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The toxicity of acrolein, an a,3-unsaturated aldehyde produced during lipid peroxidation, is attributable
to its high reactivity toward DNA and cellular proteins. The major acrolein—DNA adduct, -hydrox-
ypropano-2’-deoxyguanosine (y-HOPJG), ring opens to form a reactive N>-oxopropyl moiety that cross-
links to DNA and proteins. We demonstrate the ability of y-HOPAG in a duplex oligonucleotide to cross-
link to a protein (EcoRI) that specifically interacts with DNA at a unique sequence. The formation of a
cross-link to EcoRI was dependent on the intimate binding of the enzyme to its y-HOPdG-modified
recognition site. Interestingly, the cross-link did not restrict the ability of EcoRI to cleave DNA substrates.
However, stabilization of the cross-link by reduction of the Schiff base linkage resulted in loss of enzyme
activity. This work indicates that the y-HOPdG—EcoRI cross-link is in equilibrium with free
oligonucleotide and enzyme. Reversal of cross-link formation allows EcoRI to effect enzymatic cleavage
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of competitor oligonucleotides.

Introduction

Noncovalent interactions between DNA and proteins are
essential for proper cellular function. The recognition of specific
DNA sequences or structures by DNA-binding proteins is a
crucial regulatory step during DNA replication, control of gene
expression, and the response to and repair of DNA damage.
Disruption of these interactions poses a significant threat to
genome integrity and cell viability. Protein and DNA damage
induced by endogenous electrophiles is associated with a number
of human diseases, including cancer, cardiovascular disease, and
neurological disorders (/—3). For example, oxidation products
of polyunsaturated fatty acids comprise a series of cytotoxic
o,(B-unsaturated aldehydes, including malondialdehyde, 4-hy-
droxynonenal, and acrolein, that readily form covalent adducts
with cellular macromolecules, contributing to their toxicity
(reviewed in ref 4).

Acrolein is a mutagen and a tumor initiator produced
endogenously via lipid peroxidation and myeloperoxidase-
catalyzed amino acid oxidation (5—38). It is also an ubiquitous
pollutant found in automobile exhaust and cigarette smoke
(9). Acrolein exhibits facile reactivity with proteins (8) and
represents a significant source of endogenous DNA damage
by forming cyclic adducts with DNA bases and DNA—protein
cross-links (70, 11). The major products of the reaction of
acrolein with DNA are exocyclic adducts of deoxyguano-
sine, (8R/S)-3-(2’-deoxyribos-1"-y1)-5,6,7,8-tetrahydro-8-
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Figure 1. Structures of DNA adducts and their ring-opening products.

hydroxypyrimido[1,2a]purin-10(3H)-one (y-HOPdG)' and
(6R/S)-3-(2"-deoxyribos-1’-y1)-5,6,7,8-tetrahydro-6-hydroxy-
pyrimido[1,2a]purin-10(3H)-one (a-HOPAG) (10) (Figure 1).
o-HOPAG is more mutagenic than y-HOPdG and induces
G—T transversions in site-specific mutagenesis experiments
(12). Both y-HOPdG and a-HOPdG are present in human
lung DNA at levels in excess of those typically reported for
polycyclic aromatic hydrocarbon—DNA adducts (/3).
While y-HOPAG contributes to acrolein toxicity by directly
affecting DNA replication (/2, /4), the adduct itself is a reactive
molecule. In duplex DNA, y-HOPdG undergoes a spontaneous

! Abbreviations: BSA, bovine serum albumin; EDTA, ethylenediamine-
tetraacetic acid; y-HOPAG, y-hydroxy-2’-propanodeoxyguanosine; M,dG,
pyrimido[1,2-a]purin-10(3H)-one; MOPS, 4-morpholinepropanesulfonic
acid; MS, mass spectrometry; NER, nucleotide excision repair; SDS-PAGE,
sodium dodecyl sulfate—polyacrylamide gel electrophoresis.
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ring-opening reaction to generate N*-oxopropyl-2’-deoxygua-
nosine that can react with primary amines on cellular macro-
molecules (15). y-HOPAG positioned within a Cp*G sequence
context in duplex DNA undergoes ring opening and subsequent
reaction with a guanine base in the complementary strand to
form interstrand DNA—DNA cross-links (/6). The ring-opened
y-HOPdG adduct is also reactive toward amino groups of
peptides and is capable of forming reversible Schiff base-
mediated cross-links to proteins (/2).

A role for DNA—protein cross-links during acrolein toxicity
has not been fully elucidated. The interaction of adducted
oligonucleotides with restriction endonucleases represents a
useful model system with which to evaluate the impact of DNA
damage on recognition and catalysis of DNA-binding proteins.
Previously, our group showed that exocyclic adducts in an EcoRI
recognition site blocked binding and cleavage of DNA by that
enzyme, although ring-opened adducts were substrates for endo-
nucleolytic cleavage by EcoRI (/7). Here, we examine the fate of
y-HOPdG and consequently its ring-opened analogue, when
incorporated into duplex substrates of EcoRI. We describe the
ability of y-HOPAG to cross-link to EcoRI and affect enzyme
activity. The results suggest that the DNA—protein cross-link is
unstable and either undergoes hydrolysis to free oligonucleotide
and enzyme or can be reduced to a stable, irreversible cross-link.

Experimental Procedures

Reagents. T4 polynucleotide kinase and Pvull were obtained
from New England Biolabs (Beverly, MA). EcoRI was purified
as described (/8). EcoRI for some cross-linking experiments
was purchased from MBI Fermenetas (Hanover, MD). NaC-
NBH; and NaBH,, were purchased from Sigma (St. Louis, MO).
[y->*P]-ATP was from ICN Biomedicals, Inc. (Costa Mesa, CA).

Oligonucleotides. The 21-mer oligonucleotides contained a
unique EcoRI restriction site (5-GAATTC-3’) in the sequence
5-TATCATGTCTNAATTCCCGGT-3’, where N = dG, y-HOP-
dG, or pyrimido[1,2-a]purin-10(3H)-one (M,dG). The sequence
of the complementary 27-mer oligonucleotide was 5'-AGAC-
CGGGAATTCAGACATGATACGGA-3'. The scrambled EcoRI
sequence was 5-TATCATGTCTNTATACCCGGT-3’, where
N = y-HOPdG; it was annealed to its complementary sequence.
y-HOPdG-modified oligonucleotides were synthesized and
purified as previously described (/9). The M,dG-modified
oligonucleotide was synthesized using the method previously
described (20) and purified by polyacrylamide gel electrophore-
sis (27). Unmodified 21-mer and 27-mer oligonucleotides were
synthesized by Integrated DNA Technologies (Coralville, IA).

Trapping of Covalent DNA—Protein Complexes Using
NaCNBH;. Modified and unmodified 21-mer oligonucleotides
were 5'-end-labeled in a phosphorylation buffer of 50 mM
4-morpholinepropanesulfonic acid (MOPS) (pH 7.3), 10 mM
MgCl,, 100 uM EDTA, and 5 mM dithiothreitol containing 5
uM oligonucleotide, 0.5 mM [j/32P]—ATP, and 10 units of T4
polynucleotide kinase. Oligonucleotides were purified from free
[y**P]-ATP by passage through Bio-Spin P-6 columns (Bio-
Rad, Hercules, CA). For restriction endonuclease studies,
substrates were generated by annealing radiolabeled y-HOPdG-
or M,dG-modified 21-mer (2 pmol) to a complementary 27-
mer (10 pmol) in 50 mM MOPS (pH 7.4) and 100 mM NaCl
(50 uL total volume) by heating to 90 °C for 3 min, followed
by slow cooling to room temperature. DNA—protein cross-links
were detected essentially as described with slight modifications
(12). **P-labeled substrate (160 pM) was incubated with EcoRI
or Pvull restriction enzyme (1.6 nM) or bovine serum albumin
(BSA) (5000 nM) in 50 mM MOPS (pH 7.4), 10 mM NaCl,
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and 0.1 mM ethylenediaminetetraacetic acid (EDTA), at room
temperature for 2 h. NaCNBH; (50 mM) was added immediately
following the addition of enzyme. Because Mg”" is required
for EcoRI cleavage activity but not required for the specific
binding of enzyme to DNA, Mg”>" was omitted from the
incubation. The reactions were terminated by addition of
Laemmli sample buffer, then boiled for 5 min, and separated
by 10% sodium dodecyl sulfate—polyacrylamide gel electro-
phoresis (SDS-PAGE) (22). Cross-linked bands were visualized
using a FujiFilm FLA-5000 phosphorimager analyzer.

Restriction Digestion of Adducted Oligonucleotide Sub-
strates. Radiolabeled substrates were generated by annealing
adducted or unmodified 5’-**P-labeled 21-mer oligonucleotide
with an equimolar amount of 5’-**P-labeled 27-mer complement.
Annealing of 2.5 pmol of each oligonucleotide was performed
in buffer (50 mM MOPS, pH 7.4, and 100 mM NaCl) by heating
to 90 °C for 3 min, followed by slow cooling. Nonradiolabeled
substrates were generated by annealing adducted or unmodified
21-mer with complementary oligonucleotide under the condi-
tions described above. Restriction digests (10 uL.) contained 5
nM *2P-labeled substrate, 495 nM unlabeled substrate, 50 mM
MOPS (pH 7.9), 10 mM MgCl,, 100 mM NaCl, and 5 nM
EcoRI restriction endonuclease. The reactions were carried out
for specified times at 37 °C, then quenched by the addition of
10 mM EDTA in 90% formamide. The products of the reaction
were resolved on a 20% denaturing gel using the Ultrapure
Sequagel system (National Diagnostics, Atlanta, GA). The
positions of the bands were visualized using a FujiFilm FLA-
5000 phosphorimager analyzer. Cleavage of the EcoRI substrate
generated two 5'->?P-labeled products of different sizes. The
21-mer oligonucleotide 5’-cleavage product was an 11-mer,
whereas the 27-mer substrate’s 5’-cleavage product was an
8-mer. Thus, by monitoring the appearance of the 11-mer and
the 8-mer, cleavage of both strands of the substrate duplex could
be monitored simultaneously. The extent of cleavage was
determined by integrating the radioactivity of each band, then
dividing the radioactivity of the band corresponding to cleavage
product by the sum of the radioactivity of cleaved and uncleaved
oligonucleotide to give the percent cleavage.

In some experiments, incubation mixtures were prepared in
which 500 nM unlabeled adducted substrate or unmodified
substrate was incubated for 2 h with 5 nM EcoRI. Then, 500
nM unmodified substrate, spiked with **P-labeled unmodified
substrate, was added to the reaction mixture, and cleavage was
monitored for 2 h. For other experiments, reactions were
prepared under noncleavage conditions, that is, in the absence
of Mg?*. y-HOPdG-modified substrate or unmodified substrate
(comprising 5 nM *?P-labeled DNA and 495 nM nonradiola-
beled DNA) was incubated in Mg *-free buffer (50 mM MOPS,
pH 7.9, and 100 mM NaCl) for 2 h with EcoRI (5 nM) in the
presence or absence of NaCNBHj;. Following preincubation, 10
mM MgCl, was added to the reaction mixture, and cleavage
was monitored for 1 h.

Results

Detection of a y-HOPdG-Mediated Cross-Link to the
Restriction Endonuclease, EcoRI. EcoRI binds the palindromic
sequence, 5'-GAATTC-3’, and sequentially cleaves both strands
of the DNA duplex at the phosphodiester bond positioned 3’ to
deoxyguanosine. **P-labeled oligonucleotide duplexes were
prepared containing a unique EcoRI recognition site that was
modified with y-HOPdG. Substrate DNA was incubated for 2 h
with EcoRI (molar ratio of DNA duplex: EcoRI = 1:10) in the
presence of NaCNBH;, as described in the Experimental
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Figure 2. y-HOPAG forms a cross-link to EcoRI. **P-labeled y-HOP-
dG- or M,dG-modified or unmodified DNA substrates (160 pM) were
incubated with EcoRI (1.6 nM) at room temperature for 2 h in the
presence or absence of 50 mM NaCNBH;. The products were resolved
by SDS-PAGE and visualized by phosphorimager analysis. This is a
representative autoradiogram from at least five independent experiments.
The cross-linked product is indicated by the arrow.

Procedures. NaCNBHj; does not react with EcoRI or y-HOPdG
but is capable of reducing an imine cross-link between the free
aldehyde form of y-HOPAG and a lysine residue. EcoRI reacted
with y-HOPdG-modified substrates to form a DNA—protein cross-
link observable by SDS-PAGE analysis (Figure 2). Formation of
the gel-shifted band corresponding to the protein—DNA complex
was dependent on stabilization of the cross-link by reduction with
NaCNBH;. A weaker, second band was observed that migrated
more slowly than the major y-HOPdG—EcoRI band. The identity
of this second band is unknown.

y-HOPdG ring opens to form an aldehydic moiety that is
capable of reacting with proteins (/5). The malondialdehyde—
deoxyguanosine adduct, M,dG, similarly ring opens in duplex
DNA to form a potentially reactive oxopropenyl moiety, N°-
oxopropenyl-dG (23). The presence of M,dG in the EcoRI
recognition site does not prevent recognition of the site by EcoRI
(17). Therefore, we tested whether M,dG is also able to form
cross-links to EcoRI. In contrast to y-HOPdG, no cross-link
was observed when M,;dG-modified substrates were incubated
with EcoRI with or without NaCNBH; reduction (Figure 2).

Specificity of y-HOPdG—EcoRI Cross-Link Formation.
DNA substrates were prepared in which y-HOPdG was posi-
tioned in a scrambled EcoRI recognition site (5'-GTATAC-3").
No EcoRI—DNA cross-link was observed when y-HOPdG was
in the scrambled sequence (Figure 3). When EcoRI was
inactivated by heat (65 °C for 20 min) prior to the reaction with
y-HOPdG-modified substrate, only an extremely faint band at
the position of the DNA—protein cross-link was detected after
2 h (Figure 4). Furthermore, y-HOPdG did not cross-link to a
restriction enzyme, Pvull, that does not specifically recognize
the sequence of DNA where the adduct was positioned. Also,
y-HOPAG did not form cross-links with BSA, a common
stabilizing agent added to commercial preparations of EcoRlI,
even at a DNA:BSA molar ratio = 1:5000 (data not shown).
These results indicate that the cross-link formed between
y-HOPAG and EcoRI is most likely formed as a result of specific
binding of the EcoRI recognition sequence and probably
involves amino acids in close proximity to the adduct in the
DNA—protein complex.

Time Course of y-HOPdG—EcoRI Cross-Link Formation.
Cross-link formation was monitored over 5 h (Figure 5).
Reactions were prepared in the presence of NaCNBHj, and then,
a second reducing agent, NaBH,, was added to rapidly quench
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Figure 3. EcoRI cross-links to y-HOPdG positioned within the EcoRI
restriction site. >*P-labeled y-HOPdG-modified or unmodified DNA
substrates (160 pM) were incubated with EcoRI (1.6 nM) at room
temperature for 2 h in the presence or absence of NaCNBH;. y-HOPdG
was positioned in either the EcoRI restriction site (GAATTC) or a
scrambled sequence (GTATAC). The products were resolved by SDS-
PAGE. A representative autoradiogram of the gel is shown.

Heat denature - - + +
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Figure 4. Requirement of properly folded enzyme for cross-link
formation. EcoRI (1.6 nM), native or denatured at 65 °C for 20 min,
was incubated with y-HOPdG-modified **P-end-labeled DNA substrate
(160 pM) at room temperature for 2 h. NaCNBH; (50 mM) was added
to the reaction to stabilize the Schiff base linkage between protein and
DNA. The products were separated by 10% SDS-PAGE.
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Figure 5. Time course of y-HOPAG cross-linking to EcoRI. y-HOPdG-
modified 3?P-end-labeled DNA substrate (160 pM) was incubated with
EcoRI (1.6 nM) for up to 5 h at room temperature in the presence of
50 mM NaCNBHj;, and then, a second reducing agent, NaBH, (100
mM), was added to rapidly quench any remaining aldehydic substrate
at specific time points. A representative autoradiogram from three
independent experiments is presented, which displays the accumulation
of the DNA—protein cross-linked band. Percent cross-linking is shown
in the graph just below the gel expansion. The values are the means =+
standard deviations from three independent experiments.

o

any remaining aldehydic substrate at specific time points. The
y-HOPdG—EcoRI cross-link was observed within 10 min. The
conversion of free DNA to cross-linked product reached a
plateau within 3 h.

In Vitro Cleavage of y-HOPdG-Modified DNA Substrate
by EcoRI Restriction Endonuclease. Oligonucleotide duplexes
containing a single adduct located within a unique EcoRI
recognition site were 5’-*P-end-labeled on both strands. The
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Figure 6. Effect of y-HOPAG on EcoRI activity. (A) 5’-Radiolabeled duplex containing a single EcoRI recognition site. The arrows depict cleavage
sites. y-HOPAG was contained on the 21-mer strand, as indicated by “N”. (B) Cleavage reactions containing 5 nM 3?P-labeled oligonucleotide
duplex, 495 nM nonlabeled oligonucleotide substrate, and 5 nM EcoRI were incubated at 37 °C for various times, then quenched, and subjected
to gel electrophoresis and phosphorimager analysis as described in the Experimental Procedures. Unmodified substrate, 27-mer strand (H); y-HOPdG-
modified substrate, 27-mer strand (V¥); y-HOPdG-modified substrate, 21-mer strand (A). (C) Nonlabeled oligonucleotide duplexes modified with
y-HOPdG or unmodified duplexes (500 nM) were incubated with EcoRI endonuclease (5 nM) for 2 h at 37 °C, prior to the addition of fresh
unmodified EcoRI substrate, spiked with **P-labeled unmodified substrate, to a final concentration of 500 nM. Cleavage of the radiolabeled substrate
was monitored for 2 h. The data shown represent cleavage of the 27-mer strand of the radiolabeled duplex in the presence of the indicated competitor
substrate. The 21-mer strand of each duplex was cleaved similarly to its complement (data not shown). Unmodified competitor substrate (H);
y-HOPdG-modified competitor substrate (a). The values are the means + standard deviations from three independent experiments.

adducted strand of the duplex was a different length than its
complement, and the oligonucleotides were designed to release
32p_end-labeled cleavage products of different lengths. Thus,
simultaneous monitoring of cleavage of both strands of the
duplex was achieved. The complement strand of the y-HOPdG-
modified substrate was cleaved nearly as efficiently as unmodi-
fied substrate (~90%) (Figure 6B). In contrast, only ~20% of
the y-HOPdG-modified strand was cleaved by EcoRI within
2 h.

To examine whether the reduced cleavage efficiency of
modified substrate was due to a sequestration or inactivation of
EcoRI by y-HOPAG, nonradiolabeled y-HOPdG-adducted sub-
strates or unadducted substrates were incubated with EcoRI for
2 h. Then, **P-labeled unmodified substrate was added to the
reaction mixture, and cleavage was monitored. The radiolabeled
unmodified substrate was cleaved to a similar extent, regardless
of whether unmodified substrate or y-HOPdG-modified substrate
was initially incubated with the enzyme (Figure 6C). Thus,
EcoRI retained complete activity following exposure to the DNA
adduct.

To examine whether a stabilized cross-link could affect EcoRI
activity, y-HOPdG-modified or unmodified substrates were
incubated with EcoRI in the absence of Mg?* and either the
presence or the absence of NaCNBHj; for 2 h; then, MgCl, was
added to the reaction mixture to initiate cleavage. Following
MgCl, addition, EcoRI cleavage of the substrate was substan-
tially decreased in samples containing y-HOPdG-modified DNA
and NaCNBHj; as compared to samples containing y-HOPdG-
modified substrate in the absence of reducing agent. There was
no effect of NaCNBH; on cleavage of the unmodified DNA
substrate by EcoRI (Figure 7).

Discussion

The identification of cellular targets of endogenous reactive
aldehydes has garnered significant attention in an attempt to
understand the genotoxic and cytotoxic mechanisms of these
molecules. The products of acrolein’s reaction with cellular
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Figure 7. EcoRI cleavage following reduction of the cross-link. **P-
radiolabeled y-HOPdG-modified substrate or unmodified substrate (500
nM) was incubated with EcoRI (5 nM) in the absence of Mg2+ and
either the presence or the absence of NaCNBH; for 2 h. Following
preincubation, MgCl, (10 mM) was added to initiate cleavage. Reactions
were incubated at 37 °C for various times. Cleavage profiles shown
are for the 21-mer strand of the DNA duplex. Unmodified substrate,
—NaCNBH; (W); unmodified substrate, +NaCNBH; (O); y-HOPdG-
modified substrate, ~NaCNBH, (@®); and y-HOPdG-modified substrate,
+NaCNBH; incubation (O).

macromolecules have been suggested to participate in diseases
associated with oxidative stress (24). In addition to forming
adducts to protein and adducts to DNA, acrolein induces Schiff
base-mediated cross-link formation between DNA and protein
(11), and the major acrolein—DNA adduct y-HOPAG is itself
reactive with both DNA and proteins (/2, 16, 25—27). Thus,
y-HOPdG may represent a mode for acrolein’s DNA—protein
cross-link formation in vivo. Although a mechanistic link
between DNA—protein cross-links and disease has not been
elucidated, the formation of cross-links can be detrimental to
cell survival. The bulky nature of the cross-links is likely to
disrupt DNA metabolism by posing significant blocks to
replication and transcription. Consistent with this proposal,
aldehyde-derived DNA—protein cross-links block SV40 DNA
replication (28). Although little is known about the mutagenic
properties of DNA—peptide cross-links, Minko et al. recently
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described the mutagenic potential of NaCNBH;-reduced—y-
HOPdG-mediated cross-links to peptides (29).

In the present study, we demonstrated the ability of y-HOPdG
to cross-link to a protein that forms intimate interactions with
DNA, the restriction endonuclease, EcoRI. Previous work has
demonstrated that y-HOPdG-containing oligonucleotides form
cross-links to histone and to T4 pyrimidine dimer DNA
glycosylase (/2). It appears that y-HOPdG forms cross-links
to EcoRI more rapidly and at a considerably reduced excess of
protein to DNA. The differences between the two studies are
most likely attributable to the fact that EcoRI has high affinity
and specificity for binding duplex oligonucleotides that contain
a recognition site and that the y-HOPdG adduct is present at
the first dG residue in the recognition site.

Given that EcoRI was able to recognize and digest y-HOPdG-
modified DNA substrates, y-HOPdG is presumed to be accom-
modated in the recognition interface in a manner similar to
physiological substrates. Furthermore, the native structure of
EcoRI was essential for rapid DNA—protein cross-link forma-
tion, and no cross-link was detected when y-HOPdG was not
located within the enzyme’s recognition site. These results
suggest that upon binding to the y-HOPdG-modified cognate
site, the reactive N’-oxopropyl moiety forms a cross-link
between the 2-amino position of the modified G (NAATTC)
and a proximal amino acid at the recognition interface.

Lysine residues have been implicated in DNA—protein cross-
link formation by acetaldehyde (30) and may also participate
in y-HOPdG-mediated cross-links. The stabilization of the
EcoRI—DNA cross-links by NaCNBH; is consistent with this
in that NaCNBH; preferentially reduces imine bonds formed
by reaction of carbonyl groups with lysine residues (37). There
are several amino acids involved in the interaction of EcoRI
with its recognition sequence, which contain primary amines
that could be involved in cross-link formation. Although Lys-
148, Lys-117, and Lys-89 are in the vicinity, a likely candidate
is Lys-113, which not only polarizes one of the oxygens of the
scissile phosphate but also, along with Arg-145, may stabilize
the phosphorane intermediate in the transition state (32).
The Lys-113 side chain is disordered in the apoenzyme but
becomes ordered upon binding DNA substrate (33). In molecular
dynamics simulations, Lys-113 moves to different positions
depending on the presence or absence of Mg>* (32).

The impact of cross-link formation on EcoRI catalytic activity
was unexpected. The conditions used for the enzymatic cleavage
assay provided DNA substrate in 100-fold molar excess to
EcoRI. Seemingly all of the endonuclease is involved in cross-
link formation. Nevertheless, no loss of activity was observed
without NaCNBH; reduction and stabilization of the cross-link;
treatment of EcoRI alone with NaCNBH; did not reduce
endonucleolytic activity. The loss of activity observed following
treatment of the EcoRI—y-HOPdG—DNA complex with NaC-
NBHj; correlates to the appearance of the stable cross-link band
on gel electrophoresis. Thus, it appears that the formation of
the putative imine-mediated protein—DNA cross-link is readily
reversible so that the protein—DNA cross-link hydrolyzes to
EcoRI and y-HOPdG-containing oligonucleotide during the time
course of the incubation. Thus, no loss of enzyme activity is
apparent without reductive stabilization.

The proposed mechanism for y-HOPdG-mediated formation
of DNA—protein cross-links involves ring opening of y-HOPdG
to N*-(y-oxopropyl)-dG, followed by reaction with a primary
amine. Kurtz and Lloyd observed that y-HOPdG cross-links
occurred only with the NH, termini of peptides containing lysine
and arginine residues (27). This is consistent with the lower
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pK, and stronger nucleophilic nature of an o-amine as compared
to the e-amine of lysine. In related chemistry, the aldehydic
form of an abasic site cross-linked to the catalytically active
N-terminal threonine of T4 PDG and the imine was trapped by
NaCNBH; reduction (34). It is unlikely that the y-HOPdG—
EcoRI cross-link occurs at the NH, terminus of the protein. A
revised model of EcoRlI in solution places the N-terminal regions
at a subunit interface distal to the DNA, and removal of the
first four residues has no effect on catalytic activity, suggesting
that the N termini are spatially remote from the EcoRI active
sites (35, 36). It is more likely that cross-linking occurs to a
Lys residue in the interior of the protein. Exclusion of water
from the recognition interface could lower the pK, of a Lys
side chain, thereby increasing the fraction of deprotonated
nucleophilic amine.

y-HOPAG readily formed cross-links to EcoRI, which were
trappable by NaCNBH; reduction, but the M;dG adduct did
not. Although M,dG undergoes rapid hydrolytic ring opening
in duplex DNA, the aldehyde of the product, N*-(3-oxoprope-
nyl)-dG, is conjugated to the exocylic amino group, which
reduces its reactivity [i.e., N*-(3-oxopropenyl)-dG could be
considered a vinylogous amide] (37). Furthermore, N°-(3-
oxopropenyl)-dG exhibits a pK, of 6.9 so that at physiological
pH it exists predominantly as the negatively charged conjugate
base (37, 38). This is anticipated to significantly reduce its
reactivity to nucleophiles. Thus, M,dG does not appear to be a
good candidate to form cross-links with DNA binding proteins.
Malondialdehyde-mediated DNA—protein cross-links have been
documented in vitro and in cells treated with MDA (39). In
that study, cross-linking only occurred if the protein—MDA
adduct was formed first and then exposed to DNA. This behavior
is consistent with the present observation that a DNA molecule
containing the malondialdehyde adduct, M,dG, does not form
cross-links to EcoRI

Although y-HOPdG—protein cross-links can be generated and
stabilized in vitro, the reversibility of the cross-link may limit
its effects in vivo. In COS-7 cells, replication of plasmid DNA
adducted with a NaCNBH;-reduced-y-HOPdG-peptide cross-
link resulted in approximately 8.4% mutation frequency,
consisting of primarily G to T transversions, which is a higher
frequency of mutation than that observed following replication
of the y-HOPdG adduct (29). The excision of DNA—protein
cross-links by the UvrABC system was shown to proceed with
moderate efficiency (40). Thus, secondary modifications to the
adduct structure are capable of modulating the mutagenicity of
y-HOPdG and underscore the likelihood that DNA replication,
transcription, or repair may be disrupted dependent on the
longevity of the y-HOPdG—protein cross-link. To date, the
stability of Schiff base-mediated cross-links in vivo has not been
elucidated. It will be interesting to determine what biological
role, if any, y-HOPdG-mediated DNA —protein cross-links play
in acrolein-mediated toxicity in vivo.
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