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Summary
The apparent receptive field characteristics of sensory neurons depend on the statistics of the stimulus
ensemble – a nonlinear phenomenon often called contextual modulation. Since visual cortical
receptive fields determined from simple stimuli typically do not predict responses to complex stimuli,
understanding contextual modulation is crucial to understanding responses to natural scenes. To
analyze contextual modulation, we examined how apparent receptive fields differ for two stimulus
ensembles that are matched in first- and second-order statistics, but differ in their feature content:
one ensemble is enriched in elongated contours. To identify systematic trends across the neural
population, we used a multidimensional scaling method, the Procrustes transformation. We found
that contextual modulation of receptive field components increases with their spatial extent. More
surprisingly, we also found that odd-symmetric components change systematically, but even-
symmetric components do not. This symmetry dependence suggests that contextual modulation is
driven by oriented on-off dyads, i.e., modulation of the strength of intracortically-generated signals.
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Introduction
Neurons in primary visual cortex are often described as detectors of oriented features (Hubel
and Wiesel, 1959; Hubel and Wiesel, 1968), or as oriented filters (De Valois et al., 1982a; De
Valois and Thorell, 1988; De Valois et al., 1982b). Such spatial processing can be adequately
characterized by stimuli that vary along only one dimension, such as bars, edges, and gratings.
Moreover, implicit (or sometimes explicit) in this view is the notion that the main qualitative
features of a V1 neuron's response can be described in terms of a linear spatial filter, or a linear
spatial filter followed by a simple nonlinearity such as a threshold, or an energy operation.

However, there is a large and increasing body of evidence that this simple picture is incomplete.
First, there is the intriguing role of the surround of the receptive field. Increasing stimulation
of the surround increases sparseness (Vinje and Gallant, 2000) and efficiency of information
transmission (Vinje and Gallant, 2002) during natural vision. Second, even simple visual
stimuli placed in the surround strongly influence a cell's responses. These modulatory effects
may arise at several levels. Some may reflect processes that have already occurred in the retina
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(Shapley and Victor, 1978) and lateral geniculate nucleus (Ohzawa et al., 1985). Some can be
explained by the nonlinearities of processing within a single cortical cell (Priebe and Ferster,
2006) or synapse (Carandini et al., 2002; Freeman et al., 2002). Others appear to require cortical
network mechanisms (Das and Gilbert, 1999) including suppressive connections between
neurons of different orientations and spatial frequencies (Bonds, 1989; Carandini et al.,
1997; Heeger, 1992).

Here we examine how the shape of the apparent receptive field sensitivity profile depends on
context, and focus on aspects of context that are not likely to trigger simple gain control
mechanisms. We do this by analyzing responses of neurons to two sets of two-dimensional
Hermite functions (Figure 1). The two stimulus sets are matched in spatial extent, contrast, and
second-order statistics, but differ in their higher-order statistics. These differences are visually
obvious and lead to qualitatively different two-dimensional patterns: one set has Cartesian
symmetry and contains Gabor-like patterns, checkerboard-like patterns, and elongated
contours; the other set has polar symmetry and contains target-like and pinwheel patterns. If
the neural response were described by a linear function of the stimulus (perhaps followed by
a nonlinearity), then both stimulus ensembles would provide identical reconstructions of the
neural receptive field. This is because individual stimuli within one stimulus ensemble can be
expressed as linear combinations of stimuli from the other stimulus ensemble. Moreover, even
if the spatial sensitivity were modulated by mechanisms sensitive to the “context” of first- and
second-order statistics (such as mean luminance, contrast, and power spectrum), the two
ensembles would still provide identical reconstructions – because their statistics are matched
at first and second order.

The focus on context-dependence induced by statistics of order greater than two might at first
seem like a mathematical curiosity, but it is actually of central importance. This is because it
is these high-order statistics (phase correlations) that lead to visually salient structure such as
lines and edges, both in artificial stimuli (Morrone and Burr, 1988) and in natural scenes
(Oppenheim and Lim, 1981; Ruderman and Bialek, 1994; Simoncelli and Olshausen, 2001).
Moreover, standard models for V1 neuronal responses tend to be inaccurate specifically for
natural scene stimuli in which such high-order correlations are present (Felsen et al., 2005).
Thus, delineation of the influence of high-order statistics on V1 neurons is crucial to advance
our understanding of the computations that they carry out.

However, studying context-dependence induced by high-order statistics via responses to
natural scenes is difficult, because high-order statistics of natural scenes are complex and
incompletely characterized. This, specifically, motivated our study of context-dependence
driven by Hermite functions, which are analytically simple, and have fully-characterized
statistics. We recently showed (Victor et al., 2006) that Hermite functions induced significant
context-dependent changes in a large fraction of V1 cat and macaque neurons. However, it was
not clear how those changes in apparent receptive field shape could be succinctly characterized,
or what features of these changes were systematic. For example, across the population, we
found no consistent shifts in either spatial frequency or orientation tuning. Therefore, we sought
a more data-driven, non-parametric approach to characterize these changes.

The present study carries out such an approach. By considering the population of V1 neurons
as a whole, it succeeds in identifying two systematic aspects of the context-dependence of their
receptive fields. First, receptive field components covering a wider area show stronger context-
dependent changes that those that cover a narrower area. Second, we find that consistency of
context-dependent changes across the population of cells depends on symmetry properties of
receptive field components: in particular, components that invert their contrast under 180-
degree spatial rotation change in a more consistent manner than components that remain
unchanged with this rotation.
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This latter conclusion is unexpected, and neither conclusion was apparent from casual
inspection of the dataset. Rather, they emerged from a novel method that we used to study
context-dependent changes, which we believe is applicable far beyond the present scenario.
The approach is based on a version of the Procrustes transformation of multidimensional
scaling (Kabsch, 1976). The main idea of this method is to find the best transformation from
a set of receptive fields obtained in one context to a set of receptive fields from the same neurons
recorded in a second context.

A distinctive feature of this approach is that it seeks to identify a single transformation that
applies to all measured receptive fields within a population. Thus, it can identify patterns that
would not be apparent if each neuron's receptive field were studied independently. As such,
this is an approach that is likely to be widely applicable to the problem of characterizing how
receptive field shapes depend on some manipulation, such as contrast, attention, or a
pharmacologic perturbation.

Methods
Electrophysiological recordings

The data presented here were collected for a previous study (Victor et al., 2006), and the
experimental preparation has been detailed there. Briefly, neural responses were collected
using tetrodes from the primary visual cortex of anesthetized, paralyzed cats and macaques.
Single units were tentatively identified during recording using real-time spike-sorting software
(Datawave Technologies); quantitative analysis of receptive fields was carried out off-line
following spike sorting with custom software (Reich, 2001).

At each recording site, one well-isolated single unit with signal-to-noise of the spike waveform
> 2:1, and usually 3:1, was selected as the “target” neuron. Orientation tuning of the target
neuron was determined from responses to drifting gratings at orientations spaced in steps of
22.5 degrees (or, for narrowly tuned units, 11.25 degrees), with spatial and temporal frequency
determined by initial assessment. Next, the spatial frequency tuning was determined using
drifting gratings at an 8- to 16-fold range of spatial frequencies straddling the value determined
by auditory assessment. Temporal tuning was determined from responses to 1-, 2-, 4-, 8-, and
16 Hz drifting gratings of optimal orientation and spatial frequency. Finally, a contrast response
function was determined from responses to drifting gratings at contrast of 0, 0.0625, 0.125,
0.25, 0.5, and 1.0, with orientation, spatial and temporal frequencies previously determined.

The center of the receptive field was determined from the response to either a bright or a dark
bar, moving slowly (≤ 1deg/s) and symmetrically in both directions along the preferred axis.
The center of the receptive field along the preferred axis was determined as the position
corresponding to the mean time of the peak responses elicited by bars moving slowly in the
preferred and anti-preferred directions. The center of the receptive field in the orthogonal
direction was taken as a halfway point between the upper and lower edges of the receptive
field, which in turn were determined by the appearance of a response to slowly swept patches
along multiple trajectories parallel to the preferred axis.

Once centered, the size of the classical receptive field was determined from response to a
drifting grating (all parameters optimized) presented in disks of increasing diameter and in a
series of annuli. The effective diameter D of the receptive field was taken to be the smallest
inner diameter of an annulus that did not produce a statistically significant response above zero.
The set of annuli were chosen so that D was determined to within ½ deg or, for smaller receptive
fields, ¼ deg. The effective diameter D was used (below) to set the width of the zero-rank two-
dimensional Hermite function, a Gaussian. Higher-rank functions were scaled in proportion to
this Gaussian, as in Figure 1.
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Stimulus presentation
Neurons were probed with visual patterns derived from two-dimensional Hermite functions
(see Figure 1). The contrast profiles of these patterns are polynomials multiplied by a Gaussian
envelope. Stimuli were rotated so that the x-axis was along the target neuron's preferred
orientation and the positive y-axis was the preferred direction for drifting gratings. We set the
spatial parameter σ of the Hermite functions (eqs. A1 through A5 of (Victor et al., 2006)) at
σ=D/10, where D is the diameter of the classical receptive field of the target neuron as
determined by responses to disks and annuli containing optimal drifting gratings (see above
and (Victor et al., 2006)). This choice of σ creates Hermite function stimuli that have one, two,
or three oscillations within a region of space that covers the receptive fields. Each stimulus
was presented as illustrated in Figure 1, and also with luminance polarity reversed.

Computation of receptive fields for Cartesian and polar stimuli
For the reverse-correlation modeling approach (L-filters), receptive fields were computed in a
manner similar to a spike-triggered average. The contribution of each basis function to the
linear component of the estimated receptive field (L-filter) was determined from the
difference between the response to that basis function, and to its contrast-inverse. This yields
the desired filter shapes because individual stimulus patterns are orthogonal to each other. See
(Victor et al., 2006) and Supplementary information for further details, including
characterization of the nonlinear component of the receptive field.

For the MID modeling approach (M-filters), receptive fields were computed using the method
of (Sharpee et al., 2004). Any candidate receptive field shape can be interpreted as a direction
in stimulus space. Stimuli can be projected along that direction to yield a set of scalars. The
receptive field determined by this method is the direction for which the mutual information
between these scalars and the firing rate is maximized. Advantages of this method are that (a)
it does not place requirements on the correlation structure of the stimulus set, and (b) it does
not postulate a specific form for the relationship between the projection and the response – this
can be an arbitrary nonlinear function.

Details of the computational algorithm have been previously described in (Sharpee et al.,
2004) and in the supplementary information of (Sharpee et al., 2006). Briefly, the spike-
triggered average was chosen as an initial guess. Then, we used a combination of gradient
ascent and simulated annealing to maximize information. 1000 line optimizations were used.
Each line optimization was carried out along the gradient of information evaluated along the
current candidate relevant dimension. No regularization by the performance on the test set was
implemented. Thus, computation of jackknife estimates (by setting aside one presentation, see
below) was completely independent from the data in the omitted presentation.

Debiasing and standard error estimation for correlation coefficients
We used correlation coefficients to compare receptive field shapes. Two kinds of comparisons
were made: receptive fields derived from the two modeling approaches (reverse correlation
vs. MID) for a single stimulus set (Cartesian or polar), and receptive fields derived from two
stimulus sets but according to a single modeling approach. In each case, we used a jackknife
method to debias the estimates of the correlation coefficients, and to obtain estimates of their
standard error.

We are interested in the absolute value of the correlation coefficient  between two
receptive field estimates,  and . The absolute value is used because for MID, receptive
fields are defined up to a scaling factor, which could be negative.
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To carry out the jackknife procedure (Efron, 1998), we computed receptive fields from all
stimulus presentations  and , and also the “drop one” jackknife estimates  and 
computed by leaving out the ith stimulus repetition from the analysis.

The jackknife estimate of the bias of a statistical estimator θ that has an approximately Gaussian
distribution is

(1)

where θfull is estimated taking all of the data into account, and  is the mean of the drop-one
estimates, obtained by successively omitting one of the N repetitions (in this dataset N ranged
from 8 to 16). Correlation coefficients are limited to the range between -1 and 1, and their
distribution is not well approximated by a Gaussian. To normalize their distribution and make
the jackknife procedure applicable, we first applied the Fisher z-transform to the correlation
coefficients (Efron, 1998), i.e., θ =arctanh(cc). After the z-transformed correlation coefficients
were debiased according to Eq. (1), we applied the inverse transformation, i.e., cc=tanh(θ), to
obtain debiased correlation coefficients. We note that even though correlation coefficients
computed from jackknife estimates and the full dataset are always positive, negative values
can appear after debiasing.

The standard error of jackknife estimates was also first computed on the z-transformed

variables θ:  and then transformed back to obtain standard error for
the correlation coefficients:

(2)

where θ∞ was computed according to Eq. (1). This results in an asymmetric confidence interval.
We quote the larger of the two values when describing correlation coefficients in Figure
legends.

Results
Context-dependence of responses to Cartesian and polar stimuli

Our analysis is based on n=54 single neurons (n=34 from cat visual cortex and n=17 from
monkey visual cortex) previously recorded (Victor et al., 2006). This study found differences
between the receptive fields measured with the Cartesian and polar stimulus sets showed in
Figure 1, but was unable to characterize the nature of this context-induced change – which is
the goal of the present study.

To pursue this goal, the first step is to characterize the responses to each stimulus set in a
concise fashion – i.e., by determining the effective receptive field in each context. This
characterization necessarily entails assumptions (a receptive field model) and approximations
(which aspects of the response are incorporated into the model). Therefore, before drawing
conclusions about the differences between Cartesian and polar stimulus sets, a prerequisite is
to show that our characterization is robust. To do this, we will use two complementary strategies
to estimate the receptive fields from each context, and show that these two modeling approaches
lead to the same estimate.
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The basic element of our receptive field model is a linear filter followed by a static nonlinearity
(an “LN” model, (de Boer and Kuyper, 1968; Meister and Berry, 1999; Schwartz et al.,
2006; Victor and Shapley, 1980)). One way of fitting this model consists essentially of reverse
correlation (Victor et al., 2006). The key assumption of this approach is that the nonlinearity
can be decomposed into a linear component and an even-symmetric component. In the second
approach, known as the maximally informative dimension (MID) method (Sharpee et al.,
2004), the best LN approximation is determined according to an information-theoretic
criterion. This allows us to avoid making assumptions about the shape of the nonlinearity.
Another difference between these two approaches is that in the reverse-correlation method, the
estimate of the L filter is unaffected by the spatial distribution of ON-OFF responses (instead,
the ON-OFF responses are characterized by a second LN pathway), while in the MID method
as implemented here, a single LN pathway is used to model all responses. These approaches
also differ in their sensitivity to response variability and limited amounts of data. This is
because the MID method relies on a nonlinear optimization, while the reverse correlation
method does not.

We will refer to the linear component of the LN model extracted by reverse correlation as L-
filters, and those computed as MIDs as M-filters.

As we now show, despite these differences in how the L-filters and M-filters are estimated,
they have similar shapes when estimated from responses to the same basis set (i.e., in the same
context), and show parallel changes in shape when context is altered (Figure 2 and
Supplementary Figures 1 and 2). Thus, the LN model (as determined by either method) is a
meaningful way to characterize the response to either basis set, and how this characterization
changes with context.

Figure 2 shows several example cells that cover the observed range of context dependence. In
all cases, the L-filters and the M-filters were similar to each other when obtained with the same
stimulus set (Cartesian or polar stimuli). Both characterizations (L-filters and M-filters) also
had a similar dependence on context (Cartesian vs. polar stimuli). In Figure 2A we show
examples of cells that did not show contextual modulation. In these cells, the L-filters and the
M-filters (compare two columns shown for each cell) are similar, as are the filters obtained
from Cartesian and polar stimulus sets (compare the two rows shown for each cell). The
example cells of Figure 2B and 2C show a context effect: the L-filters and the M-filters
determined from the same stimulus set (either Cartesian or polar) are similar, but the filters
depend on which stimulus set (Cartesian vs. polar) is used. For the cells of Figure 2B, the
context-dependence was statistically significant (p<0.05, see Methods) for both the L-filters
and the M-filters. For the cells of Figure 2C, the context-dependence was statistically
significant only for the L-filters. For the M-filters, the differences between the Cartesian and
polar M-filters are qualitatively similar to the differences seen for the L-filters, but did not
reach statistical significance.

To quantify the magnitude of context-dependent changes at the population level, we compute
the distribution of correlation coefficients between normalized L-filters computed from
Cartesian and polar stimulus set (Figure 3A). This quantity measures the extent to which the
receptive field map, as determined by reverse correlation, depends on the stimulus set. In
agreement with the previous report (Victor et al., 2006), more than half (39/51) of the cells in
our dataset had significant differences in receptive fields of the linear model between Cartesian
and polar stimuli, with 28 cells showing differences significant at p<0.01, and 11 cells showing
differences significant at 0.01<p<0.05. For the remaining 12 cells, there was no significant
difference in receptive fields determined from Cartesian and polar stimuli. Figure 3B shows a
parallel analysis using the correlation coefficient determined from the M-filters: 20 out of 51
cells showed significant context-dependence (17 cells at p<0.01 and 3 cells at 0.01<p<0.05).

Sharpee and Victor Page 6

J Comput Neurosci. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fewer cells with significant differences between receptive fields for Cartesian and polar stimuli
were found for the M-filters (20) than for the L-filters (39). Most likely this is due to larger
uncertainty in the M-filter profiles than for the L-filters, which is in turn a consequence of the
absence of assumptions on the shape of the nonlinear gain function in the MID method (see
Supplementary Figure 3). As examples in Figure 2C illustrate, the context-dependence revealed
by the two methods is qualitatively similar, even if it does not reach statistical significance
with one of the approaches.

Identifying systematic changes in receptive fields across a population—Having
found that approximately half of the neurons exhibit changes in receptive field profiles when
probed with Cartesian versus polar stimuli, we now seek to determine the extent to which these
changes are systematic. As previously reported in this population of cells (Victor et al.,
2006), the change in effective receptive field as a function of Cartesian vs. polar context was
not associated with a systematic change in sensitivity, spatial frequency tuning, or orientation
tuning. This motivated us to pursue a more data-driven, nonparametric approach to this
problem. As a first step, we make use of the fact that each receptive field profile (e.g., the
profiles shown in Figure 2) can be considered to be members of a vector space of moderate
dimension. This is because each filter shape is a linear combination of the stimuli. Moreover,
since each set of stimuli is a linear combination of the other one, we can use either stimulus
set as a basis for describing the filter shapes. For definiteness, we choose the polar ones. With
this convention, the filter shape of a single cell is described by a vector of 36 numbers – the
coefficients in the linear combination of the 36 polar functions.

Extending this idea, the set of filters obtained from all cells with Cartesian stimuli can be
thought of as a set of vectors in a 36-dimensional space of polar filter shapes. Similarly, the
set of filters obtained from the same cells with the polar stimuli can be thought of as a
corresponding set of vectors in the same 36-dimensional space.

It is then natural to ask what linear transformation best accounts for differences between the
two sets of receptive fields. That is, can we find a transformation of the 36-dimensional space
that maps the Cartesian filter shapes into the corresponding polar filter shapes?

There are many linear transformations that will transform one vector (e.g, the filter from
Cartesian stimuli for a particular cell) into a second vector (e.g., the filter for that cell from
polar stimulus set). However, since each cell within the population has its own set of filters,
the problem of finding a single transformation that works for all cells is highly constrained.
Indeed, since we have more cells (51) than coordinates (36), it would be surprising if a single
transformation would be able to map each cell's filter obtained from Cartesian stimuli into each
cell's filter obtained from polar stimuli. Since we cannot expect to account for all of the variance
with a single linear transformation, instead we seek the linear transformation that accounts for
the largest possible fraction of the variance. This linear transformation indicates the differences
between the Cartesian and polar filters that are systematic across the population.

This is generally known as the Procrustes problem, often encountered in multidimensional
scaling (Cox and Cox, 2000). Because we are interested in how the shapes, not the amplitudes,
of receptive fields depend on context, we normalize filters to unit length, and look for the best
rotation that can transform one set of vectors into another with minimum least square error.
Note that the rotations we seek are not literal rotations in space, but abstract rotations within
the 36-dimensional shape space defined by the stimulus patterns. For example, a rotation might
specify that neurons whose sensitivity profiles had had a large component of the rank-0
(Gaussian) basis function when studied with Cartesian stimuli tended to have a large
component of the rank-2 target-like basis function when studied with polar stimuli.
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No systematic differences between L-filters and M-filters—As a test of this approach,
we first compare receptive fields obtained from Cartesian stimuli via reverse correlation
(Lcart) and with those obtained from the same stimulus set by MID (Mcart). Since we have
already seen that the L-filters and the M-filters were similar (Figure 2), we expect that the best
rotation matrix is close to the identity – and this is what we found (Figure 4A). Similarly, the
best rotation matrix that transforms the receptive fields obtained from polar stimuli via reverse
correlation (Lpolar) into the receptive fields obtained from the same stimulus set by MID
(Mpolar) is also close to the identity matrix (Figure 4B). This supports the validity of the
approach.

Because the rotation matrices identified by this procedure are not precisely the identity, the
possibility remains that there are systematic differences between the receptive fields
determined by the two methods that not evident from casual inspection of Figs. 4A,B. To
determine whether this is the case, we exploit the symmetry of the Hermite functions (Figure
1). Note, for example, that reflection of the coordinate system across the horizontal axis inverts
the polarity of some stimulus patterns, but leaves others preserved. Thus, when a given
receptive field shape is represented as a vector, the sign assigned to some coordinates depends
on the (arbitrary) choice of which horizontal direction is “positive”, while the sign assigned to
other coordinates does not have this dependence. Consequently, any apparent linear
relationship between the inverting and non-inverting coordinates must be due to chance. A
similar argument holds for reflection across the vertical axis. Thus, we can restrict the search
for rotations to those that do not violate these parity rules. This eliminates rotations that mix
basis functions of even and odd ranks, or that mix basis functions in even and odd positions
within ranks (Figure 1). This procedure has another interpretation (Figure 4E). It is equivalent
to adding cells to the dataset whose receptive fields are related by mirror symmetry to the cells
actually recorded. The above analysis corresponds to assuming that since these added cells
have the same relationship to the center and axes of the stimuli as real recorded neurons, their
responses will be the same.

As seen in Figure 4C, D, this refinement increases the similarity of the inferred rotation to the
identity matrix. Thus, the results of Figure 2 are not only corroborated, but also extended: we
do not identify any systematic difference between the L-filters and the M-filters obtained with
the same stimulus set (i.e., in the same context).

Context-dependence of a component depends on its size and symmetry—A
qualitatively different result emerges when we use this approach to compare receptive fields
measured in different contexts (Cartesian vs. polar). Comparisons of the L-filters derived from
neural responses to Cartesian and polar stimulus sets are shown in Figure 5A, while those based
on the M-filters are shown in Figure 5B. Because there is typically some correlation between
receptive field profiles derived from Cartesian and polar stimulation, we expect that a
component of the identity matrix will be present. This is indeed the case, but it is strongest for
low-rank coefficients, and becomes less pronounced as the rank increases. Thus, higher-rank
components, which have larger spatial extent (Figure 1), are more subject to systematic
stimulus-dependent changes than the lower-rank components.

The deviations of diagonal elements from unity measures the size of the systematic change of
the corresponding coordinates. In Figure 5E we plot diagonal elements of the best rotation
matrices derived for L-filters (magenta) and M-filters (blue). In both cases, the amplitude of
diagonal elements decreases with rank, indicating increasing deviations from the identity
matrix. In other words, the higher the rank of the receptive field component, the more it depends
on context.
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Applying the above symmetry argument removes some of the off-diagonal points of the matrix,
but a significant discrepancy between the transformation matrix and the identity persists
(Figures 5C, 5D). The decrease in amplitude of the on-diagonal elements with increasing rank
remains evident (Figure 5F). Intriguingly, the odd-rank diagonal elements (ranks 3, 5, and 7)
are significantly smaller than the even-rank elements (ranks 2, 4, and 6). Since the Procrustes
matrix, by definition, is orthogonal, these reductions in the on-diagonal components are
accompanied by nonzero components off the diagonal, in the corresponding rows and columns.
This, in turn, implies that when odd-rank components are present in one context (e.g.,
Cartesian), there is a significant tendency for other odd-rank components to be present in the
alternative context (e.g., polar). That is, the odd-rank components of the receptive fields profiles
are modified in a systematic way by context.

No comparable changes are seen in the even-rank components. (For ranks 0 and 1, a comparison
is not meaningful, since Cartesian and polar stimuli are identical at these ranks.)

These two findings – a decline in the responses on the diagonal as rank increases, and smaller
on-diagonal values for odd ranks than even ranks -- are present both for the analysis based on
reverse correlation (Figure 5C) and MID (Figure 5D). The diagonal elements are generally
smaller in the MID analysis (Figure 5F); this is likely due to greater uncertainty in determination
of the MID receptive field profiles (Supplementary Figure 3).

There are two ways that the above difference between odd and even components can be
interpreted: One possibility is that only the odd-order components depend on context. The
second possibility is that the even-order components also depend on context, but, this
dependence is not systematic – so that the best prediction for the size of an even-order
component in one context is its size in the other context. Our data indicate that the second
alternative is correct.

To see this, we first examine the difference between the responses in each of the two contexts,
broken down by parity. As Figure 6A shows, there is approximately the same amount of
context-dependent change in the odd- and the even-order components. However, when we
compare the actual responses in the polar context with the response predicted by the Procrustes
transformation of the Cartesian response, we see a significant difference between odd- and
even-order responses. For the even-order responses, virtually none of the context-dependent
change is accounted for by the Procrustes transformation (Figure 6B), while for the odd-order
responses, approximately half of the context-dependent change can be accounted for in this
fashion (Figure 6C). After the Procrustes transformation, the mean square difference per
component was significantly smaller for odd-rank than for even-rank components (p=0.008,
Wilcoxon paired test). This was also evident from smaller slopes of the regression line between
variance values before and after the Procrustes transformation in the case of odd components
(0.64) vs. even components (0.86).

To emphasize that the Procrustes analysis has identified an overall change in the population
that would not be evident from analyzing individual neurons, we show examples of two typical
cells (Figure 7). For each cell, the left column shows the L-filter obtained with Cartesian
stimuli, and its decomposition into odd-symmetric and even-symmetric components. The right
column shows the analogous filters obtained with polar stimuli. While it is clear that there are
changes in receptive field shape (20% of the variance per component in Figure 7A, 50% in
Figure 7B), the systematic aspect of these changes is not at all apparent.

The middle column of each panel shows the prediction of the polar filters from the Procrustes
transformation determined from the entire dataset. For the cell of panel A, the Procrustes
transformation correctly predicts the blobs above and below the center of the receptive field
in the odd-rank component of the polar filter (middle row, last two plots). For the cell of panel
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B, the Procrustes transformation correctly predicts a loss in the number of lobes in the odd-
rank component of the polar filter (middle row, last two plots). The even-rank components also
show changes in the effective receptive field for Cartesian and polar plots, but these are not
predicted by the Procrustes transformation. These observations are quantified by the average
mean square difference per component accounted for by the Procrustes transformation. For the
odd ranks, the average mean square difference was decreased by 43% (Fig. 7A) and 65% (Fig.
7B); for the even ranks, it was decreased only by 3%(Fig. 7A) and 8%(Fig. 7B).

Exclusion of potential confounds—Finally, we consider (and exclude) three potential
confounds in this analysis. First, because higher-rank Cartesian and polar stimuli tend to elicit
smaller responses than lower-rank stimuli, estimation of higher ranks' contribution to receptive
field shape would be subject to greater measurement error, and the similarity of the inferred
rotation matrix to the identity would be artifactually reduced. However, this cannot account
for our findings. As shown in Figure 5G,H, the average magnitude of receptive field
components decreases monotonically and gradually as the rank increases. In contrast, the
difference between the Procrustes matrix and the identity increases abruptly at rank 3, and the
high-order odd ranks are more discrepant than adjacent even ranks (Figure 5F). Second, we
consider the effect of imperfect alignment of the center of stimulus patterns relative to the
center of the receptive field. While such imperfect alignment was likely present, it would not
result in a difference between odd- and even ranks, but would instead tend to dilute such
differences. This is because a shift in position of an nth-rank pattern leads, in a first
approximation, to addition of a small amount of a pattern of rank n+1. Thus, any phenomenon
that would be confined to either even or odd ranks (if all cells were perfectly centered) would
spread to the other parity by misalignment. Thirdly, the fact that odd-rank components show
more stimulus-dependent changes is not due to the dataset extension by symmetry
(Supplementary Figure 4).

Hypothesis: context-dependence arises from independent local perturbations with
antisymmetric profiles

Above we have shown that lability (context-dependence) of receptive field components (i)
increases with their rank, i.e. spatial extent, and (ii) is more systematic for the odd-symmetric
components, than for the even-symmetric ones. We now turn to a consideration of possible
explanations for these findings. To begin, we make the general hypothesis that the observed
changes in the receptive field profile occur as the net result of independent local perturbations
at different positions within the receptive field. The overall change in the receptive field profile
is the combined result from all of these separate perturbations. At a circuit level, these local
perturbations could correspond to perturbations affecting the strength of synapses from neurons
that are presynaptic to the neuron under study, or the intrinsic sensitivities of these presynaptic
neurons. (Note we use the term “perturbation” is to refer to an elementary physiologic process
that affects the receptive field, but the term “receptive field component” to a basis function
used in to describe or measure the receptive field profile.) As we now show, the observation
that the changes in the odd-symmetric components are more systematic than the even ones has
implications both for the spatial profiles of these perturbations, and their distribution. Our
reasoning is qualitative, and relies on an observation concerning the interpretation of the
Procrustes matrix elements. This observation, which is formalized in the Appendix, is as
follows: for a sufficiently diverse set of receptive fields, a matrix element of the Procrustes
transformation will deviate from the identity if, on average across the population, perturbations
of individual neurons' receptive fields are spatially correlated with their expression of that basis
element.

As a simple example, consider a scenario in which perturbations are Gaussian blobs placed
randomly within the receptive field, and of random polarity (ON or OFF). Because of their
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random nature, they will not be correlated with the receptive field. Thus, they will not lead to
a deviation of the Procrustes matrix from the identity. Put another way, although these
perturbations might strongly affect each cell's receptive field, there is no systematic way of
predicting how they will change the receptive field from the Cartesian to the polar context –
because they are random. So the best prediction of the polar receptive field is that it is equal
to the Cartesian receptive field, i.e., the Procrustes transformation is the identity.

Now suppose that these Gaussian blobs tend to be centered in the receptive field. We further
suppose that the sign of the perturbation is correlated with the sign of the receptive field at that
location -- e.g., a localized ON-perturbation tends to lie in an ON-portion of the receptive field.
The even-rank basis elements would in turn tend to be correlated with these perturbations, since
they either peak in the receptive center or are zero in the receptive field center but have adjacent
flanks of the same sign. Thus, the even-rank Procrustes matrix elements would be expected to
deviate from the identity. The odd-rank receptive field components would not be expected to
change, because the dot-product of an odd-rank (antisymmetric) component with an even-rank
(symmetric) perturbation is zero. A similar argument holds if the perturbations were some other
even-symmetric profile, such as a circular center-surround patch, or an oriented bar with
antagonistic flankers, or a cosine Gabor. So in the scenario of even-symmetric, centrally-
located perturbations, we would expect that only the even-rank receptive field components
would change, resulting in even-rank matrix elements of the Procrustes transformation that
deviate from the identity. This is contrary to our observations: we find that both even and odd-
rank components are labile, and it is the odd components, not the even components, that change
systematically.

This motivates us to consider a contrasting situation, in which the perturbations are odd-
symmetric. Examples of odd-symmetric perturbations include a dyad of adjacent on and off
regions, or a sine Gabor, or an idealized simple cell receptive field. The symmetry argument
now implies that only the odd rank components will change. Moreover, provided that these
perturbations are correlated with the receptive field profile, the changes will be systematic.
The result will be deviations of the odd-rank elements of the Procrustes matrix from the identity,
as we observe.

In addition to the systematic lability of the odd-rank components, we also need to account for
non-systematic lability of the even- rank components (Figure 6A). There are at least three
factors that may contribute to changes in the receptive field profiles that are not identified as
systematic by the Procrustes analysis. First, if the on-off perturbations are not perfectly
centered, then their effects will “leak” into the even ranks. Since the sign of the effect will
depend on exactly where the perturbations are placed in the receptive field (i.e., how the lobes
of the perturbation line up with the lobes of the basis element), this contribution will not be
systematic. A scatter of perturbations throughout the receptive field would also account for the
greater lability of the higher ranks, compared to the lower ranks. Second, if the perturbations
themselves have a random even-symmetric component, this will lead to random changes in the
even-rank basis elements. And finally, any measurement error would contribute to an apparent
non-systematic variation of the receptive field components. But measurement error can be no
more than the variability of the odd-rank components that is not explained by the Procrustes
transformation (Figure 6C).

We sum up the main points of our analysis. First, deviation of the Procrustes matrix from the
identity implies that the perturbations of the receptive field are correlated with specific
receptive field components. Second, assuming that receptive field lability is a consequence of
spatially localized perturbations, our observation that primarily the odd-rank elements of the
Procrustes matrix deviate from the identity implies that these local perturbations tend to be
odd-symmetric (like On/Off dyads).
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Discussion
Stimulus-dependent changes in receptive fields have been observed in a variety of species and
in both auditory (Rieke et al., 1995; Theunissen et al., 2001; Theunissen et al., 2000; Woolley
et al., 2006) and visual (Baccus and Meister, 2002; Chander and Chichilnisky, 2001; David et
al., 2004; Hosoya et al., 2005; Kim and Rieke, 2001; Sharpee et al., 2006) neurons. It is often
difficult to go beyond stating that the receptive fields depend on the stimulus set and to provide
a parametric description of how receptive fields change between two different stimulus sets.
Recent reports point to changes in inhibitory components of visual receptive fields (David et
al., 2004), with the strongest effects at low-to-medium spatial frequencies (Sharpee et al.,
2006). However, a unified picture of how neural receptive fields change between different
stimulus ensembles remains elusive.

Summary of findings
Here we examine stimulus-dependent changes in V1 receptive fields that occur when high-
order statistics change, but first- and second-order statistics (mean luminance, contrast, spatial
frequency composition) are held constant. We chose to study the effects of high-order statistics,
since their presence distinguishes natural scenes from structureless noise. There are two
ingredients in our analysis.

First, we used two complementary methods of receptive field analysis to show that our
measures of contextual modulation did not depend on assumptions made in computing
receptive fields. Consistent results were obtained with two different models. In one approach,
we assumed that the gain function that relates stimulus components along the receptive field
to firing rate was described as a combination of a linear and full-rectifying function (Victor et
al., 2006). In the other approach, we used a nonlinear optimization method of maximally
informative dimensions without introducing a parametric description for the gain function. We
found that both approaches produced receptive fields that were consistent and exhibited similar
context-dependent changes.

Second, we introduce a new approach to analyzing these stimulus-dependent changes that seeks
to identify consistent changes across a neural population. This analysis yields two findings:
the lability of receptive field components increases with their spatial extent, and, perhaps
unexpectedly, that odd-symmetric components of the receptive field (i.e., those that are anti-
symmetric with respect to 180 degree rotation) change in a more consistent manner across the
neural population than even-symmetric ones.

A mechanistic hypothesis
To explain these findings, we suggest a hypothesis based on the idea that global changes in
receptive fields arise as a result of independent, local perturbations. Arguing primarily from
symmetry considerations, our observation that odd-rank components change in a more
systematic fashion than even-rank ones can be explained if we postulate that the individual
perturbation profiles are predominantly odd-symmetric, such as sine-Gabor profiles or a pair
of adjacent On/Off subregions (Ringach, 2004; Ringach, 2007; Soodak, 1987). The difference
between odd- and even-rank components will depend on many factors, including the degree
to which the perturbation profiles are clustered at the center of the receptive field, the extent
to which they are purely odd-symmetric, whether their occurrence is correlated with the
sensitivity profile of the unperturbed receptive field, and the accuracy with which the receptive
field profiles can be measured. Our data are not sufficient to analyze the contributions of these
factors. However, point-like profiles, circularly-symmetric center-surround profiles, cosine
Gabors, and random perturbation profiles will not account for our observation – since they
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would predict that even-rank receptive field profiles are systematically modified, opposite to
what we observe.

The proposition that a localized profile with a pair of adjacent On/Off subregions can serve as
a unit for receptive field changes is a natural one, given the known properties of cortical
circuitry. Recent theoretical models of primary visual cortex have shown that On/Off receptive
field profiles can arise during development simply as a result of “haphazard sampling” from
the discrete mosaic of retinal ganglion cells (RGC) (Ringach, 2004; Ringach, 2007; Soodak,
1987). This argument works because nearest neighbors in the X-cell RGC mosaic tend to be
of similar size but opposite sign (Wassle et al., 1981): pooling inputs from a small area in the
visual field is likely to result in two displaced Gaussians of opposite contrast. This “haphazard
sampling” argument can account for many known experimental result on the development of
visual cortex (Ringach, 2007), including the early emergence of simple cells in layer 4 without
a prior stage of substantial On/Off overlap and that blocking ON-center RGC cells precludes
the development of orientation tuning (Chapman and Godecke, 2000). Here we propose that
in the adult cortex, the On/Off dyads that are postulated to underlie orientation tuning also
underlie contextual modulation – that is, contextual modulation of receptive fields involves
adjustments at the level of the output of an On/Off dyad, rather than separate adjustments of
its components.

Our analysis focused on changes in the spatial sensitivity profile, and used only a specific,
highly non-natural, set of stimuli. But if our hypothesis is correct, then it should generalize. In
particular, we would predict that perturbations similar to On/Off dyads, localized in space and
time, would account for context-dependence of the temporal structure of receptive fields
(Chander and Chichilnisky, 2001; Hsu et al., 2004; Sharpee et al., 2006; Smirnakis et al.,
1997), since these temporal context-dependent changes are likely governed by the same
principles. We would also predict that the same proposed mechanism of context-dependent
changes could also explain receptive field changes under more natural conditions (David et
al., 2004; Sharpee et al., 2006; Theunissen et al., 2001; Theunissen et al., 2000; Woolley et al.,
2006), for example between natural stimuli and correlated Gaussian noise with the same
second-order structure (Felsen et al., 2005).

A method for studying receptive field transformations
Our analysis rests on a novel method for studying how receptive fields change between two
conditions. Although our two conditions (Cartesian and polar stimulus patches) are defined by
highly structured statistics, this is by no means a prerequisite for the approach. The approach
can be applied without regard to the nature of the two conditions, which may include a change
in the statistics of sensory inputs, a behavioral manipulation such as modulation of attention,
or even a pharmacologic manipulation. The main advantages of this approach are that it (i)
does not rely on preconceived notions of what types of changes may be present and (ii) can
identify patterns that would not be apparent if each receptive field were studied independently.

The main prerequisites of the method are that the same neurons are studied under both
conditions, and that their receptive fields can be represented as vectors in a finite-dimensional
space. Here, we described receptive fields by 36-dimensional vectors of weights with respect
to Hermite functions, but other basis sets could be used, including spatiotemporal basis
functions or Fourier components. Once the basis set is chosen, the receptive fields measured
under each condition (context) correspond to a set of vectors, one vector for each neuron. The
final, crucial step is to find a rotation matrix that most closely transforms the set of vectors
measured under one set of conditions into the set of vectors measured under the other set of
conditions. To do so, we use an algorithm that was first developed in crystallography (Kabsch,
1976).

Sharpee and Victor Page 13

J Comput Neurosci. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



At this stage, it is important that the number of neurons (or receptive-field pairs under the two
different conditions) is larger than the number of dimensions in which the best transformation
is sought. Otherwise, the problem of identifying the optimal rotation would be
underdetermined.

Since we were interested in changes in shape but not overall sensitivity (which, here, would
be absorbed into the nonlinear stage, and was previously analyzed (Victor et al., 2006)), we
did not allow for a dilation following the rotation. However, the method can be readily extended
allow for dilations that follow the rotation matrix, or to look for general linear transformations
between the two sets of vectors – thus providing an analysis of increases or decreases in
sensitivity.

Conclusion
Our analysis of how V1 receptive fields respond to changes in higher-order stimulus statistics
shows that stability of receptive field components depends on both their symmetry properties.
Qualitatively, this finding can be explained by a simple, physiologically plausible mechanism
based on the idea that receptive fields change as a result of independent local perturbation
events. To account for our data, local perturbation profiles must be predominantly anti-
symmetric, e.g., constructed from a pair of adjacent On/Off subregions. Recent theoretical
models of cortical development argue that such a profile can result just from local pooling in
space of a small number of RGC cells and is sufficient for seeding the formation of cortical
circuits. Perhaps the mechanisms based on On/Off pairs that guide the development of visual
cortex continue to shape neural receptive fields in the adulthood. Our approach can be used to
determine whether similar mechanisms underlie changes in spatiotemporal receptive fields,
and adaptation to context driven by natural scene statistics.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A Relationship between Procrustes matrix and receptive field
differences

In order to understand possible mechanisms that might explain the observed difference in
context-dependent changes for even- and odd-rank components, we analyze the relationship
between the elements of the Procrustes matrix and receptive field changes. The Procrustes
transformation implemented in Figures 4-7 determines the best rotation matrix between the
two sets of receptive fields obtained in the two stimulus contexts. We will work in the
approximation where changes in the stimulus components are small compared to the magnitude
of stimulus components. This approximation implies that the best rotation matrix will also be
close to the best linear transformation that includes both rotation and scaling, because scaling
factor will be close to 1. This significantly simplifies analysis, making the relationship between
elements of the Procrustes matrix and changes in receptive field components more transparent.
In this approximation, the elements Cnk of the matrix given by the difference between the
Procrustes matrix and the unit matrix can be found by minimizing mean square error:
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where  represents the kth component of receptive field of the ith neuron obtained from the
first, for example Cartesian, stimulus set. We denote the difference between receptive field

coefficients for the two stimulus sets by , which we assume to be small, so that the sum of
identity matrix and C is nearly orthogonal. The optimal matrix elements Cnk can be found from
the following equation:

(3)

Here all averages are computed across the population of cells.

If we first assume that receptive fields are sufficiently diverse so that receptive field
components are uncorrelated, the expression for matrix C can be simplified:

(4)

Thus, for small context dependent changes  in receptive fields, the deviations of the
Procrustes matrix from the unit matrix are determined the average product between kth
receptive field components and the change in the nth receptive field component, normalized
by the average magnitude of kth component across all receptive fields. The assumption of
uncorrelation is clearly a strong one, but a weaker assumption – namely, that there are no
correlations between even and odd components (see Figure 4E) -- suffices to support the
analysis in the main text. That is, eq. (3) shows that odd-parity elements of the Procrustes matrix
imply correlations of the perturbations with odd-order basis elements.

References
Baccus SA, Meister M. Fast and slow contrast adaptation in retinal circuitry. Neuron 2002;36:909–919.

[PubMed: 12467594]
Bonds AB. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex.

Vis Neurosci 1989;2:41–55. [PubMed: 2487637]
Carandini M, Heeger DJ, Movshon JA. Linearity and Normalization in Simple Cells of the Macaque

Primary visual Cortex. J Neurosci 1997;17:8621–8644. [PubMed: 9334433]
Carandini M, Heeger DJ, Senn W. A synaptic explanation of suppression in visual cortex. J Neurosci

2002;22:10053–10065. [PubMed: 12427863]
Chander D, Chichilnisky EJ. Adaptation to temporal contrast in primate and salamander retina. J Neurosci

2001;21:9904–9916. [PubMed: 11739598]
Chapman B, Godecke I. Cortical cell orientation selectivity fails to develop in the absence of ON-center

retinal ganglion cell activity. J Neurosci 2000;20:1922–1930. [PubMed: 10684893]
Cox, TF.; Cox, MAA. Multidimensional scaling. Vol. Second. Chapman and Hall; 2000.
Das A, Gilbert CD. Topography of contextual modulations mediated by short-range interactions in

primary visual cortex. Nature 1999;399:655–661. [PubMed: 10385116]

Sharpee and Victor Page 15

J Comput Neurosci. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



David SV, Vinje WE, Gallant JL. Natural stimulus statistics alter the receptive field structure of V1
neurons. J Neurosci 2004;24:6991–7006. [PubMed: 15295035]

de Boer E, Kuyper P. Triggered Correlation. IEEE Trans Biomed Eng 1968;15:169–179. [PubMed:
5667803]

De Valois RL, Albrecht DG, Thorell LG. Spatial frequency selectivity of cells in macaque visual cortex.
Vision Res 1982a;22:545–559. [PubMed: 7112954]

De Valois, RL.; Thorell, LG. Spatial vision. New York: Oxford University Press; 1988.
De Valois RL, Yund EW, Helper N. The orientation and direction selectivity of cells in macaque visual

cortex. Vision Res 1982b;22:531–544. [PubMed: 7112953]
Efron, B.; Tibshirani, RJ. An Introduction to bootstrap: Chapman and Hall/CRC). 1998.
Felsen G, Touryan J, Han F, Dan Y. Cortical sensitivity to visual features in natural scenes. PLoS Biol

2005;3:e342. [PubMed: 16171408]
Freeman TC, Durand S, Kiper DC, Carandini M. Suppression without inhibition in visual cortex. Neuron

2002;35:759–771. [PubMed: 12194874]
Heeger DJ. Normalization of cell responses in cat striate cortex. Vis Neurosci 1992;9:181–198. [PubMed:

1504027]
Hosoya T, Baccus SA, Meister M. Dynamic predictive coding by the retina. Nature 2005;436:71–77.

[PubMed: 16001064]
Hsu A, Woolley SM, Fremouw TE, Theunissen FE. Modulation power and phase spectrum of natural

sounds enhance neural encoding performed by single auditory neurons. J Neurosci 2004;24:9201–
9211. [PubMed: 15483139]

Hubel DH, Wiesel TN. Receptive fields of single neurons in the cat's striate cortex. J Physiol
1959;148:574–591. [PubMed: 14403679]

Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol
1968;195:215–243. [PubMed: 4966457]

Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta Cryst A 1976;32:922–923.
Kim KJ, Rieke F. Temporal contrast adaptation in the input and output signals of salamander retinal

ganglion cells. J Neurosci 2001;21:287–299. [PubMed: 11150346]
Meister M, Berry MJ. The neural code of the retina. Neuron 1999;22:435–450. [PubMed: 10197525]
Morrone MC, Burr DC. Feature detection in human vision: a phase-dependent energy model. Proc R Soc

Lond B Biol Sci 1988;235:221–245. [PubMed: 2907382]
Ohzawa I, Sclar G, Freeman RD. Contrast gain control in the cat's visual system. J Neurophysiol

1985;54:651–667. [PubMed: 4045542]
Oppenheim AV, Lim JS. The importance of phase in signals. Proc IEEE 1981;69:529–541.
Priebe NJ, Ferster D. Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat

Neurosci 2006;9:552–561. [PubMed: 16520737]
Reich, DS. PhD Thesis: Information encoding by individual neurons and groups of neurons in primary

visual cortex. The Rockefeller University; New York: 2001.
Rieke F, Bodnar DA, Bialek W. Naturalistic stimuli increase the rate and efficiency of information

transmission by primary auditory afferents. Proc R Soc Lond B Biol Sci 1995;262:259–265.
Ringach DL. Haphazard wiring of simple receptive fields and orientation columns in visual cortex. J

Neurophysiol 2004;92:468–476. [PubMed: 14999045]
Ringach DL. On the origin of the functional architecture of the cortex. PLoS ONE 2007;2:e251. [PubMed:

17330140]
Ruderman DL, Bialek W. Statistics of natural images: Scaling in the woods. Phys Rev Let 1994;73:814–

817. [PubMed: 10057546]
Schwartz O, Pillow JW, Rust NC, Simoncelli EP. Spike-triggered neural characterization. J Vis

2006;6:484–507. [PubMed: 16889482]
Shapley RM, Victor JD. The effect of contrast on the transfer properties of cat retinal ganglion cells. J

Physiol (London) 1978;285:275–298. [PubMed: 745079]
Sharpee T, Rust NC, Bialek W. Analyzing neural responses to natural signals: maximally informative

dimensions. Neural Comput 2004;16:223–250. [PubMed: 15006095]

Sharpee and Victor Page 16

J Comput Neurosci. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, Miller KD. Adaptive filtering enhances
information transmission in visual cortex. Nature 2006;439:936–942. [PubMed: 16495990]

Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu Rev Neurosci
2001;24:1193–1216. [PubMed: 11520932]

Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M. Adaptation of retinal processing to image
contrast and spatial scale. Nature 1997;386:69–73. [PubMed: 9052781]

Soodak RE. The retinal ganglion cell mosaic defines orientation columns in striate cortex. Proc Natl Acad
Sci U S A 1987;84:3936–3940. [PubMed: 3108884]

Theunissen FE, David SV, Singh NC, Hsu A, Vinje WE, Gallant JL. Estimating spatio-temporal receptive
fields of auditory and visual neurons from their responses to natural stimuli. Network 2001;12:289–
316. [PubMed: 11563531]

Theunissen FE, Sen K, Doupe AJ. Spectral-temporal receptive fields of nonlinear auditory neurons
obtained using natural sounds. J Neurosci 2000;20:2315–2331. [PubMed: 10704507]

Victor J, Shapley R. A method of nonlinear analysis in the frequency domain. Biophys J 1980;29:459–
483. [PubMed: 7295867]

Victor JD, Mechler F, Repucci MA, Purpura KP, Sharpee T. Responses of V1 neurons to two-dimensional
hermite functions. J Neurophysiol 2006;95:379–400. [PubMed: 16148274]

Vinje WE, Gallant JL. Sparse coding and decorrelation in primary visual cortex during natural vision.
Science 2000;287:1273–1276. [PubMed: 10678835]

Vinje WE, Gallant JL. Natural stimulation of the nonclassical receptive field increases information
transmission efficiency in V1. J Neurosci 2002;22:2904–2915. [PubMed: 11923455]

Wassle H, Boycott BB, Illing RB. Morphology and mosaic of on- and off-beta cells in the cat retina and
some functional considerations. Proc R Soc Lond B Biol Sci 1981;212:177–195. [PubMed: 6166013]

Woolley SM, Gill PR, Theunissen FE. Stimulus-dependent auditory tuning results in synchronous
population coding of vocalizations in the songbird midbrain. J Neurosci 2006;26:2499–2512.
[PubMed: 16510728]

Note Added in Proof
Our findings were confirmed by a similar analysis of a dataset that included 57 additional
macaque V1 neurons.

Sharpee and Victor Page 17

J Comput Neurosci. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Stimulus patterns used in these experiments
Stimuli were two-dimensional Hermite functions (Victor et al., 2006). Cartesian stimuli (left
panel) are products of one-dimensional Hermite functions in vertical and horizontal
coordinates. Each row contains all the Cartesian stimuli of a given rank. Linear combinations
of patterns of the same rank can be constructed to be separable in radial and angular coordinates.
These are the polar stimuli (right panel). Modified with permission from (Victor et al., 2006).
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Figure 2. Comparison of receptive fields for Cartesian and polar stimuli computed within two
models
A: Cells with no consistent differences between receptive fields determined from Cartesian
or polar basis sets by reverse correlation (L-filters) or MID (M-filters). Lcart: linear filter
derived from reverse correlation of Cartesian responses; Mcart : filter derived from MID
analysis of Cartesian responses; Lpolar: linear filter derived from reverse correlation of polar
responses; Mpolar : filter derived from MID analysis of polar responses. Correlation coefficients
of filters determined from the two stimulus contexts (Lcart vs. Lpolar, Mcart vs. Mpolar) were not
significantly different from 1. L-filters (from left to right): 0.89±0.09, 0.97±0.02, 0.92±0.05
(all p>0.05); M-filters: 0.92±0.07, 0.991±0.009, 0.99±0.01 (all p>0.05). B: Cells with context-
dependent receptive fields as determined by reverse correlation (L-filters) and MID (M-
filters). Correlation coefficients of filters determined from the two stimulus contexts were all
significantly different from 1 (marked by arrows). L-filters: 0.89±0.03 (p<0.01), 0.70±0.10
(p<0.01), 0.73±0.08 (p<0.05); M-filters: 0.70±0.10 (p<0.05), 0.92±0.04 (p<0.05), 0.60±0.10
(p<0.01). C: Cells with context-dependence of receptive fields as determined by reverse
correlation (L-filters) but not by MID (M-filters). Correlation coefficients of filters
determined from the two stimulus contexts were significantly different from 1 (marked by
arrows) for L-filters: 0.40±0.15, 0.50±0.10, cc=0.91±0.03 (all p<0.01) but not for M-filters:
0.91±0.16, 0.98±0.03, 0.90±0.10 (all p>0.05). None of these 9 cells had consistent differences
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between L- and M-filters for either Cartesian or polar basis sets. Color-scale is arbitrary, but
is the same for all of the four filters pertaining to a neuron. For each neuron, the color scale
covers the range from the minimal to the maximal value across the four filters.
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Figure 3. Distribution of correlation coefficients between receptive fields determined from
Cartesian and polar stimulus sets
Left: stimulus-dependent changes in filters calculated by reverse correlation; right: stimulus-
dependent changes in filters calculated by MID. For both kinds of models, significant context-
dependent changes (correlation coefficients < 1) are prevalent. Cells with no significant
changes (p>0.05) are shown in white, those with significant changes in gray (0.01<p<0.05)
and black (p<0.01). The abscissa labels indicate the filters whose profiles are compared.
Debiasing (see Supplementary Material) can result in estimated correlation coefficients < 0.
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Figure 4. Comparison of receptive fields computed by the two models
Panels A- B: Pseudocolor display of the rotation matrix that is the optimal transformation
between receptive fields estimated by two methods (reverse correlation (L-filters) and MID
(M-filters)) from one set of stimuli. A: Cartesian stimuli. B: polar stimuli. Panels C and D:
The same calculations, augmented by adding receptive fields reflected around horizontal and
vertical axes (panel E). The heavy lines in panels A-D separate the ranks, shown increasing
from 0 to 7. Within each rank, basis elements are ordered from most centrally-weighted (middle
of pyramid of Figure 1 right) to most peripherally-weighted (edges of pyramid of Figure 1
right). Color scale covers the interval [-1 1], with green indicating 0, red-brown indicating 1,
and blue indicating -1. The matrices are all similar to the identity matrix, indicating close
correspondence between receptive fields derived by the two methods.
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Figure 5. Comparison of receptive fields derived from Cartesian and polar stimuli
Panels A-B: Pseudocolor display of the rotation matrix that is the optimal transformation
between a set of receptive fields determined from responses to the two contexts (Cartesian vs.
polar) with either modeling method: L-filters (panel A) or M-filters (panel B). Panels C and
D: The same calculations, augmented by adding receptive fields reflected around the vertical
and horizontal axes. For both models, rotation matrices show that odd-ranked coefficients
change more between Cartesian and polar stimuli than the even-ranked coefficients. Display
details as in Figure 4. E: root-mean-square (rms) of rotation matrix diagonal elements at each
rank, derived from L-filters (magenta, based on panel A) and M-filters (blue, based on panel
B). Panel F shows the analogous rms values computed using the symmetry-augmented datasets,
taken from panels C and D. Error bars in panels E and F show standard errors of the mean
within each rank. The decrease in the amplitude of diagonal values is strongly non-monotonic:
odd ranks are further from the identity than even ranks, showing that odd ranks have a greater
systematic context-dependence than even ranks. Panels G and H show the overall magnitude
of the receptive field components derived from responses to Cartesian and polar stimuli. Error
bars in panels G and H show standard deviations across different cells and components within
a given rank. The difference between even and odd rank receptive field components in E and
F is not explained by the difference in their magnitude or estimation error, which changes
monotonically.
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Figure 6. Analysis of context-dependent changes in receptive fields according to symmetry
Panel A shows the overall context-dependent change in receptive fields broken down by the
parity of the basis element, and quantified as the mean square difference per basis element
computed between components of L-filters for Cartesian and polar stimuli. Even and odd-parity
components show an equal amount of overall context dependence. Panels B and C compare
the overall context-dependent change (abscissa) to the context-dependent change that is not
accounted for by the Procrustes transformation. Comparison is based on the mean square
difference between components of L-filters for polar stimuli and those of L-filters for Cartesian
stimuli after the Procrustes transformation. For even-parity components (Panel B), the
Procrustes transformation does not account for a substantial fraction of the variance, but for
the odd-parity components (Panel C), it accounts for approximately half of the variance.
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Figure 7. Procrustes transformations for two example cells
Left column shows L-filters obtained from Cartesian stimulus set; middle column shows the
effect of Procrustes transformation (Figure 5C) on these 3 different profiles, and right column
shows L-filter obtained from polar stimulus set. The top row is the complete L-filter; the middle
row is the odd-rank component, and the bottom row is the even-rank component. Consistent
with the analysis of Figure 6, the Procrustes transformation of the Cartesian L-filter recovers
some of the features of the polar L-filter for odd ranks (middle row), but not for even ranks
(bottom row).
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