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Abstract

To date, the most prevalent model for transport of pre-proteins to plant mitochondria is based on the activity of an

N-terminal extension serving as a targeting peptide. Whether the efficient delivery of proteins to mitochondria is

based exclusively on the action of the N-terminal extension or also on that of other protein determinants has yet to

be defined. A novel mechanism is reported here for the targeting of a plant protein, named MITS1, to mitochondria. It

was found that MITS1 contains an N-terminal extension that is responsible for mitochondrial targeting. Functional

dissection of this extension shows the existence of a cryptic signal for protein targeting to the secretory pathway.

The first 11 amino acids of the N-terminal extension are necessary to overcome the activity of this signal sequence
and target the protein to the mitochondria. These data suggest that co-operation of multiple determinants within the

N-terminal extension of mitochondrial proteins may be necessary for efficient mitochondrial targeting. It was also

established that the presence of a tryptophan residue toward the C-terminus of the protein is crucial for

mitochondrial targeting, as mutation of this residue results in a redistribution of MITS1 to the endoplasmic reticulum

and Golgi apparatus. These data suggest a novel targeting model whereby protein traffic to plant mitochondria is

influenced by domains in the full-length protein as well as the N-terminal extension.
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Introduction

In eukaryotic cells, the presence of several distinct organelles

generates the need for efficient protein targeting mechanisms

of newly synthesized proteins. Targeting of most proteins

destined to the secretory pathway is initiated by the binding

of the signal recognition particle (SRP) to a signal sequence

in a nascent polypeptide chain emerging from a cytosolic

ribosome. The nascent polypeptide is then co-translationally

inserted in the endoplasmic reticulum (ER) upon recognition
of the SRP by an ER-membrane anchored SRP receptor

(Nagai et al., 2003). The synthesis of proteins destined to

other organelles, such as plastids and mitochondria, generally

occurs on free ribosomes and the targeting is post-trans-

lational (reviewed in Alder and Johnson, 2004). Protein

targeting to mitochondria relies on an N-terminal extension

on the protein precursor, the so-called pre-sequence, which

directs the protein to the organelles. Pre-sequences do not

have a common primary sequence but are generally com-

posed of an N-terminal leader sequence of 20–35 amino

acids, enriched in basic, hydrophobic, and hydroxylated

residues (Neupert, 1997; Schatz and Dobberstein, 1996). The

pre-sequence appears to fold into a defined secondary

structure. This folding is essential for the correct distribution
of charged and apolar residues and is necessary for efficient

protein import (Matouschek et al., 1997; Gaume et al., 1998).

The N-terminal part of the pre-sequence forms a positively

charged amphiphilic a-helix or b-sheet, whereas the C-

terminal region probably serves as a recognition site for

matrix proteases (Gavel and von Heijne, 1990; Neupert,
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1997). Pre-sequences are generally cleaved off from precur-

sors as they pass through the mitochondrial double mem-

brane via the outer and inner membrane translocases (TOM

and TIM complexes, respectively), or once inside the mito-

chondria by specific peptidases (for reviews see Neupert,

1997; Glaser et al., 1998).

Although it is generally assumed that import mechanisms

are conserved in different organisms, import mechanisms
into plant mitochondria appear to rely on several peculiar-

ities that include proteins involved in the TIM and TOM

complexes and the primary and secondary structures of the

pre-sequences (for a review see Millar et al., 2006). Much

information on mitochondrial protein targeting mechanisms

has been gathered from the functional dissection of the N-

terminal pre-sequences (Logan and Leaver, 2000; Chabregas

et al., 2001; Duby et al., 2001). There is, however, little
information on whether pre-sequences are the exclusive de-

terminants for mitochondrial targeting or if other protein

domains influence the efficiency of the process.

The question of whether the functional role of a mito-

chondrial pre-sequence may be influenced by distal amino

acid residues within the full-length protein is addressed

here. A novel nuclear-encoded Arabidopsis thaliana protein

has been identified, called MITS1 (MItochondrial-Targeting
Signal 1), which appears to be targeted to mitochondria.

Live cell imaging analyses of the N-terminal extension of

MITS1 and a series of MITS1-deletions fused to the yellow

fluorescent protein (YFP) indicated that the N-terminal pre-

sequence is responsible for the intracellular targeting of the

protein. However, in contrast to the full-length peptide, a

leaderless pre-sequence (lacking the first 11 amino acids) di-

rected YFP protein fusions to the ER. Furthermore, muta-
tion of a tryptophan residue at position 361 (W361A)

resulted in the redistribution of MITS1 to the ER and

Golgi apparatus, suggesting thatmitochondrial targeting pro-

cesses in plant cells may rely not only on the composition of

the pre-sequence but also on that of other domains within

the protein sequence.

Materials and methods

Plant material and transient expression systems

Four-week-old Nicotiana tabacum (cv. Petit Havana) green-

house plants grown at 25 �C were used for Agrobacterium

tumefaciens (strain GV3101)-mediated transient expression

(Batoko et al., 2000). The bacterial optical density (OD600)

used for plant leaf transformation was 0.05 for MITS1:YFP
and its mutants and for b-ATPase:GFP, and 0.2 for

ERD2:GFP.

Molecular cloning

Standard molecular techniques were used for subcloning

(Sambrook et al., 1989). The fluorescent proteins used in

this study were based on fusions with either mGFP5

(Haseloff et al., 1997) or EYFP (Clontech Inc., Palo Alto,

CA, USA). The spectral properties of mGFP5 allow

efficient spectral separation from YFP (Brandizzi et al.,

2002). The ER/Golgi marker used in this study was the H/

KDEL receptor ERD2 fused to GFP (Boevink et al., 1998).

The mitochondrial marker b-ATPase:GFP was a generous

gift of Dr DC Logan, University of St Andrews, UK

(Logan and Leaver, 2000). The cDNA of MITS1

(At1g52080, Ref. NM_104089) was amplified by PCR from

an ABRC clone. Point mutations and deletion mutants were
created using site-directed mutagenesis. The binary vector

pVKH18En6 (Batoko et al., 2000) was used for all the

constructions in this study. All the prepared inserts were

spliced upstream of YFP, using the unique XbaI and SalI

sites of the vector (daSilva et al., 2004). A methionine

residue was added to the N-terminus of the 12–39 deletion

mutant to allow translation.

Bio-informatic, sampling, imaging, and quantification

The bio-informatic tools for the prediction of MITS1

targeting to mitochondria were Predotar (Small et al.,
2004), iPSORT and PSORTII (Bannai et al., 2002),

MitoPred (Guda et al., 2004), and SignalP (Nielsen et al.,

1997). The simulation of the Helical Wheel Projection of the

MITS1 N-terminal was from http://rzlab.ucr.edu/scripts/

wheel/wheel.cgi (D Armstrong and R Zidovetzki).

Imaging was performed using an upright Zeiss Laser

Scanning Confocal Microscope LSM510 META (Zeiss,

Jena, Germany) with a 363 water immersion objective.
Transformed leaves were analysed 48 h after infection of the

lower epidermis. For imaging expression of YFP constructs,

GFP constructs or both, the imaging settings as described

by Brandizzi et al. (2002) were used. Appropriate controls

were used to exclude the possibility of energy transfer be-

tween fluorochromes and cross-talk. Images were acquired

using non-saturating settings and the same imaging param-

eters were used. Post-acquisition image processing was
carried out using CorelDraw12 software.

Results

MITS1 is efficiently targeted to plant mitochondria

MITS1 (AGI: At1g52080) is a putative actin-binding pro-

tein of 573 amino acid residues with a predicted molecular

mass of 66 kDa. The N-terminal region of this protein (39
amino acids) contains a hydrophobic stretch of 20 residues

(predicted with TMHMM and TMPred (Hofmann and

Stoffel, 1993; Krogh et al., 2001) and flanking regions en-

riched with positively-charged amino acids (Fig. 1A).

Because of the predicted secondary structure of this

sequence, various publicly available bio-informatics tools

suggest targeting of MITS1 to mitochondria (see Materials

and methods). To confirm this prediction experimentally,
full-length MITS1 was fused to the N-terminus of the

yellow fluorescent protein (YFP; Fig. 1A), and the resulting

construct was expressed in tobacco leaf epidermal cells for

live cell confocal microscopy analyses. For simplicity, this

construct was named MITS1. MITS1 appeared in
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numerous structures of heterogeneous size and shape (Fig.
1B), resembling the previously described appearance of

plant mitochondria (Logan and Leaver, 2000). Co-localiza-

tion analyses of MITS1 with b-ATPase:GFP, a known

mitochondrial marker (Logan and Leaver, 2000), confirmed

that MITS1 localizes to mitochondria (Fig. 1B), thus

providing experimental support for our prediction. These

observations prompted us to carry out a functional dissec-

tion of the NH2-terminal extension of MITS1 to identify the
targeting determinants within this region.

The N-terminal extension of MITS1 contains three
regions that co-ordinate the mitochondrial targeting
signal

To explore the role of the N-terminal extension of MITS1,

several defined segments of the pre-sequence were fused to

YFP for confocal microscopy analyses (see Fig. 2A for a
schematic representation). It was found that the YFP fusion

to the predicted pre-sequence of MITS1 (MITS11–39) was

localized to mitochondria, as confirmed by co-expression

analyses with b-ATPase:GFP (Fig. 2B). A Helical Wheel

Projection analysis of residues 1–39 (see Materials and

methods) confirmed the presence of clusters of positive

charges on one side of the helix (Fig. 2C), consistent with

the known properties of pre-sequences in forming cationic
amphipathic helices (Duby et al., 2001). The necessity of this

pre-sequence for MITS1 mitochondrial targeting was further

reinforced by the evidence that a YFP fusion to MITS1

amino acids 40-573 lacking the entire pre-sequence was

cytosolic (Fig. 3).

Having established that the pre-sequence of MITS1 is
sufficient to redistribute a fluorescent protein to mitochon-

dria, the next aim was to establish the functional role of

different domains within this pre-sequence. When a YFP

fusion to the first 11 amino acids preceding the central

hydrophobic region of the pre-sequence, MITS11–11 (Fig.

2A) was expressed, it was found that the protein was

distributed in the cytosol rather than to mitochondria (Fig.

2B). This suggests that this region is insufficient to target
YFP to organelles efficiently.

A fusion of the first 31 amino acids of the MITS1 to YFP,

which lacked the positively charged region at the C-terminus

of the pre-sequence, MITS11–31 (Fig. 2A), was also found in

the cytosol (Fig. 2B). This is consistent with the required

presence of the positively charged region in functional

mitochondrial pre-sequences (Duby et al., 2001). Interest-

ingly, however, the MITS112–39 peptide fusion (Fig. 2A),
which was made by adding a methionine residue upfront to

allow translation, and contained the hydrophobic core region

and the positively-charged flanking region, was localized to

the ER as well as the mitochondria (Figs 2B, 4). This

suggests that the 12–39 amino acid region of MITS1 can

function as a promiscuous targeting signal for microsomal

and mitochondrial membranes.

Taken together, these data indicate that the first 39 amino
acids of MITS1 constitute a pre-sequence for efficient mito-

chondrial targeting. They also suggest that the first 11

amino acids of the pre-sequence alone appear to be nec-

essary for directing the protein to mitochondria rather than

to the ER, despite being insufficient for targeting a YFP

fusion to mitochondria.

Fig. 1. MITS1 harbours an N-terminal targeting signal and is localized to mitochondria. (A) Schematic representation of MITS1 and of its

N-terminal region. Positively-charged residues follow a 20 residue hydrophobic region, characteristic of a mitochondrial targeting

sequence. (B) In epidermal cells of tobacco leaves, MITS1:YFP labels punctate structures of various sizes that colocalize with the

mitochondrial marker b-ATPase:GFP (arrows). Insets: magnified section of main panels. Scale bars¼5 lm.
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The data presented above mirrored the Helical Wheel
Projection analyses of each peptide that showed that pep-

tide 12–39 has the most cationic charges on the side of the

helix after peptide 1–39, followed by peptides 1–31 and 1–11

(Fig. 2C). Consistent with these Helical Wheel projections,

peptides 1–39 and 12–39 were capable of targeting YFP to

the mitochondria, although a subcellular pool of the 12–39

YFP fusion was also directed to the ER. On the other hand,

the remaining peptides (1–11 and 1–31) were not sufficient

for directing YFP to any organelle, most likely due to the

absence of a defined cationic side on the helical structure.

Mutation of tryptophan 361 redistributes MITS1 to the
ER and Golgi apparatus

Having demonstrated that the N-terminal extension of

MITS1 functions alone as an efficient targeting signal to

mitochondria, the next aim was to determine whether

other domains of the full-length protein could influence the

activity of this pre-sequence. Within the MITS1 sequence

two tryptophan residues (W361 and W416) were found.

Tryptophan is a rare amino acid that is known to be
involved in the targeting and stability of some proteins

(Garcia et al., 1992; Kleinberger-Doron and Kanner, 1994;

Fig. 2. Exploration of the N-terminal 39 residues of MITS1 reveals that a co-ordination of three regions is required for efficient

mitochondria targeting. (A) Schematic representation of the N-terminal consecutive domains fused to YFP and their subsequent

intracellular localizations. (B) Region 1–39 efficiently targets a YFP to mitochondria (arrow) and the YFP punctate structures fully co-

localize with b-ATPase:GFP (arrows). 1–11:YFP (missing the central hydrophobic core and the positively-charged region) and 1–31:YFP

(missing the positively-charged region) were localized to the cytosol (empty arrowheads). (C) The Helical Wheel Projection of MITS1 N-

terminal pre-sequence shows a cationic cluster in 1–39 and 12–39 sequences (but not in the other pre-sequence truncations) consistent

with their localization to mitochondria (blue dots are hydrophobic residues, + indicates positive charge). Insets: magnified section of main

panels. Scale bars¼5 lm.
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Hoffman et al., 2006). Therefore it was decided to test

whether mutation of either of these residues in the full-

length MITS1 would affect the mitochondrial targeting of
MITS1. Each of the two tryptophan residues was changed

to alanine (W361A and W416A, see Fig. 5A for a sche-

matic representation) and the constructs were expressed as

YFP-fusions in plants. Confocal microscopy analyses

revealed that the mutant MITS1W361A (Fig. 5B) was

localized at the ER and the Golgi apparatus, as demon-

strated by co-expression of the mutant with the known ER

and Golgi marker, ERD2:GFP (Boevink et al., 1998); Fig.
5B). Colocalization analyses with b-ATPase:GFP further

excluded the possibility that the punctate structures

labelled by MITS1W361A were mitochondria (Fig. 5B). On

the other hand, a MITS1 bearing mutation of the

tryptophan residue at position 416 (MITS1W416A) was

localized at mitochondria labelled with b-ATPase:GFP

(Fig. 5B) in the same manner as wild-type MITS1 (Fig.

1B). These data suggest that the integrity of specific amino
acids that are distal from the N-terminal domain of a

mitochondrial protein affect the function of a pre-sequence

in a dominant fashion.

Finally, since it was shown that the pre-sequence lacking

the first 11 amino acids (peptide 12–39) is capable of

directing a YFP fusion to the ER and mitochondria (Fig.

2B), we wanted to explore the possibility of whether the

W361A mutation, which affects the activity of the pre-
sequence (Fig. 5), would also interfere with the targeting

properties of peptide 12–39. To investigate this, a YFP fu-

sion was constructed of the MITS1W361A mutant lacking the

first 11 residues of full-length MITS1 (MITS112-W361A-573;

Fig. 6A). Differently from the ER/mitochondria targeting

of MITS112–573 (Fig. 6B; see Supplementary Fig. S1 at JXB

online), the resulting chimera was found in the cytosol (Fig.

6B). As incorporation of the alanine residue in position 361
must occur after the synthesis of the N-terminal 12–39

sequence which is responsible for ER and mitochondria

targeting, these data further strengthen our hypothesis that

distal protein residues may influence targeting properties of

an N-terminal sequence.

Discussion

The pre-sequence amphipathicity influences the
targeting of MITS1

At present, the biological function of MITS1 remains un-

known, but publicly available databases (NCBI and TAIR)

Fig. 4. MITS112–39 does not localize at Golgi bodies. To exclude the possibility that the punctate structures labelled by MITS112–39

peptide fusion were Golgi bodies, cells were cotransformed with the ER/Golgi marker, ERD2:GFP (Boevink et al., 1998) and MITS112–39.

As shown in this figure, MITS112–39 labelled the ER (empty arrow), and dots (full arrow), which did not colocalize with the Golgi

(arrowhead). These dots corresponded to mitochondria as shown in Fig. 2. Insets: magnified section of main panels. Scale bars¼5 lm.

Fig. 3. Residues 1–39 of the N-terminal extension are required for MITS1 to reach mitochondria. (A) A schematic representation of

MITS1 lacking the first 39 amino acids. (B) In the absence of the N-terminal pre-sequence, MITS1 was found in the cytosol (empty

arrowhead), which in plant cells assumes a diffuse yet reticulated appearance. No co-localization was noticed with the mitochondrial

marker, b-ATPase:GFP (arrow). Insets: magnified section of main panels. Scale bars¼5 lm.
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indicate MITS1 as a putative actin-binding protein, with an

‘actinin-type actin-binding domain signature 1’ that is
similar to a region involved in the actin-binding activity of

the chloroplastic actin-binding protein, CHUP1 (Oikawa

et al., 2003). In addition, several different types of protein

domain prediction software revealed that MITS1 contains

an AAA-ATPase motif (55–360; SMART, Schultz et al.,

1998; Letunic et al., 2006), and two leucine zipper patterns

(279–300 and 324–345; ScanProsite, (Hulo et al., 2008). In

contrast with CHUP1, MITS1 is localized to mitochondria.
Helical Wheel analysis strongly suggests that the pre-

sequence of MITS1 attains a secondary structure with

a clustered cationic side that is a known property of

mitochondria targeting sequences (Duby et al., 2001). The

N-terminal part of the mitochondrial pre-sequence is be-

lieved to fold into an amphiphilic a-helix both in a phospho-

lipid environment and in vivo (Roise et al., 1988; Lemire

et al., 1989). Consistent with these observations, the MITS1
mutants with a less defined polar cluster on the side of the

helical wheel, compared with the 1–39 peptide, showed a

reduced ability to target YFP to mitochondria. Although
stability of the a-helix is important for maintenance of

mitochondrial import (Hammen et al., 1996; Heard and

Weiner, 1998), in vivo mutagenesis analysis of a plant pre-

sequence from the b-subunit of the F1-ATPsynthase from

Nicotiana plumbaginifolia showed that the N-terminal

helical structure of the pre-sequence is necessary but not

sufficient for efficient mitochondrial import, and that its

hydrophobic residues play an essential role in in vivo

mitochondrial targeting (Duby et al., 2001). These findings

may explain how peptide 12–39, which maintained a similar

cluster of cationic amino acids on the side of the helix in

comparison to the full-length pre-sequence, showed target-

ing to the mitochondria and also to other organelles. It is

possible that the distribution of the hydrophobic residues of

peptide 12–39 may be altered, resulting in a less efficient

targeting signal in comparison to the full-length pre-
sequence.

Fig. 5. Tryptophan 361 influences the activity of the MITS1 N-terminal pre-sequence. (A) Schematics of the mutations within MITS1

fusions to YFP. (B) Confocal images of tobacco leaf epidermal cells coexpressing a MITS1:YFP mutant and either ERD2:GFP or b-

ATPase:GFP. MITS1W361A:YFP was found in the ER (empty arrow) and Golgi apparatus (arrowhead) as confirmed by the ER/Golgi

apparatus marker ERD2:GFP (ER, empty arrow; Golgi apparatus, arrowhead). The mutation of tryptophan 416 to alanine did not affect

the distribution of MITS1 to mitochondria (arrow). Insets: magnified section of main panels. Scale bars¼5 lm.
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The MITS1 pre-sequence contains promiscuous
targeting signals

The evidence that peptide 12–39 is distributed to the ER in
addition to mitochondria, suggests that the first 11 amino

acids of the N-terminal extension are necessary to overcome

protein mistargeting to the ER. Whether the putative signal

sequence masked by the first 11 amino acids is functional

for MITS1 in planta is unknown, but the presence of

multiple targeting signals in the same protein sequence has

been reported for certain post-translationally targeted pro-

teins containing either a nuclear localization signal
(AtLIG1; Sunderland et al., 2006) or peroxisomal signal

(FPS protein; Martin et al., 2007). In these cases, the

function of the mitochondrial pre-sequence resulted in a

dominant effect over the other sequences. It has also been

demonstrated that chimeric signals may be functional in

directing proteins to different organelles in the same cell.

This is the case for chloroplast and plant mitochondrial

proteins (Brink et al., 1994; Pujol et al., 2007), which, to
some extent, have similar targeting sequences. Interestingly,

it has been demonstrated that some chimeric signal se-

quences may retain the ability for ER and mitochondria

targeting. For example, for the biogenesis of the hepatic

P4501A1 isoenzyme a microsomal signal sequence may be

cleaved to activate a mitochondrial targeting signal (Addya

et al., 1997). In this experimental system, we did not observe

ER localization of either a pre-sequence-YFP fusion or full-
length MITS1-YFP fusion but it will be interesting to

determine whether the activation of the microsomal signal

sequence in MITS1 may occur in planta (i.e. the activation

may be development or stress-regulated), as this may

represent a novel protein targeting mechanism.

Targeting activity of the MITS1 pre-sequence is
influenced by a distal amino acid residue

Our results indicate that the integrity of an amino acid

residue placed distally from the N-terminal extension is a

factor that influences the activity of the mitochondrial pre-

sequence. This phenomenon was specific to tryptophan in

position 361 as the tryptophan in position 416 did not

appear to affect MITS1 targeting to mitochondria. These

data support the suggestion that, in plant cells, the nature of

the mature protein can also affect the targeting properties of
the pre-sequence (Lee and Whelan, 2004). As mitochondrial

targeting is a process that occurs post-translationally and

involves interaction of the newly synthesized proteins with

cytosolic chaperones (Young et al., 2003; Yano et al., 2004),

it is possible that the integrity of distal domains of pre-

proteins is important for a productive surface interaction

with these chaperones for efficient targeting.

A similar explanation, however, is not sufficient to
explain the cytosolic distribution of the MITS1 mutant that

lacks the first 11 amino acids of the N-terminal extension

and bears a mutation of the tryptophan in position 361

(MITS112-W361A-573). This is because peptide 12–39 and

MITS112–573 were found to be sufficient to target YFP to

Fig. 6. Tryptophan 361 mutation influences the behaviour of a truncated MITS1. (A) Schematic representation of the MITS112–573

constructs. (B) Confocal images of tobacco leaf epidermal cells show distribution of MITS112-W361A-573:YFP in the cytosol (empty

arrowhead) but no colocalization with b-ATPase:GFP. MITS112–573 was found in the ER (empty arrows) and dots. Most of these

colocalized with mitochondria (full arrows) but not with the Golgi (see Supplementary Fig. S1 at JXB online). Insets: magnified section of

main panels. Scale bars¼5 lm.
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the ER. As the synthesis of the distal portion of MITS1

containing tryptophan 361 should occur after import of the

N-terminal region into the ER during co-translational

translocation, the tryptophan 361 mutation should not

interfere with the distribution of the mutant to the ER.

One possibility is that the 12–39 peptide associates with the

cytosolic face of the ER, rather than facilitating trans-

location through the ER membrane.
In conclusion, a novel aspect of mitochondrial protein

targeting in plants has been demonstrated that encompasses

functional co-ordination of the pre-sequence and the in-

tegrity of a distal amino acid residue. Further studies in an

endogenous context are required to gain an understanding of

whether the signal sequence that appears in the N-terminal

extension of MITS1 depends on mechanisms that are known

to affect targeting of a protein to different organelles [i.e.
alternative splicing and/or differential initiation of trans-

lation (Ma and Taylor, 2008; Christensen et al., 2005)].

Supplementary data

Supplemental material can be found at JXB online.

Supplementary Fig. S1. MITS112–573 does not localize to

Golgi bodies.
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