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Abstract

Mammarian enabled (Mena), a member of the Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) family of
proteins, has been implicated in cell motility through regulation of the actin cytoskeleton assembly, including lamellipodial
protrusion. Rac1, a member of the Rho family GTPases, also plays a pivotal role in the formation of lamellipodia. Here we
report that human Mena (hMena) colocalizes with Rac1 in lamellipodia, and using an unmixing assisted acceptor depletion
fluorescence resonance energy transfer (u-adFRET) analysis that hMena associates with Rac1 in vivo in the glioblastoma cell
line U251MG. Depletion of hMena by siRNA causes cells to be highly spread with the formation of lamellipodia. This cellular
phenotype is canceled by introduction of a dominant negative form of Rac1. A Rac activity assay and FRET analysis showed
that hMena knock-down cells increased the activation of Rac1 at the lamellipodia. These results suggest that hMena
possesses properties which help to regulate the formation of lamellipodia through the modulation of the activity of Rac1.
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Introduction

The Ena/VASP family of proteins comprised of Mena, a

mammalian ortholog of Drosophila Ena, VASP and Ena/VASP-

like (EVL) play an important role in linking signaling pathways to

the remodeling of the actin cytoskeletal structure including the

formation of lamellipodia and filopodia which leads to cell motility

[1,2,3]. Ena/VASP family members consists of the Ena/VASP

homology 1 (EVH1) domain, the proline-rich region, and the

EVH2 domain [4,5,6,7]. The EVH1 domain mediates subcellular

targeting to focal adhesions by binding to proteins with the

consensus motif D/EFPPPPXD (FP4) [8]. The proline-rich region

binds to the actin binding protein, profilin, and the EVH2 domain

is required for multimerization and direct F-actin binding in vitro

[9]. Originally, the one major link between Ena/VASP and actin

dynamics had been thought to be via profilin. Both profilin and

Ena/VASP localize to the leading edges of lamellipodia, and

Ena/VASP is thought to recruit profilin-actin complexes to the

sites of actin assembly [10]. Growing evidence has formed the

basis for a model in which Ena/VASP functions to antagonize the

activity of capping protein [11]. In vitro, it has been shown that

recombinant VASP promotes actin polymerization in the

presence of capping protein [2,12], supporting the hypothesis

that Ena/VASP proteins promote the formation of long,

unbranched actin filaments by protecting actin filament barbed

ends from capping. Recently, it was reported that VASP-deficient

murine fibroblasts showed prolonged activity of Rac and p21-

activated kinase (PAK) [13].

The Rho family GTPases are thought to act as morphological

switches by cycling between a GTP-bound (active) and GDP-

bound (inactive) state to control cell morphology and motility. The

activity of these proteins is regulated by the interaction of the Rho

family GTPases with guanine-nucleotide exchange factors (GEFs)

and GTPase-activating proteins (GAPs). GEFs catalyze the

exchange of GDP for GTP, whereas GAPs enhance the intrinsic

GTPase activity, thus rendering the proteins inactive. Rac protein

plays a central role in cell migration by inducing the extension of

lamellipodia [14,15]. Fluorescence resonance energy transfer

(FRET) analysis using a biosensor for detection of Rac activity

in living cells has revealed that Rac is activated at the leading edge

of the lamellipodia. This activation is a result of intracellular

signaling induced from extracellular stimuli such as growth factors,

cytokines and extracellular matrix components [16,17,18,19].

Though molecules that mediate the signals from the extracellular

environment are not fully understood, several proteins such as Rac

exchange factor, Tiam1 [20], Vav1 [21] and the adaptor proteins

Crk/DOCK180 [22] have been investigated as mediators of this

signaling pathway. Activated Rac can induce new actin polymer-

ization by stimulating the Arp2/3 complex through the Rac target

IRSp53 [23]. The PAK is another effector of Rac1 which works to

mediate the downstream signaling of Rac1. The kinase activity of

PAK is stimulated by binding to activated Rac1. PAK links Rac
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with LIM-kinase, which catalyses the phosphorylation of cofilin,

thereby inactivating F-actin-depolymerizing activity [24].

The signaling pathway involving Ena/VASP and the precise

linkage between Ena/VASP and the small GTPases remains

unclear. In this report we show that depleting hMena using siRNA

resulted in cells which were highly spread out with vast

lamellipodia. This effect was reverted by introducing the dominant

negative form of Rac1. hMena knock-down cells showed increased

Rac activity at the lamellipodia. Moreover, we showed that hMena

and Rac1 colocalized in lamellipodia and hMena formed a protein

complex with Rac1 protein. Our results demonstrated an

alternative function of Ena/VASP in actin dynamics.

Results

hMena interacts with Rac1 at the edge of lamellipodia
A time-lapse colocalization analysis between hMena and Rac1 in

U251MG cells was examined in order to detect the in vivo interaction

and to determine the physical significance of the subcellular

localization of hMena and Rac1. Images were obtained every thirty

seconds for fifteen minutes using a confocal microscope. Similar to

former reports using fibroblasts [4], hMena was distributed at the

focal adhesion (Figure S1) and at the edge of the lamellipodia

(Figures 1A and S1). CFP-Rac1 localized broadly at the membrane

protrusion (Figure 1B). The merged images indicated that hMena

and Rac colocalized at the lamellipodia (Figure 1C, Movie S1). As a

visual inspection of these images suggested colocalization of the

proteins, we used intensity correlation analysis (ICA) [25] to test for a

relationship between hMena and Rac1. A pseudocoloured image,

where each pixel is equal to the PDM (product from the differences

from the means; see Materials and Methods) value at that location

(Figure. 1D, Movie S2), showed a high codependency of hMena and

Rac1 in the lamellipodia and a moderate codependency in the

cytosol. A kymograph of the PDM plot at the line indicated in

Figure 1D showed that the PDM value at the ruffling membrane is

higher than in the cytosol (Figures 1, E and F, Movie S2).

As the Mena/VASP family interacts with a variety of proteins

which can associate with Rac1 [26,27,28], we hypothesized that

Figure 1. Distribution of mCherry-hMena and CFP-wtRac1 in a live cell. After co-transfection of mCherry-hMena and CFP-wtRac1 in U251MG
cells, images were obtained every thirty seconds for fifteen minutes with a confocal microscope. mCherry-hMena and CFP-wtRac1 were colocalized in
lamellipodia and the cytosol (A–C; also available as Supplemental Movie S1). (D) Intensity correlation analysis. The PDM plot showed a high
codependency of hMena and Rac1 distribution in lamellipodia and a moderate codependency in the cytosol. (E) Kymograph of the PDM plot at the
line indicated in Figure 1D. (F) Time sequence of the PDM value at the lines indicated in Figure 1E. The PDM value in the lamellipodia (red line)
exhibited oscillatory changes, although the PDM value in the cytoplasm (blue line) was comparatively constant.
doi:10.1371/journal.pone.0004765.g001
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hMena is a component of the Rac interacting proteins. To test this

hypothesis, we next detected the protein interaction between hMena

and Rac1 in vivo using a fluorescence resonance energy transfer

(FRET)-based assay. U251MG cells co-transfected with YFP-hMena

and CFP-Rac1 were fixed and used for a quantitative acceptor-

depletion-FRET approach combining linear spectral unmixing (u-

adFRET) [29,30]. In this approach, the cross-talk of the fluorophores

can be excluded. FRET efficiency (E) and the relative concentration

ratio of donor to acceptor are calculated from the unmixed donor

and acceptor emission before and after acceptor photobleaching.

Figure 2B shows the example of the time sequence of the mean

fluorescence of the donors and acceptors in the region of interest

(ROI). After acceptor photobleaching, the donor emission within the

ROI in Figure 2A (rectangular area) was increased (Figure 2B, solid

blue line), while the donor emission within the non-bleached area

was not changed (Figure 2B, dashed blue line), indicating that FRET

occurred in the ROI in Figure 2A. A higher FRET efficiency was

observed at the lamellipodia in the cells transfected with the

combination of hMena and wild type Rac1 (Figure 2A’) or hMena

and constitutive active Rac1 (Figure 2C). A high FRET efficiency

was also observed in the focal adhesion of the cells transfected with

the combination of YFP h-Mena and CFP-vinculin (Figure 2E) as a

positive control, although the FRET efficiency was low in the cells

transfected with hMena and CD44 (Figure 2F) as a negative control.

The regional mean FRET efficiency within the cell membrane of the

combination of hMena and constitutive active Rac1 or wild type

Rac1 was higher than that within the cytosol (Figure 2, S2E, Table 1).

It is also important to note that the FRET efficiency was not affected

by the expression level of the acceptor concentration[31]. The

decrease in FRET efficiency with an increase in the donor/acceptor

concentration ratio within cells co-transfected with hMena and

constitutive active Rac1 or wild type Rac1 (Figure S3), indicated that

FRET was caused by the binding of donors and acceptors, but not

by acceptor reabsorption of donor emissions. Thus, the results of the

FRET analysis suggested that hMena associates with Rac1 at the

lamellipodia. The association of hMena and Rac1 was confirmed

using the GST-pulldown assay. The association requires the full

length of hMena. However, we could not determine the specific

interacting domain within the hMena protein as partial fragments of

hMena do not form the protein complex (Figure S4).

The FRET efficiency within the lamellipodia was higher than in

the cytosol in the cells transfected with the combination of Mena

and wild type Rac1 or constitutive active Rac1. Lamellipodia are

thought to be in the region where Rac is activated. Thus, it is likely

that hMena associates with the activated Rac1.

Reduced hMena expression induces lamellipodia
formation and cell spreading

In order to investigate the role of hMena in Rac signaling, a

targeted depletion of hMena by RNA interference was used. Two

siRNAs were designed against the EVH1 domain (siRNA640 in

Figure 3A) and the junction region of the EVH1 and LERER

domain (siRNA853 in Figure 3A) of hMena. Both of the siRNAs

resulted in a comparable reduction in protein levels in U251MG

cells (Figure 3B). Either siRNA had no detectable effect on the cell

growth (Figure S6) or apoptosis (data not shown). Since the Ena/

VASP family of proteins is reported to be involved in actin

remodeling and formation of cell shape [4], we were interested in

whether a reduction in hMena protein affects cell shape. U251MG

cells transfected with hMena siRNAs exhibited significant spread,

and had larger lamellipodia (Figure 3, C–E, Movies S3 and S4).

The apparent formation of lamellipodia was verified by staining F-

actin (Figure S5H and I). Analysis of the substrate surface area

covered by adherent cells revealed that hMena knock-down cells

are more than two times the area, about 1.5 times the perimeter,

and about 1.5 times the percent lamellipodial length of the

perimeter compared with that of the control cells (Figures 3, F–H

and Table 2). Independent experiments with the two different

siRNAs against hMena showed similar phenotypes, indicating that

the phenotypes are caused by depletion of hMena and other

possible causes, such as down-regulation of alternative motility

genes, is improbable (Figures 3, F–H and Table 2).

We repeated our studies of the extent of the cell spreading with

the hMena depletion in different human cell lines, including the

U373MG glioblastoma cell line and the HeLaS3 epithelial cell

line. Very similar increases in area, perimeter and relative percent

of lamellipodial length were seen in U373MG cells, but not in

HeLaS3 cells, suggesting that the effect is cell type specific

(Figure 4, A–F, Table 3, Figure S5).

Dominant negative Rac1, but not dominant negative
RhoA, cancel the increased cell spreading caused by
hMena RNAi

Rac is known to play important roles in cell spreading, lamellipodia

formation and cell migration [32]. Cell shape changes shown in

Figure 2. u-adFRET analysis defined interaction between hMena and Rac1. u-adFRET analysis of the cells transfected with the combinations
of molecules indicated in the figures. (A)Expression patterns of YFP (acceptor) and CFP (donor) before (A, left panels) and after (A, right panels)
acceptor photobleaching. Bleached area indicated with rectangles in post-bleached images of acceptors. (B) Example profiles of the fluorescence of
donor (blue) and acceptor (red) before and after photobleaching. Dashed lines indicate the change in the fluorescence within the non-bleached area.
(A’, C–F) Mapping of FRET efficiency. The insets show high-magnification views of the outlined regions in the panels.
doi:10.1371/journal.pone.0004765.g002

Table 1. FRET efficiency.

Cytosol Peripheral FA non-bleached area

dnRac1 vs hMena 961.4 (n = 24) 1265.8 (n = 19) -

wtRac1 vs hMena 1663.9 (n = 59) 2168.4 (n = 22) 166.5 (n = 25)

caRac1 vs hMena 1764.2 (n = 50) 2468.2 (n = 26) -

hMena vs Vinculin 462.2 (n = 12) - 1964.4 (n = 26) -263.7 (n = 9)

hMena vs CD44 2762.9 (n = 25) 22623.9 (n = 16) - 2163.4 (n = 11)

Mean+s.d.

doi:10.1371/journal.pone.0004765.t001
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Figures 3 and 4 were highly reminiscent of the lamellipodial

outgrowth caused by activation of Rac. In addition, recent reports

demonstrated significantly enhanced activation of the Rac/p21-

activated kinase pathway in VASP 2/2 cells [13]. Therefore, we

speculated that knock-down of hMena elicits intracellular signals to

activate Rac, and this causes the membrane ruffling and the

lamellipodial protrusion. To confirm this hypothesis, we examined

whether a dominant negative form of Rac1 (N17Rac1) can cancel the

effect caused by introducing siRNA against hMena. U251MG cells

were co-transfected with hMena siRNA and CFP tagged-N17Rac1

or a CFP tagged dominant negative form of RhoA (N19RhoA), and

subjected to fluorescent microscopy. The expression level of CFP-

N17Rac1 and CFP-N19RhoA were similar from Western blot

analysis (Figure 5E). Consistent with the previous report, CFP-

N17Rac localized at the cell periphery and in the cytoplasm, and

CFP-N19RhoA existed diffusely in the cytoplasm [33]. Transfection

with CFP or CFP-N19RhoA did not reduce the area or the perimeter

of the knock-down cells (Figure 5, A, B, and D). CFP-N17Rac1

Figure 3. Reduced Mena expression induces lamellipodia formation and cell spreading in U251MG cells. (A) Schematic of hMena.
hMena contains a central proline-rich core flanked by three highly conserved regions, the EVH1, EVH2 and LERER domains. (B) Western blot analysis of
U251MG cells shows reduced levels of the hMena protein in the cells transfected with hMena siRNAs (siRNA640 or siRNA853) compared with the cells
transfected with the control siRNA. b-tubulin served as a loading control. (C–E) U251MG cells with siRNAs targeting hMena show spread, and
increased formation of the lamellipodia. Bars, 10 mm. (F) Box and whisker plots for relative cell area of U251MG cells. The mean area of U251MG cells
transfected with control siRNA was set as 1. (G) Box and whisker plots for the relative perimeter of the control cells and knock-down cells. The mean
perimeter of U251MG cells transfected with control siRNA was set as 1. (H) Box and whisker plots for percent lamellipodial length of the perimeter.
Data is from 50 cells each. For box and whisker plots, the top and bottom of the box represent the 75th and 25th quartile, and whiskers 10th and 90th

percentiles, respectively. The middle line of the box is the median. Brackets with asterisks indicate statistically significant differences between the
data sets from a Student’s t test (p,0.001).
doi:10.1371/journal.pone.0004765.g003
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inhibited the increased spread caused by the introduction of hMena

siRNA to levels comparable with cells transfected with control siRNA

(Figure 5C). Statistical analysis revealed that cells transfected with

CFP-N17Rac, but not with CFP or CFP-N19RhoA, reduced the cell

area, perimeter, and percent lamellipodia of the perimeter to the

levels of the control cells (Figure 5, F–H, Table 4). These results

indicated that Rac1 is a key molecule involved in the morphological

change caused by depletion of hMena.

Reduced hMena expression enhances Rac1 activity
To confirm that the knock-down of hMena actually elicits the

activation of Rac, we performed a Rac pull-down assay. A GST

Table 2. Reducec hMena expression induces cell spreading.

U251MG cells control siRNA siRNA640 siRNA853

Relative Area 160.39 2.361.05 2.961.85

Relative Perimeter 160.21 1.760.55 1.860.50

% Lamellipodia 1668.8 30614.8 36612.9

Mean6s.d., n = 50 each

doi:10.1371/journal.pone.0004765.t002

Figure 4. Reduced Mena expression induces lamellipodia formation in various cell lines. (A–C) Morphological change in U251MG (A),
U373MG (B), HeLaS3 cells (C). U251MG and U373MG spread with the introduction of hMena siRNA640. (D) Box and whisker plot for relative cell area.
(E) Box and whisker plot for relative perimeter. Data is from 50 cells each. The mean perimeter of U251MG cells transfected with control siRNA was set
as 1. (F) Box and whisker plots for percent lamellipodial length of the perimeter. For box and whisker plots, the top and bottom of the box represent
the 75th and 25th quartile, and whiskers 10th and 90th percentiles, respectively. The middle line of the box is the median. Brackets with asterisks
indicate statistically significant differences between the data sets from a Student’s t test (p,0.001).
doi:10.1371/journal.pone.0004765.g004

Mena Associates with Rac1

PLoS ONE | www.plosone.org 6 March 2009 | Volume 4 | Issue 3 | e4765



fusion of the Rac/Cdc42 binding (CRIB) motif of PAK was used

to affinity precipitate the activated form of Rac [34]. As shown in

Figure 6A, hMena knock-down cells showed increased Rac activity

compared with controls in U251MG and U373MG cells. The

activation of Rac1 in U251MG was suppressed when rescued with

the expression of FLAG-tagged mouse Mena in a dose dependent

manner (Figure 6B).

FRET imaging of Rac1 activity
Next, we visualized the activity of Rac1 in cells to obtain direct

information about the spatial changes of the activity of Rac1 using

a FRET-based in vivo probe. As the in vivo probe, we used a single-

molecule pRaichu-Rac1 which consisted of Rac1, the CRIB

domain of PAK1, YFP and CFP. Upon activation of Rac1, the

binding to PAK-CRIB increases the efficiency of FRET between

CFP and YFP [19]. U251MG cells co-transfected with Raichu-

Rac1 and siRNA were fixed and analyzed with a quantitative u-

adFRET [29,30]. A similar phenotype of cell spread with the

formation of lamellipodia in hMena knock-down cells was also

observed in the cells with the introduction of pRaichu-Rac1 probe.

Figure 7C shows the time sequence of the mean fluorescence of the

donors and acceptors in the region of interest (ROI). After

acceptor photobleaching, donor emission within the ROI in

Figure 7A (rectangular area) was increased (Figure 7C, solid blue

line), while the donor emission within the non-bleached area was

not changed (Figure 7C, dashed blue line), indicating that FRET

occurred in the ROI shown in Figure 7A. Maps of E calculated

from u-adFRET showed that Rac1 was activated at the

lamellipodia in either the control or the knock-down cells

(Figure 7, A’, B’ and E). The observations of the activation of

Rac1 at the protrusive ruffling membrane are similar to previous

reports where different kinds of FRET probes were used

[16,17,18,19]. The regional analysis within a cell showed that

the E values in the lamellipodia are similar in the control and

knock-down cells. The average E value in a whole cell was

increased in knock-down cells (Figure 7D).

Discussion

Our study demonstrated that hMena protein interacts with

Rac1 protein at lamellipodia and their association may to suppress

the activation of Rac1. The FRET based analysis of protein-

protein interactions has the advantages of being able to detect the

spatial information of the protein complex in the cell, and also to

detect the transient interactions that exist in the cell during a state

of dynamic equilibrium [35]. As dynamic molecular interactions

exist in lamellipodia [36], it is likely that the association of hMena

and Rac1 is in a dynamic equilibrium.

There is evidence that VASP is involved in Rac activation

[13,37]. However, the precise linkage between Ena/VASP and

Rho GTPases remains unresolved. Our study also revealed that

down-modulation of hMena expression induces activation of Rac1

in glioblastoma cell lines, but not in epithelial HeLaS3 cells. This

might be derived from functional redundancy among the Ena/

VASP family proteins because the expression of the Ena/VASP

family of proteins varies in different types of cells and tissues

[38,39,40]. Indeed, the expression level of hMena in HelaS3 cells

is lower than in U251MG or U373MG cells (Figure 6A lower

column).

Ena/VASP family members interact with a variety of proteins

including Rac1-interacting proteins. For example, IRSp53 is an

adaptor protein that makes a complex with an exchange factor,

Tiam1, and Rac1 [41]. IRSp53 also binds to Mena [26]. Another

candidate for linking Mena and Rac1 is Trio, a member of the Dbl

family that encodes a large protein with numerous catalytic and

signaling domains including two GEF domains. Trio also interacts

genetically with Drosophila Ena [27,28]. The N-terminal GEF

domain (GEF1) of human Trio has been shown to activate Rac1

[42,43]. Thus, it is possible that Ena/VASP inhibit Rac signaling

through modulation of the GEF(s) of Rac1. Rac1 activity is also

regulated by GTPase-activating protein (GAP) [15]. As VASP can

interact with p120RasGAP, the possibility that Mena interferes

with intrinsic GTP hydrolysis[37] cannot be excluded. An

attractive possibility is that hMena associates with effectors of

Rac1, as VASP associates with mDia which is one of the effector

proteins of RhoA small GTPase [44]. It seems there is weaker but

certain degree of interaction between Rac and Mena in the

cytosol. This result suggests that the linker(s), if mediated by any of

the candidate molecules, also exist in the cytosol as well as in

lamellipodia. A pool of hMena in the cytosol might maintain Rac1

in an inactive state. This might provide clues about the molecules

that link Mena with Rac1.

Although a great deal has been learned about Ena/VASP,

many questions remain about the role of Ena/VASP family

proteins in actin-based cell motility. From our results we

postulated that hMena has the properties of an adaptor protein

that recruits regulatory protein(s) for Rac 1, so that hMena act as a

negative regulator of Rac1 at the cell membrane. Accordingly, our

study provides a novel insight into the molecular mechanism of the

lamellipodia of motile cells.

Materials and Methods

Molecular cloning
To obtain human Mena cDNA, reverse transcriptase-PCR from

HeLa cell mRNA was performed. A forward primer (59-

GGCACCATGAGTGAACAGAGTA) and a reverse primer (59-

GCTCATAAATGTAGGGGTTTGC) were used. The PCR

products were cloned into pCR2.1 (Invitrogen, Carlsbad, CA),

and then their sequences were determined. The sequences of the

14 clones correspond to a human Mena reported in the public

genome database.

Table 3. Reduced hMena expression induced cell spreading in various cell lines.

Cells Relative Area Relative Perimeter %Lamellipodia

Control KD Control KD Control KD

U251MG 160.69 1.660.59 160.39 1.460.35 1869.2 30613.2

U373MG 160.43 2.361.36 160.35 1.460.43 1467.2 32615.4

HeLaS3 160.40 0.960.42 160.23 160.26 566.1 767.4

Mean6s.d., n = 50 each

doi:10.1371/journal.pone.0004765.t003

Mena Associates with Rac1
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Cell culture, reagents, and materials
The human epithelial cell line HeLaS3, the human glioblastoma

cell line U251MG and U373MG were obtained from the

American Type Culture Collection (ATCC, Rockville, MD,

USA). U251MG and U373MG cells were maintained in Iscove’s

modified Dulbecco’s medium (IMDM, Invitrogen) supplemented

with 10% fetal bovine serum. HeLaS3 cells were grown in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% calf serum and antibiotics. The following antibodies were

used: anti-Mena (BD Transduction Labs, Lexington, KY) and

Figure 5. Dominant negative Rac1, but not dominant negative RhoA, cancel the increased cell spreading caused by depletion of
hMena expression. (A–D) U251MG cells were spread and had vast lamellipodia (B). Introduction of the dominant negative form of Rac1 (C)
inhibited the increased spread caused by the introduction of hMena siRNA640 to levels comparable with cells transfected with control siRNA (A).
Introduction of the dominant negative form of RhoA GTPase did not inhibit the effect of hMena siRNA (D). Bars, 20 mm. (E). Protein expression of
dominant negative Rac1, dominant negative RhoA (upper panel) and hMena (lower panel). (F–G). Box and whisker plot for relative cell area (F),
relative perimeter (G) and percent lamellipodia of perimeter (H). Top and bottom of the box represent the 75th and 25th quartile, and whiskers 10th

and 90th percentiles, respectively. The middle line of the box is the median. Brackets with asterisks indicate statistically significant differences
between data sets from a Student’s t test (p,0.001). n.s. indicates not significant.
doi:10.1371/journal.pone.0004765.g005

Mena Associates with Rac1
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anti-Rac1 (BD Transduction Labs), and anti-b-tubulin (Santa

Cruz Biotechnology, Santa Cruz, CA).

Plasmids
hMena cDNA was cloned in frame with enhanced green

fluorescence protein (EGFP) or mCherry (Clontech, Mountain

View, CA) or monomeric Venus, a variant YFP (a gift from Dr. A

Miyawaki, Riken Brain Science Institute) as a C-terminal fusion.

cDNAs for Rac1 and RhoA (wild type, dominant negative form and

constitutive active form) were gifts of Dr. Y. Takai, Osaka University.

Rac1 and RhoA cDNAs were cloned in frame with pECFP as a C-

terminus fusion. CD44 cDNA provided from Dr. B. Seed (Harvard

Medical School, Boston, MA) was cloned in frame with pECFP as an

N-terminus fusion. FLAG-mouse Mena was a gift from Dr. K. Tani

[45]. CFP-vinculin and CFP-paxillin were provided by Dr.

Alexander D. Bershadsky, The Weizmann Institute of Science,

Israel. Transfections were performed with LipofectAMINE2000

(Invitrogen) as directed by the manufacturer.

Live cell imaging
Cells transfected with YFP or CFP constructs were plated on

35 mm-diameter glass-based dishes (Matsunami Glass Ind. Ltd.,

Tokyo, Japan). Cells were imaged on a Zeiss LSM 510 META

confocal microscope (Carl Zeiss, Jena, Germany) equipped with

temperature, CO2 controls, an argon laser, a helium/neon and

Plan Apochromat 406 or 636 oil Iris lenses.

Excitation on the LSM 510 unit was with an argon laser

emitting at 458 nm for CFP, and a helium/neon laser emitting at

543 nm for mCherry, and emissions were collected using a 560- to

615-nm band pass filter to collect mCherry emissions and a 475-

nm long-pass filter to collect CFP emissions.

Colocalization analysis
To verify colocalization, the time-lapse images were analyzed

with the ‘‘colocalization’’ plugin of ImageJ. The random or

codependent nature of the colocalization were tested using

intensity correlation analysis (ICA) [25] in which the distribution

of the intensity value for each pixel of a channel is plotted against

the product of the difference of the mean (PDM) of the two

channels. The PDM value is expressed as

PDM~ red intensity { mean red intensityð Þ|

green intensity{mean green intensityð Þ

The PDM image where each pixel is equal to the PDM value at

that location is pseudocolored in yellow and the areas in blue

represent the areas of positive and negative PDM values, corre-

sponding to the presence and absence of colocalization, respectively.

FRET analysis (u-adFRET)
For unmixing-acceptor depletion FRET (u-ad FRET), cells

were fixed in 4% paraformaldehyde in PBS for 20 minutes at

room temperature, washed with PBS, and mounted in Mowiol

reagent containing 10% Mowiol 4–88 (Calbiochem, Beeston,

U.K.), 25% glycerol, and 2.5% 1.4-diazabicyclo [2, 2, 2] octane

(Sigma, Poole, U.K.) in 50 mM Tris/HCl, pH 8.5. One or two

ROIs within a field were acceptor-photobleached. For this assay,

two argon laser lines were used. The 458 nm laser line was used

for imaging as it can excite both ECFP and EYFP (Venus). The

514 nm laser line was used for the acceptor-photobleaching

because it only excites EYFP (Venus). The imaging laser was

adjusted so that photobleaching throughout the acquisition was

negligible. The acceptor-photobleaching required full laser power

(0.1 mW), and was repeated 100 times over pre-selected ROIs to

eliminate the acceptor fluorescence within each ROI. The imaging

procedure commenced with pre-photobleaching acquisition until a

preset time point, after which the imaging laser was turned off and

the acceptor photobleaching started. The imaging laser was turned

on again after photobleaching for the post-photobleaching

acquisition. The acquired image series were subjected to the

linear unmixing method and separated images were processed

using Mathematica software according to the algorithm described

in the previous report [29] and below.

FRET efficiency is calculated from the unmixed images by the

following equation,

E~ 1{fd x, yð Þ=fdph x, yð Þð Þ100%

where fd(x, y) and fdph(x, y) are the fluorescence of the donor

Table 4. Dominant negative (dn) Rac1, but not dnRhoA,
cancel the cell spreading caused by hMena RNAi

Cells Control hMena siRNA dnRac1 dnRhoA

CFP CFP

Relative Area 160.41 1.960.97 1.360.49 1.7+0.71

Relative Perimeter 160.27 1.560.48 1.160.30 1.360.30

%Lemellipodia 2267.2 4369.8 1064.5 40620.5

Mean6s.d.,
n = 50 each

doi:10.1371/journal.pone.0004765.t004

Figure 6. hMena mediates the activation of Rac1. (A) U251MG,
U373MG and HeLaS3 cell lines were transfected with control siRNA or
hMena siRNA. Active Rac1 was pulled down with a GST-Pak-CRIB.
Elimination of hMena activated Rac1 in U251MG and U373MG cell lines.
(B) Re-expression of FLAG-mouse Mena in siRNA640-transfected U251
cells rescued the deactivation of Rac1 in a dose-dependent manner.
doi:10.1371/journal.pone.0004765.g006
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before and after photobleaching. Maps of E were depicted using

MetaMorph software (Molecular Devices, Sunnyvale, CA).

Spectral linear unmixing
To separate signals from fluorescent proteins in a cell, we used a

linear unmixing method, as described previously [46,47]. Briefly,

images were acquired from five spectral channels simultaneously

with a Zeiss LSM 510 META confocal microscope (636NA 1.4

oil-immersion objective), covering important parts of the emission

from both fluorophores (477.9–584.9 nm) with a 21.4 nm spectral

resolution at an excitation wavelength of 458 nm. The acquired

4D image sequence (x, y, time and spectrum) was first background

subtracted and processed with Zeiss LSM software and separated

to two fluorophores (YFP and CFP) using the linear unmixing

method implemented in Mathematica software (Wolfram Re-

search, Inc., Champaign, IL). The fluorescence emission spectrum

of a mixed specimen is an addition of the abundance-weighted

spectral response of all constructs. In the two element case it is

expressed by,

Fm x, y , lð Þ~a x, yð ÞFa lð Þzb x, yð ÞFb lð Þ

where a(x, y) and b(x, y) are unknown abundance factors of the

two fluorophores at pixel location (x, y), and whose spectral

responses are expressed as Fa(l) and Fb(l), respectively. Fa(l) and

Fb(l) are measured using single fluorophore specimens. a(x, y) and

b(x, y) are estimated using a least-square fitting. One of the pair of

fluorophores was used for to obtain a reference spectrum of a

fluorophore. For example, in the u-adFRET assay of CFP-wtRac1

and Venus-hMena pair, we used CFP-wtRac1as a reference of

CFP, and Venus-hMena as a reference of YFP.

RNA interference
The human Mena siRNA oligonucleotides, 59-GCCAUUC-

CUAAAGGGUUGAAGUACA (sense, named siRNA 640), 59-

UUUCCAAUUCUUCUUGGGAUGGGCC (sense; named

siRNA853), and the control siRNA, 59-GCCCUUCAAGAG-

GUUAGGAUUAACA (sense) were purchased from Invitrogen.

For transient transfections, approximately 26105 cells were

plated in a 6 cm dish in DMEM without antibiotics. Cells

were transfected with 20 pmol of siRNA using LipofectA-

MINE2000.

Fluorescence microscopy
For single-color analysis of a fluorescent protein, cells were

grown on a glass bottom dish and fixed in 4% paraformaldehyde

in phosphate-buffered saline (PBS) for 20 minutes at room

temperature, washed with PBS, and mounted in Mowiol reagent

containing 10% Mowiol 488 (Calbiochem, Beeston, U.K.), 25%

glycerol, and 2.5% 1.4-diazabicyclo [2.2.2] octane (Wako, Tokyo,

Japan) in 50 mM Tris/HCl, pH 8.5. Fixed cells were analyzed

with a laser-scanning microscope (LSM 510 META, Carl Zeiss),

with a laser line at 458 nm, and an objective Plan-Apochromat

406 Oil Ph3. The cell area, perimeter, and the length of

lamellipodia were measured with ImageJ software (NIH, Bethesda,

MD). The length of the lamellipodia was judged morphologically

in the phase contrast pictures and confirmed by F-actin staining.

Rac activation assay
pGEX-PAK-CRIB [34] was introduced into the Rosetta2(DE3)

strain of E. coli, and GST fusion protein was expressed and

purified. Cells were washed with ice-cold PBS and harvested in

lysis buffer (20 mM Hepes-NaOH, pH 7.9, 300 mM NaCl, 1 mM

EDTA, 10 mM NaF, 15% Glycerol, 0.5% Nonidet P-40, and

protease inhibitor mixture). After lysis for 15 min at 4uC, the

samples were centrifuged at full speed at 4uC. An amount of

500 mg of the lysate was mixed with 30 mg of the PAK-CRIB as a

GST fusion protein for 2 hours at 4uC. Then the samples were

washed four times. Finally, the pelleted beads were resuspended in

15 mL of Laemmli’s sample buffer and subjected to SDS-

polyacrylamide gel electrophoresis (15%). Bound Rac1 were

detected by Western blotting using antibodies against Rac1.

FRET analysis (Rac1 activity)
FRET probes for the Rac1 GTPases, namely, Raichu-Rac1/

1011X, have been described previously [19,48]. U251MG cells

were plated on a 35-mm-diameter glass-base dish (Matsunami

Glass Co., Tokyo, Japan), and the cells were transfected with

expression plasmids and siRNA using LipofectAMINE2000. The

cells were imaged on a Zeiss LSM 510META and subjected to the

spectral linear unmixing method described above.

Statistics
Comparison between the two groups was made using a

Student’s t-test. In all cases, a result was considered significant if

p,0.001. Statistical testing was performed using the computer

program R (R Foundation for Statistical Computing, Vienna,

Austria. http://www.R-project.org).

Supporting Information

Methods S1

Found at: doi:10.1371/journal.pone.0004765.s001 (0.07 MB RTF)

Figure S1 Subcellular distribution of GFP-hMena. Subcellular

distribution of EGFP-hMena and YFP-paxillin in U251MG cells.

hMena is localized to focal adhesion (arrows) and leading edges

(arrow heads). YFP-paxillin is used for a focal adhesion marker.

Bar, 10 mm

Found at: doi:10.1371/journal.pone.0004765.s002 (1.20 MB TIF)

Figure S2 u-adFRET analysis defined interaction between

hMena and Rac1. (Supplementary for figure 2) (A–D) Expression

patterns of YFP (acceptor) and CFP (donor) before (A, left panels)

and after (A, right panels) acceptor photobleaching. Bleached area

indicated with rectangles in post-bleached images of acceptors. (E)

Figure 7. Imaging of Rac activity in U251MG cells using a u-adFRET assay. U251MG cells co-transfected with Raichu-Rac and hMena siRNA
or control siRNA were replated onto glass-bottom dishes. YFP and CFP images were obtained from spectral images using the linear unmixing
method. Expression patterns of YFP (acceptor) and CFP (donor) of Raichu-Rac1 before (A, B, left panels) and after (A, B, right panels) acceptor
photobleaching. Bleached area indicated with a rectangle in A. In the control cells, the whole area in B is photobleached. (A’, B’) Mapping of FRET
efficiency. In hMena knock-down cells, Rac1 was activated in an extended arc-like structure which corresponds to the lamellipodia (A’). In control cells,
Rac1 was also activated at the protrusive ruffling membrane (B’). Bars, 20 mm. (C) Example profiles of fluorescence of donor (blue) and acceptor (red)
before and after photobleaching. Dashed lines indicate the change of the fluorescence within the non-bleached area. (D) Box and whisker plots for
mean FRET efficiency of U251MG cells. (E) Box and whisker plots for regional FRET efficiency in U251MG cells. For the box and whisker plots, top and
bottom of the box represent the 75th and 25th quartile, and whiskers 10th and 90th percentiles, respectively. The middle line of the box is the median.
Data is from 20 cells each. Brackets with asterisks indicate statistically significant differences between data sets from a Student’s t test (p,0.001).
doi:10.1371/journal.pone.0004765.g007
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Whisker and box plot of the mean FRET efficiency within the

ROI. Top and bottom of the box represent the 75th and 25th

quartile, and whiskers 10th and 90th percentiles, respectively. The

middle line of the box is the median. Brackets with asterisks

indicate statistically significant differences between data sets from a

Student’s t test (p,0.001).

Found at: doi:10.1371/journal.pone.0004765.s003 (0.71 MB TIF)

Figure S3 (A–C) Mean FRET efficiency as a function of the

relative concentration ratio of donor/acceptor and acceptor

fluorescence intensity level for the different combinations of

Rac1. In cells co-transfected with hMena and constitutive active

Rac1, the FRET efficiency is decreased with an increase in the

donor/acceptor concentration ratio, but it is insensitive to an

increase in absolute acceptor level.

Found at: doi:10.1371/journal.pone.0004765.s004 (0.11 MB TIF)

Figure S4 GST-hMena pulls down endogenous Rac1. (A, B)

GST-fusion hMena fragments shown in the diagram, or GST

alone, were incubated with the cell lysate of U251MG cells, and

precipitated with glutathione-sepharose beads. Bound Rac1 was

analyzed by western blotting using anti-Rac antibody (upper

panel). Each GST construct is shown after Coomassie Brilliant

Blue (CBB) staining (lower panel). The GST-fusion of hMena

bound to Rac1, but not to GST alone, indicating that hMena is

capable of interacting with Rac1 physically. Deletion of the EVH1

domain of hMena decreased the ability to pull down the Rac1

protein (A). The GST-EVH1 of hMena could not pull down

endogenous Rac1. Also neither GST-LERER nor GST-EVH2

could pull down Rac1 protein (B).

Found at: doi:10.1371/journal.pone.0004765.s005 (0.32 MB TIF)

Figure S5 Reduced Mena expression induces lamellipodia

formation and cell spreading. Pictures are lower-magnification of

figure 3 C–E, I, and figure 4 A–C. U251MG cells (A, B, and C),

and U373MG cells (D, E) with siRNAs targeting hMena show

spread, and increased formation of the lamellipodia. No

remarkable morphological change is seen in HelaS3 cell (F, G).

Found at: doi:10.1371/journal.pone.0004765.s006 (4.51 MB TIF)

Figure S6 Cell proliferation of U251MG cells. Knock-down of

hMena did not affect the cell proliferation.

Found at: doi:10.1371/journal.pone.0004765.s007 (0.09 MB TIF)

Movie S1 Time-lapse merged imaging of mCherry-hMena and

CFP-Rac1. U251MG cells co-transfected with mCherry-hMena

and CFP-Rac1 were plated onto glass-bottom dish. Spectral

images were obtained every 30 seconds for 15 minutes.

Found at: doi:10.1371/journal.pone.0004765.s008 (2.83 MB

MOV)

Movie S2 Time-lapse PDM plot imaging. A pseudocolored

image, where each pixel is equal to the PDM (product from the

differences from the means; see Materials and Methods) value at

that location, showed a high codependency of hMena and Rac1 in

the lamellipodia and a moderate codependency in the cytosol.

Found at: doi:10.1371/journal.pone.0004765.s009 (1.71 MB

MOV)

Movies S3 Time-lapse imaging of U251MG cells transfected

with control siRNA. Cells were plated onto glass-bottom dish.

Images were obtained every 30 seconds for 20 minutes. Bar

10 um.

Found at: doi:10.1371/journal.pone.0004765.s010 (0.30 MB

MOV)

Movies S4 Time-lapse imaging of U251MG cells transfected

with hMena siRNA. Cells were plated onto glass-bottom dish.

Images were obtained every 30 seconds for 20 minutes. Bar

10 um.

Found at: doi:10.1371/journal.pone.0004765.s011 (0.29 MB

MOV)
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