have led some investigators to hypothesize that TSNA may be an important risk
factor for lung cancer development in smokers (Hecht et al. 1989; Hecht et al. 1986;
Hecht et al. 1983). However, extrapolation of the carcinogenic dose used in rodents
results in unachievable “pack-year equivalents” per smoker (discussed in next sec-
tion). Furthermore, a simplistic extrapolation of results obtained with pure TSNA
to tobacco smoke is not supported by published animal studies demonstrating that
tobacco extracts and/or smoke may actually reduce the carcinogenicity of pure
TSNA in rodents (Hecht ef al. 1986; Finch et al. 1996). In one such study, a solution
of NNN and NNK solubilized in water and administered to male F344 rats via oral
swab induced statistically significant (p<0.05) increases in oral cavity tumors as
compared to vehicle control (Hecht et al. 1986). However, when the animals re-
ceived the same dose of NNN and NNK along with snuff extract, there was a
statistically significant decrease in oral cavity tumors whencompared with animals
treated with pure NNN and NNK (Hecht ¢ al. 1986).

A recent study has reported that whole-body inhalation exposure of A/] mice to
11% mainstream cigarette smoke and 89% sidestream cigarette smoke, used as an
experimental surrogate for environmental tobacco smoke (ETS), resulted in a
tumorigenic response provided that a 4 month post-exposure recovery period is
incorporated into the experimental design (Witschi ef al. 1997). A/] mice were
similarly exposed to the same surrogate for whole ETS as well as HEPA-filtered ETS
surrogate to remove the particulate phase of the smoke, so that the smoke consisted
primarily of gas phase constituents (Witschi ¢ al. 1997). Both exposures resulted in
similar numbers of lung adenomas even though the concentration of NNK (mean
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+ SD) in the whole ETS surrogate and gas-phase ETS surrogate exposure atmo-
spheres was 3.9 + 3.5 and 0.29 + 0.28 pg/m?, respectively. Based on these values, the
authors concluded that NNK was not the causative agent in the observed adenomas
(Witschi et al. 1997). Finally, smoke from cigarettes made with low TSNA tobacco
gave essentially the same biological response in a 90-day inhalation study in rats as
the smoke from cigarettes made without reduced TSNA tobacco (Kinsler et al
2002). Moreover, a comparative 30-week dermal study using SENCAR mice and
comparing the cigarette smoke condensate (CSC) from low TSNA tobacco with the
CSC from cigarettes made without reduced TSNA tobacco showed no statistically
significant differences in numbers of dermal tumors (Hayes ef al. 2003).

DOSE COMPARISONS OF NNK USED IN ANIMAL STUDIES VERSUS
SMOKER EXPOSURE

© TSNA have been found to be carcinogenic in the lungs of rats, mice, and
hamsters when injected systemically (Hecht et al. 1978; Hecht et al. 1988; Belinsky
el al. 1990; Hoffmann éf al. 1993; Hecht e al. 1989; Hecht et al. 1986; Hecht et al.
1983). However, as shown in Table 1 extrapolation of the carcinogenic dose used
in rodent studies results in unachievable “pack-year equivalents” per smoker. Actu-
ally, to mimic the mouse exposure data, a smoker would need to smoke all of the
cigarettes at once since rodents receive a single injection of NNK. Also, one needs
to also assume 100% absorption of NNK from the smoke. These dose calculations
are based on an average NNK yield of market full flavor cigarettes smoked under
FTC conditions, and serve to compare the dosimetry reported in systemically in-
jected mice versus the dose in cigarettes that a smoker would have to consume.
When considering the relevance to human smokers of the doses employed during
animal studies, it is important to remember that over 40 years of smoking, a three
pack-a-day smoker would smoke 876,000 cigarettes, or 43,800 packs. The 876,000
cigarettes would be approximately 2% to 8% of the 11 to 43 million cigarettes
required to yield the dose of NNK reported to be carcinogenic in mice scaled to
human body weight.

Some investigators have hypothesized a possible additive effect of individual
TSNA in tobacco smoke. In the case of TSNA, there are 182 ng of NAT, 158 ng of
NNN, and 135 ng of NNK per typical U.S. market full flavor cigarette (Chepiga et
al. 2000); the total of all three TSNA would be about 475 ng per cigarette. Even
assuming that NNN and NAT are as carcinogenic as NNK in rodents, which they are
not (Hoffmann e al 1984; Padma e al. 1989), one would still be considering
unrealistic “pack-year equivalents” per smoker to yield the doses demonstrated to be
carcinogenic in rodents (i.e., 10 to 40 packs per day for 40 years).

A recent study (Djordjevic ef al. 2000) compared the amounts of NNK delivered
to a smoker using the Federal Trade Commission (FTC) specified machine-smoking
protocol (35-ml puff volume drawn for 2 s once per min) vs. data from actual
smokers. Compared with the FT'C protocol values, smokers of low-yield cigarettes
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Animal Model

Table 1. Extrapolation éfl}odent bioassay results to human smokers.

A/J Mouse

Minimum Dose

Maximum Dose

Total NNK Dose (mg/25 gram mouse)

required to induce significant incidence of 0.52 mg 2.07 mg
lung tumors
Total NNK Dose (mg/kg body weighnti‘ »
required to induce significant incidence of 20.8 mg 82.8 mg
lung tumors
NNK/?lgarette 135 ng
(Chepiga, 2000)
Total Cigarette Equivalence/kg Mouse
Body Weight ~154.000 ~613,000
Equivalent Dose of NNK in a 70 kg B
Smoker 1456 mg 5796 mg
Equivalent Number of Cigarettes \“)]‘0,,785,]‘\8»5 42,933,333
Comparison to Smoker o '
(packs/day for 40 yrs) 37 packs 147 packs
:Com parison to .Smokgr ) 739 years 2941 years
(Years of smoking 2 packs/day) i
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(< 0.8 mg of nicotine per cigarette) and medium-yield cigarettes (0.9 to 1.2 mg of
nicotine per cigarette) took statistically significantly larger puffs (48.6 and 44.1 ml,
respectively) at statistically significantly shorter intervals (21.2 and 18.5 s, respec-
tively), and drew larger total smoke volumes. Compared with the FTC yield for NNK
per cigarette for Kentucky reference 1R4F, values of NNK per cigarette of smokers
was approximately 2.5-fold higher for low-yield cigarettes and approximately 3.2-
fold higher for medium-yield cigarettes. Using these values, a smoker would still
need to smoke two packs per day for more than 300 years to be exposed to the low
dose of NNK used in rodent studies and two packs per day for more than 1400 years
for the equivalent of the higher dose used in rodent studies.

One of the more significant studies carried out to look at the dose-response
relationship of the induction of pulmonary neoplasia in the Fischer 344 rat was by
Belinsky et al. (1990). The lowest dose of NNK used to induce lung adenomas was
6-mg/kg, which is equivalent to over 44 thousand cigarettes/kg using 135 ng NKK/
cigarette, as stated previously. The authors stated that this dose of NNK was similar
to the dose of NNK that a smoker would be exposed to during a lifetime of smoking.
This calculation apparently assumes that a smoker consumes 10 packs/day for 40
years.

INHIBITION OF THE BIOLOGICAL ACTIVITY OF NNK BY TOBACCO
SMOKE AND SELECTED CONSTITUENTS

The tobacco-specific nitrosamine, NNK, requires metabolic activation to express
its carcinogenic effects. However, there are competing detoxication pathways (Hecht
1994). The major metabolic pathway for NNK (in most tissues) involves conversion
to NNAL via reduction of the NNK carbonyl group (Figure 1). This reaction occurs
rapidly in rodents, primates, and human tissues (Smith et al. 1992; Castonguay ¢! al.
1983). a-Hydroxylation of the methylene groups adjacent to the Nnitroso nitrogen
of NNK and NNAL yields the corresponding keto acid and hydroxy acid, with
liberation of the methylating agent, methanediazohydroxide. o-Hydroxylation of
the methyl group in NNK ultimately yields the keto alcohol (also referred to as
HPB), which can be oxidized to keto acid. The reactive intermediate,
a-hydroxymethyl-NNK can decompose and react by pyridyloxobutylation of DNA
and hemoglobin to form HPB-releasing adducts. o-Methyl hydroxylation of NNAL
produces the major end product of 4-(3-pyridyl)butane-1,4,diol (diol), with no
existing evidence to suggest that this metabolic pathway results in adduct formation
(Richter et al. 2000). NNK and NNAL can be pyridine N-oxidized to form either the
NNK or NNAL-N-oxide or can be conjugated to form NNAL-glucuronide, all of
which are nongenotoxic metabolites that are readily excreted in urine.

Nicotine, cotinine, cigarette smoke, and aqueous cigarette “tar” extract (ACTE)
have all been shown to inhibit the o-hydroxylation of NNK. Nicotine, as well as NNN
and NAT demonstrate a dose-dependent inhibition of in vitro a-hydroxylation of
NNK within rat oral tissue (Murphy and Heiblum 1990). Nicotine and cotinine both
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reduce NNK metabolic activation by o-hydroxylation in the isolated and perfused
rat liver, but not in the isolated and perfused rat lung (Schulze et al. 1998). Nicotine
significantly reduces in vivo metabolic activation of NNK and excretion of o-hy-
droxylation metabolites (Richter and Tricker 1994), as well as significantly reduces
[5"H]NNK binding of radioactivity (pyridyloxobutylation) to rat hemoglobin (Kutzer
et al. 1994). Nicotine inhibits in vitro o-hydroxylation of NNK and protein binding
(pyridyloxobutylation) in hamster lung explants (Schuller et al. 1991) and hepatic
microsomal proteins (Castonguay and Rossignol 1992). Similar effects may occur in
vivo since co-administration of nicotine results in a significant inhibition of NNK a-
hydroxylation in the hamster (Richter et al. 2000). Compared to other rodent
species, the hamster is relatively insensitive to NNK-induced lung tumorigenesis
(Richter et al. 2000), most likely a consequence of limited NNK o-hydroxylation in
_ the lung (Richter ef al. 2000). )

Lee et al. (1996) evaluated the mutagenicity of Mnitrosamines in the presence of
nicotine and other structurally similar pyridine alkaloids. NNK, Mnitrosodimethylamine
(NDMA), and NNN were tested in the Ames Salmonella typhimurium assay (in the
presence of a metabolic activation systeni, S9) using strain TA1535, the most sensitive
strain for base pair mutagens such as Nnitrosamines (Padma et al. 1989; Lee et al. 1996;
Yahagi et al. 1977). Nicotine, cotinine, and équeous cigarette “tar” extract (ACTE) all
inhibited the mutagenicity of NDMA and NNK, while NNN mutagenicity was not
affected. The induction of sister chromatid exchanges (SCE) in mammalian cells
(CHO) by NNK in the presence of metabolic activation also was reduced significantly
by nicotine and cotinine. Therefore, consistent with metabolism studies, nicotine and
other tobacco constituents effectively inhibit the mutagenicity of NNK (Lee et al. 1996;
Richter and Tricker 1994; Kutzer el al. 1994; Schuller ¢ al. 1991).

While nicotine clearly inhibits the mutagenicity of NNK, other tobacco smoke
constituents can also play a significant role. ACTE (aqueous cigarette tar extract),
prepared from de-nicotinized cigarettes (containing significantly less nicotine [~0.08
mg/cig] than the Kentucky 1R4F reference cigarette [~0.9 mg/cig]) was tested for
its effect on NNK mutagenicity (Lee ef al. 1996). The inhibitory effects were almost
identical suggesting that the inhibitory effect of ACTE on the mutagenicity of NNK
is attributable to water-soluble constituents of cigarette smoke (Lee e al. 1996). The
specific agent(s) in ACTE responsible for the inhibition of mutagenicity have not yet
been identified.

NNAL is a potent pulmonary carcinogen in mice and rats (Hoffmann et al. 1993;
Hecht et al. 1990) and is mutagenic in the Ames bacterial mutagenesis assay (Yahagi
et al. 1977; Brown et al. 2001). Given the structural similarity between NNK and
NNAL, and the metabolic activation of both by cytochromes P,;,, we hypothesized
that there may be a similar inhibition of NNAL metabolism, and consequently,
inhibition of the mutagenic activity of NNAL by tobacco smoke and its pyridine
alkaloid constituents. In a recent study, we evaluated the ability of two pyridine
alkaloids (nicotine and cotinine), as well as ACTE to inhibit the mutagenicity of
NNAL as assessed by Salmonella typhimurium strain TA1535 in the presence of a
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metabolic activation system (89) (Brown e al. 2001). Both pyridine alkaloids tested,
as well as ACTE, inhibited the mutagenicity of NNAL in a concentration-dependent
manner. These results demonstrate that tobacco smoke contains pyridine alkaloids,
as well as other unidentified constituents that inhibit the mutagenicity of NNAL, a
major metabolite of NNK (Brown ef al. 2001). Due to the presence of these modu-
lating agents in cigarette smoke, the biologically reactive dose of NNAL from
cigarette smoking is likely to be much lower than predicted from studies comparing
the biological activity of pure NNAL with plasma concentrations of NNAL.
A single intraperitoneal injection of NNK induces the formation of
-methylguanine in A/] mouse lung DNA (Brown ef al. 1999; Peterson and Hecht
1991). (’-MeG is a promutagenic base that induces guanine (G) to adenine (A)
transition (Ronai ¢f al. 1993). Any inhibition of the P, -mediated o-hydroxylation
reaction would be expected to reduce the formation of DNA-reacfive species from
TSNA, hence reducing genotoxic, mutagenic, and tumorigenic activities. Exposure
6fA/j mice to mainstream cigarette smoke (0, 400, 600, or 800 mg TSP/m?) did not
result in detectable levels of (*-MeG in either lung or liver (Figure 2) (Brown et al.
1999). Moreover, A/] mice co-exposed to mainstream smoke (0, 400, 600, or 800 mg
TSP/m*) and a single i.p. administration of NNK (0, 3.75, or 7.5 nmol/mouse,
sufficient to induce significant levels of (>-MeG adducts) resulted in a significant
dose-dependent reduction in NNK-induced lung and liver (°-MeG (Figure 3) (Brown
el al. 1999).

In a recent study designed to study metabolic inhibition/competition, A/] mice
were exposed to mainstream cigarette smoke from the 1R4F cigarette (600 mg TSP/
m?) for 2 h, followed by a single i.p. Injection of NNK (7.5 pmol/mouse). Results
from these studies demonstrated that tobacco smoke exposure significantly reduced
NNK metabolic activation to the hydroxy acid and keto acid by 15% (p=0.0029) and
42% (p<0.0001), respectively, compared with sham-exposed (control) animals (Brown
el al. 2001). Thus, co-administration of cigarette smoke reduces the metabolic
activation of NNK (via o-hydroxylation) to DNA-reactive methylating species, a
critical step in the induction of lung tumorigenesis in the A/J mouse.

Finally, phenethyl isothiocyanate (PEITC) is an effective inhibitor of lung tum-
origenesis induced in rats and mice by the tobacco-specific carcinogen NNK (Hecht
et al. 2000). However, studies have failed to demonstrate a protective effect for
PEITC on tobacco smoke carcinogenesis in rodent models (Witschi et al. 1998;
Witschi e al. 1999) providing additional evidence that NNK is not the causative
agent in animal models of tobaccosmoke carcinogenesis.

HUMAN BIOMARKERS OF NNK METABOLISM

Although some have assumed that NNK metabolism is similar in laboratory
rodents and in man, recent data do not support this assumption. Studies examining
urinary metabolites of nicotine, NNK, NNN, and NNAL in rats (when compared
with humans) revealed significant differences (Trushin and Hecht 1999; Hecht ¢ al.
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Figure 2.  Dose-dependent reduction of O%-MeG concentration by 1R4F cigarette smoke
in A/] mice. Mice received a one-time, nose-only inhalation exposure of 1R4F
cigarette smoke at 0, 0.4, 0.6, or 0.8 mg WIPM/L for 2 h to study the potential
of cigarette smoke to inhibit NNK-induced O%MeG formation. The dosing of
NNK (7.5 umol/mouse, ip) was performed at the midpoint of the 2-h exposure.
Mice were euthanized 4 h after NNK treatment and lung and liver DNA was
analyzed for O%MeG by HPLC. (Mean £ SE; n = 18; * = < 0.05). (From Brown
et al. 1999.)

1999). An initial hypothesis of these studies was that urinary (S)-hydroxy acid could
be a potential urinary biomarker of NNK and NNN o-hydroxylation in smokers.
However, researchers discovered that the metabolism was significantly different
between rodents and humans. For example, in the ratitis possible to distinguish the
hydroxy acid derived from nicotine from that derived from TSNA (Trushin and
Hecht 1999); this was not possible in humans (Hecht e al. 1999). Furthermore,
when metabolism of NNK within precision-cut rodent and human liver and lung
slices was compared, metabolism to NNAL was significantly higher in human tissues
than in rodent tissues (Castonguay ef al. 1983).

Incubation of NNK (3 to 10 uM) with microsomes from human liver (Staretz et
al. 1997) and lung (Smith et al. 1995) yields at least 95% NNAL, with little evidence
of metabolism via o-hydroxylation, the predominant pathway in rodents (Hecht and
Tricker 1999). Recent in vitro studies report that human buccal mucosa predomi-
nantly reduces NNK to NNAL (95 to 99%), in addition to metabolism via
o-hydroxylation (0.6 to 3.8%) and pyridyl N-oxidation (0.3 to 2.2%) (Liu e al
1993). In a study utilizing human lung slices (Castonguay el al. 1983), lung tissue
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Figure 3.  Effect of Kentucky reference 1R4F cigarette smoke (0.6 mg WIPM/L) on the
lung and liver concentrations of O%MeG in NNK-treated A/J mice. Mice re-
ceived a one-time, nose-only inhalation regimen of either HEPA-filtered and
humidified air (control) or 1R4F cigarette smoke at the previously determined
MNLD (0.6 mg WTPM/L.) for 2 h to monitor the effect of cigarette smoke on
the concentration of O%-MeG in mice treated with NNK. A single ip dose of NNK
(0, 3.75, or 7.5 pymol/mouse) was administered to mice at the midpoint of the
2-h exposure. Mice were euthanized 4 h after the NNK treatment, lung and liver
DNA were analyzed for O5-MeG by HPLC. (Mean + SE; n = 18; * = p < 0.05).
(From Brown et al. 1999.)

demonstrated a low capacity to metabolize NNK. Metabolism proceeded mainly via
a low K,, (high affinity) reduction to NNAL (K, 0.5 uM; V.. 388 fmol/min/mg
protein and K, 39; V. 21380}, with a lower potential to form methylating and/or
pyridyloxobutylating species. Consistent with this, 7-methyl-2-deoxyguanosine DNA
adduct levels in the lungs of smokers (and nonsmokers) cannot be explained by
differences in tobacco exposure, with pyridyloxobutylation undetectable in smok-
ers’ lungs (Blomeke ef al. 1996). At a plausible level of NNK exposure, o-hydroxy-
lation to the keto acid (K, 690; V.. 13390) in the liver is unlikely due to the low
K., high-affinity reduction to NNAL (K, 0.6; V., 254 and K, 44; V,,. 11340)
(Castonguay e al. 1983).

Hemoglobin (Hb) adducts from TSNA have been suggested as biomarkers of
exposure for both tobacco smoke and smokeless tobacco. The metabolic activation
of both NNK and NNN results in a common Hb adduct, releasing 4-hydroxy-1-(3-
pyridyl)-1-butanone (HPB) after alkaline hydrolysis. Initial biomonitoring studies
reported adduct levels significantly higher in the blood of smokers than in non-
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smokers (Carmella ¢f al. 1990; Falter el al. 1994; Atawodi ¢l al. 1998), while Hb adduct
levels were significantly higher for users of smokeless tobacco when compared with
smokers in two of the studies (Carmella e/ al. 1990; Falter et al 1994). Urinary
excretion of the NNK metabolites, NNAL and NNAL-Gluc are about 120 times
higher in smokers than in nonsmokers, but HPB-releasing hemoglobin adducts
derived from NNK and NNN in both smokers and nonsmokers are frequently not
much higher than assay background amounts (Hecht and Tricker 1999). In a study
in which smokers and smokeless tobacco users demonstrated approximately the
same level of NNK and NNN uptake, the mean adduct level was approximately 7
times higher in smokeless tobacco users than in smokers (Carmella et al. 1990; Falter
et al. 1994). This leads to the conclusion that adduct levels in smokers may be lower
than expected due to induction of metabolizing enzymeés that detoxify TSNA in
smokers (Falter et al. 1994; Atawodi ef al. 1998) and/or that TSNA activation is
'~ inhibited by other smoke constituents (Lee ¢t al. 1996; Brown et al. 2001; Brown ¢!
al. 1999; Brown et al. 2001).

CONCLUSION

Is it prudent to reduce NNK and other TSNA in tobacco products? Sure it is, to
the extent possible. Reduced TSNA in tobacco products will result in reduced
exposure to TSNA. Will such reduction mean a reduced cancer risk? That cannot
be determined until smokers have used reduced TSNA products for several years.

A review of the scientific literature suggests the following: (1) NNK, a tobacco-
specific nitrosamine, is found in cured tobacco and in tobacco smoke; (2) in pure
form, NNK is toxic and mutagenic to cultured cells ¢z vitro; (3) in pure form, NNK
is carcinogenic in experimental animals; (4) extrapolated to man and based on the
minimum amount of NNK required to cause tumors in A/] mice (the most sensitive
rodent model), the amount of NNK found in the smoke from millions of cigarettes
would be required to provide a carcinogenic equivalent to smokers; (5) the mutage-
nicity and carcinogenicity of NNK can be inhibited by nicotine and cotinine, as well
as additional unidentified constituents of cigarette smoke; and (6) CSC or smoke
from reduced TSNA cigarettes is similar in toxicity, mutagenicity, and carcinogenic-
ity to CSC or smoke from cigarettes with current levels of TSNA.

Based on our review of the published literature, we conclude that there is neither
direct nor convincing evidence that NNK or TSNA in (oto play a significant role in
the increased risk of lung cancer associated with cigarette smoking. Furthermore,
there is no compelling experimental evidence that reducing the levels of TSNA in
tobacco smoke will have a significant impact on the lung cancer risks associated with
cigarette smoking.
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