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Abstract

Background: Studies in rodents and carnivores have shown that orientation tuning width of single neurons does not
change when stimulus contrast is modified. However, in these studies, stimuli were presented for a relatively long duration
(e. g., 4 seconds), making it possible that contrast adaptation contributed to contrast-invariance of orientation tuning. Our
first purpose was to determine, in marmoset area V1, whether orientation tuning is still contrast-invariant with the
stimulation duration is comparable to that of a visual fixation.

Methodology/Principal Findings: We performed extracellular recordings and examined orientation tuning of single-units
using static sine-wave gratings that were flashed for 200 msec. Sixteen orientations and three contrast levels, representing
low, medium and high values in the range of effective contrasts for each neuron, were randomly intermixed. Contrast
adaptation being a slow phenomenon, cells did not have enough time to adapt to each contrast individually. With this
stimulation protocol, we found that the tuning width obtained at intermediate contrast was reduced to 89% (median), and
that at low contrast to 76%, of that obtained at high contrast. Therefore, when probed with briefly flashed stimuli,
orientation tuning is not contrast-invariant in marmoset V1. Our second purpose was to determine whether contrast
adaptation contributes to contrast-invariance of orientation tuning. Stationary gratings were presented, as previously, for
200 msec with randomly varying orientations, but the contrast was kept constant within stimulation blocks lasting .20 sec,
allowing for adaptation to the single contrast in use. In these conditions, tuning widths obtained at low contrast were still
significantly less than at high contrast (median 85%). However, tuning widths obtained with medium and high contrast
stimuli no longer differed significantly.

Conclusions/Significance: Orientation tuning does not appear to be contrast-invariant when briefly flashed stimuli vary in
both contrast and orientation, but contrast adaptation partially restores contrast-invariance of orientation tuning.
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Introduction

For most neurons in area V1, response amplitude depends on

stimulus orientation [e.g., 1,2]. It is also known that V1 neurons

response amplitude depends on stimulus contrast [e.g., 3–5].

Following Sclar and Freeman (1982) [6], multiple studies have

therefore examined interactions between contrast and orientation

selectivity [7–13]. All these studies demonstrated that, although

response amplitude increases with contrast, the width of

orientation-tuning curves remains constant. The contrast-invari-

ance of orientation tuning thus revealed showed the limitations of

the purely feedforward model of orientation selectivity, initially

proposed by Hubel and Wiesel (1962) [1], which predicts that,

through an ‘‘iceberg effect’’, orientation tuning curves should

widen when contrast increases (for a comprehensive account of the

‘‘iceberg problem’’ see [13,14]). Contrast-invariance of orientation

tuning therefore constitutes a strong constraint for understanding

mechanisms underlying generation of orientation selectivity and

has been the cornerstone in numerous modeling studies attempt-

ing to explain generation of orientation tuning [9,13–25].

However, the above studies demonstrating contrast-invariance

of orientation tuning have all been performed in carnivores (cat or

ferret) or rodents (squirrel). Whether orientation tuning is also

contrast-invariant in primate V1 is not firmly established. One

study examined orientation selectivity at different contrasts in the

primate [26] but did not explicitly report interactions between

orientation tuning and contrast. Another study examined contrast-

response relationship using drifting gratings that could take 3

different orientations, and concluded that orientation tuning in the

macaque is contrast-invariant [27]; however, orientation tuning

curves were not formally examined at different contrasts. Finally,

one preliminary report described either an effect, or no effect of

contrast, depending on the parameters used to quantify orientation

tuning [28].

Furthermore, data demonstrating contrast-invariance of orien-

tation tuning were generally obtained with relatively lengthy
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presentation of drifting sine-wave gratings – for four seconds

usually. Contrast adaptation mechanisms could be activated

during this time. At the neuronal level, contrast adaptation

corresponds to the slow adjustment of firing rates that is observed

during the lengthy presentation of a stimulus of constant contrast.

For example, contrast adaptation appears as a progressive decline

of response amplitude during the presentation of a constant high

contrast stimulus [e. g., 29]. Contrast adaptation, as defined here,

should not be confounded with ‘‘contrast normalization’’ or

‘‘contrast-gain control’’, which have different impacts on neuronal

properties and which appear to be almost instantaneous [e. g., 30].

It has been shown that, for many V1 cells, the time constant of

contrast adaptation is less than 4 seconds [31–37]. However, when

exploring a visual scene, our eyes constantly move in sequences of

fast saccades and short duration fixations. Saccade duration

appears to be extremely short, as it is linearly related to the

distance between starting and ending points with a rate of 2–

3 msec/deg in humans and 1–2 msec/deg in monkeys (e.g.,

[38,39]; for review see [40]. When exploring natural scenes or

faces, fixations usually last only about 0.2–0.3 second [41–44].

Intervals between microsaccades show comparable values [45].

Thus, three to five times per second or so, receptive fields (RFs) of

V1 neurons fall upon regions of orientation and contrast that are

likely to differ from those previously encountered. Consequently,

RFs of neurons in the visual system meet new visual stimuli at a

rate of about 3–5 Hz, which is too high to allow for adaptation to

the contrast of each stimulus individually.

The first purpose of our study was to determine whether

orientation selectivity is contrast-invariant with stimuli varying in

both contrast and orientation when they are presented for a short

duration (0.2 sec), corresponding to that of a fixation. We

performed recordings in area V1 of a new world monkey, the

common marmoset. The proportion of orientation selective neurons

and tuning bandwidths of single-units in marmoset area V1 appear

similar to those found in macaque V1 [46–48], as does the

organization of orientation domains at the columnar level [49,50].

Our results show that, with this particular stimulation regime,

orientation tuning is not contrast-invariant in the primary visual

cortex of the marmoset. Tuning curves were on average narrower

with lower contrast. This could arise from two differences between

the present and previous studies: either the use of a primate instead

of carnivore or rodent, or the stimulation regime used. This

motivated the second facet of this study. The question we examined

is whether contrast adaptation contributes to contrast-invariance of

orientation selectivity. Our results show that, even when adapted to

a given contrast, orientation tuning curves remained slightly

narrower with the lowest contrast compared to the highest contrast

in area V1 of the common marmoset. However, contrast adaptation

did reduce the difference in orientation tuning observed between

different contrasts, indicating that contrast adaptation does

contribute to making orientation tuning less contrast-dependent.

Methods

Surgical protocol
All procedures were conducted in accordance with the guidelines

from the French Ministry of Agriculture (décret 87/848) and from

the European Community (directive 86/609) and was approved by

the local ethical committee (MP/02/02/01/05, Comité régional

d’éthique pour l’expérimentation animal, Midi-Pyrénées). The

protocol used for marmoset preparation has been adapted from

other published protocols [51–53]. Experiments were performed on

male and female adult common marmosets (Callithrix jacchus, n = 6)

weighting 350–450 g. One half hour before anesthesia induction,

animals were tranquilized with diazepam (ValiumH, Roche) (i. m.,

3 mg/kg). At the same time, atropine (0.05 mg/kg) was injected

subcutaneously to reduce secretions and to prevent bradycardia.

Anesthesia was induced with Alphadalone/Alphaxalone acetate

(SaffanH, Essex Pharma, 1.2 ml/kg) injected intramuscularly.

Synthetic corticoids Dexamethasone (Merck) or Solumedrol (Pfizer)

were given at the same time to prevent brain edema (1 mg/kg).

Once anesthetized, animal’s body temperature was maintained at

38uC using a heating pad controlled by a rectal thermistor

(Homeothermic Blanket System, Harvard Apparatus, USA). EKG

recording was performed through metallic pliers. All incision sites

were infiltrated with the local anesthetic lidocaı̈n (XylocaineH). A

venous catheter (OD 0.7 mm, Folioplast, France) was placed in the

femoral vein to allow for intravenous infusion of solutions.

Anesthesia was maintained during the remainder of the surgery

by i. v. Saffan injection (0.17 ml/kg every 10–15 minutes). A

tracheotomy was performed and a tracheal tube was inserted to

allow artificial ventilation. The marmoset was then set in a

stereotaxic frame. A homemade support for eyes and mouth bars

has been built (following the design in [51]) to allow fixation of the

small marmoset’s head. Two holes were drilled over the frontal

cortex and Ag wires inserted for epidural EEG recording. A 3–

4 mm wide craniotomy was also made to gain access to area V1. A

well was constructed using dental cement (ProtempH II) around the

V1 craniotomy. A head post was sealed with a screw and dental

acrylic (PaladurH, Heraeus, Germany) to the skull and fixed to the

stereotaxic apparatus. Once the head firmly held in position, ears,

eyes and mouth bars were removed.

Following surgery, the animal was artificially ventilated with

N2O/O2 (50%/50%) using a ventilator (Small Animal Respiration

Pump, series 660 & 670, Harvard Apparatus, USA) whose volume

and rate were initially set at 12 ml and 30 strokes/min

respectively, and adjusted so as to keep end-tidal CO2 level,

measured with a Capstar-100 Capnometer (CWE, USA), between

4 and 5%. Anesthesia and analgesia were supplemented by a

continuous infusion of sufentanil citrate (SufentaH, Janssen, 4–

6 mg/kg/hr) after a loading dose of 1 mg/kg. The infusion vehicle

was made of the mixture of 2 ml glucose 30%, 15 ml of amino-

acid perfusion solution (TotaminH, Baxter) and included synthetic

corticoids (0.4 mg/kg/hr); NaCl was added to a final volume of

50 ml. We waited for 1–2 hours of infusion with this solution to

ensure adequate depth of anesthesia. The animal was then

paralyzed by adding pancuronium bromide (PavulonH, Organon,

0.1 mg/kg/hr) to the solution described above.

Mydriasis and cycloplegia were induced with ophthalmic

atropine sulfate (1%, Alcon). Gas permeable contact lenses

(PMMA, base curve radius 3.4–3.8 mm, base diameter 6 mm,

dioptric power 0) were used to protect the eyes. Lenses were

cleaned every day and neomycin sulphate (0.25 mg/ml, Sanofi-

Aventis) eye drops applied to prevent infection. Optic disks were

located using a reversible ophthalmoscope. RF eccentricity was

determined relative to the position of the optic disk and, using

histological sections, relative to published correlation between

recording sites and RF position [54].

Visual stimuli were presented onto a computer monitor placed

at 114 cm from the animal’s eyes. For improving the focusing of

the eyes, we examined responses to high spatial frequency sine-

wave gratings and optimized the response by placing corrective

lenses in front of the eyes.

The heart rate, rectal temperature and expiratory CO2

concentration were monitored throughout the experiment and

maintained at 250–350 bpm, 37–38uC and 3–5%, respectively.

The EEG and the absence of reaction to noxious stimuli were

regularly checked.

Contrast-Invariance in V1
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Recording procedure and spike sorting
Action potentials were recorded extracellularly through tung-

sten in glass microelectrodes [55]. To improve recording stability,

the well surrounding the V1 craniotomy was filled with silicone oil

(DC 200). Action potentials were acquired with a 1401power

interface and Spike2H software (Cambridge Electronic Design,

Cambridge, UK) with a digitization rate of 40–50 KHz. The

collected signal usually contained spikes from multiple units. Spike

sorting was done offline using Spike2’s principal component

analysis based spike sorting algorithms. Analysis of interspike

interval histograms (ISIHs) issued from intracellularly recorded

neurons (data set used in [56]) shows that cortical neurons

refractory period is .1.5 msec, except in some burst generating

neurons (a subpopulation of ‘chattering’ cells with extremely high

intraburst frequency). In addition to their shape constancy,

extracellularly recorded spikes were therefore considered to be

issued from one single neuron if the refractory period, determined

from ISIH calculated with a bin width of 0.1 msec, was .1.5 msec

– deviation from this criterion was admitted in a few burst-

generating neurons with high intraburst frequency.

Visual stimulation
The location of the RFs was determined with a hand-held

projector. Eye preference was then determined and all subsequent

visual stimuli were delivered through the dominant eye. Computer

controlled stimuli were generated with a VSG2/2F board (CRS,

Cambridge, UK) in the initial experiments, and with a VSG

Visage system in the last experiments. Scripts for visual stimuli

generation and presentation were written in the Matlab environ-

ment. Visual stimuli were presented on a Daewoo CMC-2100

ME, 21 inches color monitor (100 Hz non-interlaced refresh,

6406487 resolution) in the initial experiments and on a 22 inches,

Mitsubishi Diamond Pro 2070SB color monitor (100 Hz non-

interlaced refresh, 8006600 resolution) in the last experiments.

Gamma corrections were regularly made to produce accurate

stimulus contrast, using VSG’s ‘‘OptiCAL’’ photometer and

associated automated correction. Contrast corresponds to Michel-

son’s contrast, defined relative to maximal and minimal luminance

(Lmax and Lmin, respectively) of the gratings as C %ð Þ~100|
Lmax{Lminð Þ= LmaxzLminð Þ.

Cell selectivities and optimal stimuli were evaluated from

PSTHs calculated on-line from the multi-unit recording. The

preferred orientation of the cell or cells cluster was determined

using drifting square-wave gratings presented at eight orientations,

each presented in two motion directions (16 stimuli in total,

22.5 deg steps). The grating was presented within a circular patch,

2–6 degrees diameter, centered on the RF. The remaining of the

screen was a gray background with a luminance equal to the mean

grating luminance. The drift temporal frequency was between 0.5

and 2 cycles/sec. It was qualitatively chosen as the one optimizing

the response, as judged by listening to the cell’s response on the

audio-monitor. To avoid transient responses, the contrast was

incremented from 0 to 40% in a 1 sec duration ramp, maintained

at 40% for 3 or 4 sec, then decreased back to 0% in a 1 sec

duration ramp, then maintained at 0% contrast for 1 sec. The

measurement of mean firing rates was restricted to the 3–4 sec

plateau period.

Once the preferred orientation was characterized, the preferred

spatial frequency was determined using sinusoidal drifting gratings

(40% contrast). Drift speed, window size and timing of stimulus

presentation were the same as for the orientation tuning protocol.

Spatial frequencies varied either between 0.125 cy/deg and 2.83

cy/deg, or between 0.5 and 16 cy/deg in logarithmic steps

(increment by
ffiffiffi
2
p

).

The response as a function of contrast was then determined,

using drifting sinusoidal gratings presented with the orientation

and the spatial frequency optimal for the cells under study.

Window size, drift rate and stimulus timing were the same as those

used for orientation and spatial frequency tuning. Twelve contrasts

ranging between 2 and 90% in logarithmic steps (increment byffiffiffi
2
p

) were presented. Contrast-response functions (CRFs) were

computed on-line from the multi-unit recording.

From the CRFs, three contrast values were extracted: one

causing approximately 80–90% of the maximal response (‘‘high

contrast’’), one causing 20–25% of the maximal response (‘‘low

contrast’’), and one causing approximately 50% of the maximal

response (‘‘medium contrast’’).

Our first aim was to determine whether orientation tuning is

contrast-invariant with briefly flashed stimuli. Our second aim was

to determine the consequences of contrast adaptation on

orientation selectivity. The stimulation protocol we used to fulfill

these aims is depicted on Fig. 1. Stimuli were stationary sine-wave

gratings that were flashed for 200 msec, followed by a blank screen

(0% contrast, mean luminance identical to that of grating stimuli)

lasting 200–400 msec. Stimuli were presented in a 2 to 6 deg wide

circular window. These diameters were deliberately larger than

the hand mapped RFs. The RFs size (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
width|length
p

) was on

average 0.4 deg (range: 0.1–0.8 deg) for opercular recordings

(eccentricity ,3 deg) and 1.2 deg (range: 0.3–2.7 deg) for

calcarine recordings (eccentricity between 6 and 16 deg), in

agreement with values reported previously for marmoset V1 [57].

However, it has been shown that low contrast stimuli result in

increase of neurons summation area [58–60]. We therefore used

stimuli that were, on average, 9 times larger than the RF, in order

to be sure that the RF would be entirely covered by the stimulus,

including when using low contrast. We tried to keep the stimulus

size proportional to the RF size, which resulted in stimuli that were

larger for calcarine compared to opercular recordings (medians: 5

and 3 deg, respectively). The spatial frequency of the grating was

the one determined to be optimal for the cells under study. The

phase of the grating varied randomly and could take 4 or 8

different values (increment 2p/4 or 2p/8). The orientation varied

randomly from one presentation to the next and could take 16

different values between 0 deg and 168.75 deg (11.25 deg steps).

In the first block of stimulus presentation (Fig. 1A, left, ‘‘mixed

contrasts’’), the contrast of the grating could take, randomly, one

of the three values (low, medium and high contrast) determined

from the CRF. Thus in this first block, that lasted 40 sec at least,

both orientations and contrasts varied randomly. Randomization

protocol was ‘‘blockwise’’, with no repeats of a given stimulus until

all 48 stimuli have been presented. Contrast adaptation is a

relatively slow phenomenon (.200 msec; [31–37]), and it could

not occur for each contrast during this first block. However,

adaptation probably occurred for a contrast value representing the

mean of the three contrasts in use. The long time course of

contrast adaptation therefore resulted in a mismatch between the

contrast presented at one particular moment and the contrast to

which the cell was adapted.

In the second, third and fourth stimulus presentation blocks,

orientation still varied randomly (blockwise randomization), but

the contrast within each block was fixed: in the second block to low

contrast only, in the third block to medium contrast only, and in

the fourth block to high contrast only (Fig. 1A, ‘‘low’’, ‘‘medium’’

and ‘‘high contrast’’). These blocks correspond to the ‘‘constant

contrast’’ conditions. Since each block lasted at least 20 sec and

since contrast adaptation supposedly has a time constant of

seconds, neurons had enough time to adapt to the unique contrast

used in each block. The contrast presented at any time and the

Contrast-Invariance in V1
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adapting contrast did match in this condition. Stimulus presentation

time and interstimulus interval were the same as for the first block.

Data analysis
All analyses were done off-line after single-unit isolation.

Adaptation during the presentation of constant

contrast. Presence or lack of firing rate adaptation during the

presentation of high, medium or low contrast stimuli was

determined using Abeles’ method [61], based on confidence

intervals calculated on spike counts. For this purpose, we

calculated a PSTH for each contrast with a bin width of 5 sec.

Time 0 corresponds to the beginning of a block. The mean spike

count, x, for the first bin was used to calculate the 95% confidence

limits, L95%, using the formula:

L95%~x+2:583|
ffiffiffi
x
p

Neurons were considered to show significant adaptation when

the mean spike count in the fourth bin (15–20 sec) was less than

the lower 95% confidence limit. We also considered the possibility

that neurons may be ‘‘accelerating’’, that is, that the spike count in

the fourth bin was larger than the upper 95% limit – but this

Figure 1. Protocol and orientation tuning with different contrasts, with and without matched adaptation, example. A. PSTH (bin
width 1 sec) of the spiking response obtained with the four blocks of stimuli repeated 12 times in a marmoset V1 cell. Some of the grating stimuli,
varying in contrast and orientation, are sketched below the PSTH. Sixteen orientations (from 0 to 168.75 deg, 11.25 deg steps) and 3 contrasts (16, 32
and 64% for this neuron) were randomly presented during the ‘‘mixed contrasts’’ block. Each grating presentation was 0.2 sec long, which is too short
to allow for contrast adaptation. Since contrast varies at high rate, adaptation can only occur for a contrast level which is the mean of the different
contrasts presented: there is a mismatch between the stimulus contrast presented at a particular time, and the contrast to which the cell is adapted.
For the second, third and fourth stimulation blocks, the 16 orientations were still randomly presented, but only one contrast at a time was used:
either low, medium or high. The duration of each block (.30 sec in this example) was long enough to allow for adaptation to each of the contrasts.
The stimulus contrast presented at a particular time then matched the contrast to which the cell was adapted. Black lines on medium and high
contrast responses correspond to the exponential decay fitted to the data. The time constant of adaptation was 0.54 sec with the medium contrast
and 1.42 sec with the high contrast. There was no significant adaptation with the low contrast. B. Orientation tuning for data obtained during the
mixed contrasts block. Symbols correspond to the mean firing rate for each orientation and contrast, and the lines correspond to the von Mises
equation fitted to the orientation-response data. Inset shows fitted lines normalized to the same preferred orientation and to the same height, to
facilitate comparison of tuning width. HWHH were 19.0, 16.8 and 12.2 deg for the tuning curves obtained with high, medium and low contrast
stimuli, respectively. C. As in B, but for responses obtained after adaptation to either low, medium or high contrast. Spikes outside steady state
adaptation, considered to begin at a time corresponding to 3 times the adaptation time constant, were not included in the calculation. HWHH were
19.2, 17.9 and 15.4 deg for the tuning curves obtained with the high, medium and low contrast stimuli, respectively. In this cell, adaptation led to a
compression of the range of tuning widths and response amplitudes obtained with the different contrasts. The discrepancy between the spike rates
in the PSTH in A and the orientation tuning curves in B and C is due to the fact that interstimulus intervals and responses to non-preferred
orientations are included in the average for the long time-scale PSTH.
doi:10.1371/journal.pone.0004781.g001
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occurred in only a small number of cases (n = 2/69 cells with low

contrast and n = 2/105 cells with medium contrast).

Time course of adaptation. In cells that showed significant

adaptation, we next evaluated the time constant of adaptation. For

this purpose, PSTHs were calculated for each contrast with a bin

width of 0.8–1.2 sec (this corresponds to twice the grating

presentation period). The data (firing rate vs. time) were then fit

with a single exponential (Fig. 1A). Time constants were not

further considered when their value was less than their associated

standard errors.

The time constant of adaptation was used to delineate a period

corresponding to the adapted state for the analysis of orientation

selectivity with constant contrast conditions: adaptation was

considered to have reached a steady state at a time corresponding

to three times the time constant of adaptation. In cells with

accelerating responses, the first 5 sec of the response were

excluded from orientation tuning calculation. We also excluded

the first 5 sec of the blocks in cells that showed a significant

adaptation but for which we could not fit the data satisfactorily.

The first 5–10 sec of the mixed contrasts block were also excluded

from orientation tuning calculation.

Orientation tuning. Single-unit spike trains were

transformed into spike density functions: each spike was replaced

with a raised cosine waveform (half-width: 10 msec). The sampling

interval for the spike density was 5 msec. Averages of the spike

density function, collapsing all spatial phases, were calculated for

each orientation and for each of the 6 stimulus conditions

separately. This resulted in 6 sets of orientation tuning curves: for

low, medium and high contrast in the mixed contrasts condition,

for low, medium and high contrast in the constant contrast

condition, restricted to the adapted response only.

Mean spontaneous activity was delineated between stimulus

onset (time 0) and 200 msec prior to stimulus onset (adjustments

down to 100 msec were required if the neuron showed an

appreciable ‘off’ response). Significance of the responses was

determined relative to the distribution of spontaneous activity bins

amplitude (bin width 5 msec). Responses were considered

‘significant’ if their amplitudes were larger than 1.5 times the

highest bin in the spontaneous activity period in two consecutive

bins. This approach allowed us to dismiss false positives regardless

of the statistics underlying spontaneous activity amplitude

distribution. This arbitrary criterion is a very conservative one: if

the noise was distributed in a Gaussian manner, then the p value

associated with our criterion would be extremely low (p%0.01).

Mean firing rate for each orientation was calculated between

response onset (40–100 msec) and response offset. Since latency

tends to increase when contrast decreases [e. g., 26], onset and

offset latencies were calculated separately for each of the 6 stimulus

conditions. In cells with sustained responses followed by ‘off’

responses, mean firing rate was calculated for the ‘on’ response

only. Mean spontaneous activity was subtracted from mean firing

rates.

Quantification of orientation tuning was achieved by fitting

either a Gaussian or Von Mises formula [62] to mean firing rate

vs. orientation data (Fig. 1B and 1C). The fitting procedure was

implemented in OriginH software non-linear fitter. A chi-square

minimization procedure was used to optimize the fit. The Von

Mises equation was:

y~y0zAexp k cos2 h{hcð Þ{1½ �f g

h is the orientation (in rad). y0 corresponds to the component of

the response that lacks orientation selectivity (it does not

correspond to spontaneous activity that was removed prior to

fitting). A corresponds to the amplitude of the orientation selective

response at the preferred orientation, hc. k is a width factor from

which the half-width at half-height (HWHH, in deg) of the tuning

function can be calculated as:

HWHH~
180

p
|arccos

ln 0:5zk

k

� �

In broadly tuned cells, we found that the Von Mises fit often

failed to stabilize. In these cases, the fits were made using a

Gaussian curve of the form:

y~y0zAexp
{ h{hcð Þ2

2s2

" #
ð4Þ

The HWHH was calculated as s|1:178.

Fits that did not stabilize even with the Gaussian function were

constrained by fixing the y0 value to the mean of the two lowest

experimental values. We always used the same fitting equation for

the different conditions in each cell. That is, if a Gaussian was used

for one of the contrast/adaptation conditions, a Gaussian was also

used for the other 5 conditions.

Data have been considered for further analysis only when the r2

of fit was .0.67. Median r2 were 0.935, 0.946 and 0,945 for

tuning curves obtained at high, medium and low contrasts,

respectively, in the mixed contrasts condition. Median r2 were

0.944, 0.951 and 0.949 for tuning curves obtained at high,

medium and low contrasts in the constant contrast condition.

The main conclusion of this study, which is that tuning width

depends on contrast, did not depend on the fit function that was

used. We compared changes in half-width at half-height vs. tuning

function for each pair of contrasts comparison and found that

changes in tuning width did not depend on the fit function used

(p.0.05, Mann Whitney U test) for 5 of the 6 contrast/adaptation

conditions. The condition that showed a significant difference

(p = 0.02) between fit functions corresponds to the medium vs.

high contrast in the adapted situation, which was the only

condition in which contrast initially had no significant effect on

tuning width (see Results). For this condition, we therefore remade

the paired comparison of tuning widths, splitting data for each fit

function this time. When a Gauss function was used (n = 21 pairs),

tuning width did not differ significantly between medium and high

contrast (Wilcoxon, p = 0.1). When the von Mises function was

used (n = 41 pairs), there was then a significant difference

(p = 0.02), which indicated a decrease in tuning width at medium

contrast compared to high contrast. Nevertheless, the median

width ratio (94.97%) is very close to the median obtained when the

whole sample (Gaussian+von Mises) is considered (96.01%, see

Results).

Simple/complex cell classification. We relied on the

response evoked by drifting sine-wave gratings, used for

characterizing spatial frequency tuning of the cells, for classifying

cells as simple or complex. PSTHs (16 bins) were computed over

one cycle of the drifting grating for each spatial frequency. After

subtracting the mean spontaneous activity, each histogram was

Fourier-analyzed and the F0 (average firing rate) and F1 (first

harmonic, response amplitude at the frequency of the grating drift)

components extracted. The F1/F0 ratio, or ‘‘relative modulation’’

[63], was calculated for each spatial frequency. The F1/F0 value

obtained with the spatial frequency that yielded the largest
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responses amplitude (F0 or F1) was extracted. Cells with peak

amplitude ,3 sp/sec were not considered. Distribution of relative

modulation in our data set was bimodal, with a gap at 1. In

accordance with previous studies [63], we therefore classified cells

as simple when their relative modulation was .1 and complex

when their relative modulation was ,1.

Contrast-response function. This analysis has been

performed on 81 single-units that showed significant responses in

this protocol. PSTHs (16 bins) were computed over one cycle of

the drifting grating for each contrast. After removal of spontaneous

activity, each histogram was Fourier-analyzed and the F0 and F1

components extracted. Data (F0 in complex cells, F1 in simple

cells) were fit using the hyperbolic ratio equation [5,64]:

R~Rmax|
Cn

CnzC50
n

with Rmax corresponding to the maximal response, C50

representing the contrast at with 50% of the maximal response

is obtained, and the exponent n determining the steepness of the

CRF. For cells that showed supersaturation (n = 13/81), we

removed the data points that were below the maximal response for

contrasts larger than the one evoking the maximal response and

the fit was made on this reduced data set. For cells that did not

show saturation (n = 34/81), that is, cells for which the fit provided

Rmax that would be attained at contrast .100% (and eventually,

for which C50 would take values.100%), Rmax was instead

ascribed to the firing rate extrapolated to 100% contrast and the

C50 was then determined from this corrected Rmax value. These

adjustments were made in order to provide a phenomenological

description of the CRFs in marmoset monkey.

Histology and electrode tract reconstruction
After completion of an electrode track, several electrolytic

lesions (10 mA, 10 sec) were made at different depths through the

recording microelectrode. At the end of the experiment, the

animals were sacrificed with a lethal i. v. injection of sodium

pentobarbitone and perfused transcardially with 0.9% saline with

heparin, followed by 4% paraformaldehyde in phosphate buffer.

The posterior part of the brain was removed and cryoprotection

was insured by overnight immersion in 30% sucrose solution.

Parasagittal sections, 40 mm thick, were cut on a freezing

microtome. Sections were stained with Cresyl violet to reveal

cortical layers. Recording sites positions were determined relative

to electrolytic lesions positions.

Statistics
We determined the significance of the effects of contrast and

contrast adaptation for each cell individually. Since a standard

error (‘‘SE’’) value was provided with each parameter of the fit, a t

value comparing a parameter value (‘‘V’’) in two different

conditions (‘‘C1’’ and ‘‘C2’’) could be calculated as:

t~
VC1{VC2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEC1
2zSEC2

2
p

A t value,22.064 indicates a significant (p,0.05; degrees of

freedom 24) decrease of VC1 compared to VC2, and a t value.2.064

a significant (p,0.05) increase of VC1 compared to VC2.

At the population level – except when mentioned – statistical

significance of differences between paired groups has been

determined using the non-parametric Wilcoxon rank test.

Correlations were tested using the non-parametric Spearman

rank correlation test. Confidence intervals for rho were construct-

ed using Fisher’s z transformation.

Results

Protocol
The stimulation protocol is illustrated in Fig 1A. It was designed

to tease apart the effects of contrast from those of contrast

adaptation on orientation tuning, while at the same time providing

the possibility to examine orientation tuning for a stimulation

duration comparable to that of a visual fixation. Stimuli consisted

of stationary gratings whose spatial frequency was optimal for the

cells under study. Gratings were flashed for 200 msec, followed by

a blank (0% contrast) lasting 200–400 msec. The orientation of the

grating could take 16 different values that varied between 0 and

168.75 deg, in steps of 11.25 deg. The contrast of the grating

could take three different values. These values were chosen

according to CRFs analyzed on-line, and corresponded to the

contrasts required to elicit approximately 20–25%, 50% and 80–

90% of the maximal response. These contrasts are referred to as

‘‘low’’, ‘‘medium’’ and ‘‘high’’ contrast, respectively.

During the first block of stimulation, that lasted 40–60 sec, both

orientation and contrast varied randomly from one stimulus

presentation to the next. This corresponds to the ‘‘mixed

contrasts’’ block (Fig. 1A, left). In this situation, stimulus contrast

changed faster than the time required for adaptation to take place.

If adaptation did occur during the mixed contrasts block, this

would have been for a contrast corresponding to the mean of the

contrasts in use. There was therefore a mismatch between the

contrast presented at a particular time, and the average contrast to

which the neuron was adapted. This mismatch allowed us to probe

the effect of contrast proper on orientation tuning, independently of

the effect of contrast adaptation. We will refer to this condition as

‘‘mixed contrasts’’. Orientation tuning curves obtained for each of

the three contrasts in this mixed contrasts block are illustrated for

the same cell in Fig. 1B.

In the second, third and fourth stimulation blocks, orientation

still varied randomly from one stimulus presentation to the next,

but the contrast was fixed to one value at a time for each block:

either low, medium or high (Fig. 1A). Each block duration was

20 sec at least, so as to allow contrast adaptation to take place. For

the cell shown in Fig. 1, firing rate adaptation can be seen in the

PSTH (portions above medium and high contrast) as a decline in

firing rate as a function of time. Firing rate decay was fit with a

single exponential (black line). Once a steady state of firing was

achieved (assumed to begin at a time corresponding to 3 times the

adaptation time constant), mean firing rate for each contrast and

orientation was extracted and used to calculate orientation-tuning

curves (Fig. 1C). This corresponds to a situation in which the cell

has adapted to a contrast that matched with the one used to

stimulate the cell. This allowed us to examine the effect of contrast

on orientation selectivity, including the effect of contrast adaptation.

This condition is referred to as ‘‘constant contrast’’ condition.

The present study is based on extracellular recordings that have

been performed in area V1 of 6 marmoset monkeys. The sample

consists of 114 cells that responded to at least 1 of the 6 orientation

vs. contrast conditions. Eighty-seven of these cells (76%) were

orientation selective, a proportion very similar to that reported in

previous studies of marmoset V1 [46,47].

Adaptation to constant contrast and time constant of
contrast adaptation

To determine the number of cells that showed significant

contrast adaptation, we compared for each single cell the number
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of spikes, averaged across all orientations, in the first 5 sec of the

response to constant contrast presentation with the number of

spikes counted between 15 and 20 sec (see Methods). When

considering all cells, whether orientation-selective or not, that gave

a significant response in at least one of the constant contrast

blocks, we found that 9/69 cells (13.0%) adapted with low contrast

stimuli, 54/105 cells (51.4%) adapted with medium contrast

stimuli, and 69/109 cells (63.3%) adapted with high contrast

stimuli.

Time constant of contrast adaptation was estimated using

exponential fits made to PSTHs with bin width of 0.8–1.2 sec

(Fig. 1A). Adaptation time constant could not be determined in all

cases because of the noisiness in the PSTHs resulting from

randomly varying orientations (low contrast: 5 cases; medium

contrast: 22 cases; high contrast: 7 cases; see Methods).

Distribution histograms of adaptation time constants for each of

the three contrasts levels are presented in Fig. 2. Median time

constant of adaptation was 0.6 sec for low contrast stimuli (n = 4),

1.2 sec for medium contrast (n = 32) and 1.6 sec for high contrast

stimuli (n = 56) (due to the skewness in the distributions the means

were higher: 0.6, 1.9 and 2.5 sec respectively). Approximately

15% of the cells showed adaptation time constant ,0.5 second.

Only a few cells (15% at medium contrast and 20% at high

contrast) showed adaptation time constant equal to, or larger than,

4 sec. On average, the time constants we report here are shorter

than those obtained with drifting stimuli [31–37] but the presence

of short time constants is consistent with results obtained with

stationary stimuli [65,66].

Examples of orientation tuning at different contrasts,
mixed and constant contrasts conditions

A first example illustrating the effects of contrast on orientation

tuning when the contrast presented at a particular time, and the

average contrast to which the neuron was adapted, did not

correspond (mixed contrasts) is depicted in Fig. 1B. Orientation

tuning data were fit with the von Mises equation (Methods).

Reducing the contrast of the stimulus reduced, as expected, the

amplitude of the response. In addition, there was a noticeable

change in the width of the tuning curves: the HWHH with the

lowest contrast was 12.2 deg while it was 19.0 deg with the highest

contrast (changes in width can be appreciated in the inset of

Fig. 1B, where tuning curves have been normalized to same

amplitude and preferred orientation). This difference was

significant (t = 25.849, p,0.05; see Methods). Tuning width was

also significantly different between medium (16.8 deg) and low

contrast (t = 24.659) and between high and medium contrast

(t = 22.687). For this cell in this stimulation regime, orientation

tuning does not appear to be contrast-invariant. One can also

notice that the baseline response is slightly elevated for the high

contrast response, at about 2 sp/sec, compared to the low and

medium contrast, where the baseline is near 0 sp/sec.

Fig. 1C illustrates the tuning curves obtained when the contrast

used to stimulate the cell matched with the contrast to which the

cell were adapted. Comparing Fig. 1C to Fig. 1B shows some of

the changes brought to orientation tuning curves by contrast

adaptation. In this cell, amplitude of responses to high contrast

stimuli were not very different between mixed and constant

contrast condition, and HWHHs also were very similar (19.2 vs.

19 deg). On the other hand, with low contrast stimuli, response

amplitude was higher in the constant contrast condition (Fig. 1C),

and the HWHH was broader compared to that in the mixed

contrasts condition (15.4 vs. 12.2 deg). With constant contrast,

tuning width did not differ significantly anymore between medium

and high contrast (t = 21.462) and between low and medium

contrast (t = 21.714), but was still significantly different between

low and high contrast (t = 22.504).

Additional examples are presented in Fig. 3. Fig. 3A shows a cell

for which decreasing contrast, in the mixed contrasts condition,

did not induce significant change in tuning width (p.0.05),

whatever the contrast comparison (Fig. 3A, inset). This corre-

sponds to a cell for which orientation tuning was contrast-

invariant. Compared to the mixed contrasts condition, the

constant contrast condition changed the response amplitude

(Fig. 3B, lower response to high contrast, and higher response to

low contrast). However, tuning width remained very similar for the

different contrasts (p.0.05). Contrast-invariance of tuning width,

already present in the mixed contrasts protocol (Fig. 3A), was still

present in the constant contrast condition.

For the cell of Fig. 3C, tuning width in the mixed contrasts

condition did not differ significantly between medium and high

contrast (t = 20.988) but was significantly narrower at low contrast

compared to medium and high contrast (t = 22.509 and 22.853,

respectively). For the same cell in the constant contrasts condition

(Fig. 3D), tuning width at low contrast was still significantly less

than at high contrast (t = 23.789), but did not differ significantly

from that obtained at medium contrast anymore (t = 21.188). In

this cell therefore, orientation tuning appeared to be less affected

by contrast in the constant contrast condition. It can also be seen

that the response to low contrast in the constant contrast condition

(Fig. 3D) was larger than the response to low contrast in the mixed

contrasts condition (Fig. 3C). The response to high contrast

showed the opposite pattern.

The example in Fig. 3E–F shows that some cells still showed

strong effects of contrast on tuning width, despite adaptation to

each of the contrasts individually. Note that, in this cell, response

to low contrast was significant in the constant contrast condition

(Fig. 3F), but was not significant in the mixed contrasts condition

Figure 2. Distribution histograms of contrast adaptation time
constants. Adaptation time constants were determined from single
exponential curves fitted to PSTHs obtained with high (upper
histogram), medium (middle histogram) and low (lower histogram)
contrasts in constant contrast blocks, as exemplified in Fig. 1A.
doi:10.1371/journal.pone.0004781.g002
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(Fig. 3E). The tuning width obtained at medium contrast appears

significantly narrower than at high contrast (t = 25.966) in the

mixed contrasts as well as in the constant contrast condition

(t = 23.021). In this last condition, the tuning width at low contrast

was significantly less than at high and medium contrast

(t = 24.319 and 23.271, respectively).

Figure 3. Orientation tuning with different contrasts in mixed and constant contrast blocks, additional examples. Symbols represent
the mean firing rate for each orientation and contrast, and the lines correspond to the von Mises (A, B, E, F) or Gauss (C, D) equations fitted to the
orientation-response data. Inset shows fitted lines normalized to the same preferred orientation and to the same height, to facilitate comparison of
tuning widths. A. For this cell, contrast, in the mixed contrasts condition, had little effect on orientation tuning width, although response amplitude
depended strongly on contrast. Contrasts were 11.3, 16 and 22.6%. HWHH were 20.1, 21.1 and 21.9 deg for low, medium and high contrasts,
respectively. B. For the same cell, orientation tuning width was also little affected by contrast in the constant contrast blocks. HWHH were 19.3, 20.2
and 22.4 deg for low, medium and high contrasts, respectively. C. This cell showed, in the mixed contrasts condition, reduced tuning width with low
contrast stimuli compared to high or medium contrast stimuli. Contrasts were 22.6, 32 and 64%. HWHH were 20.7, 29.2 and 31.2 deg for low, medium
and high contrasts, respectively. D. After matched adaptation (constant contrast), the range of HWHH appears to be less wide. HWHH were 26.7, 28.7
and 32.1 deg for low, medium and high contrasts, respectively. E. No significant response was obtained in this cell with low contrast stimuli (35%) in
the mixed contrasts block. The tuning curve obtained with high contrast (90%) was broader (HWHH: 20.9 deg) than the tuning curve obtained with
medium contrast (50%, HWHH: 13.2 deg). F. Despite adaptation to matched contrasts, the same cell shows differences in HWHH between low
(11.6 deg), medium (16.6 deg) and high (20.85 deg) contrasts.
doi:10.1371/journal.pone.0004781.g003
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We next examined, at the population level, how the orientation

tuning parameters were modified by contrast and contrast

adaptation.

Effect of contrast on tuned response amplitude
We first examined changes in response amplitude resulting from

changes in stimulus contrast. Response amplitude refers here to

parameter ‘‘A’’ in the fitting equations, which represents the

amplitude of the orientation-tuned component in the neuronal

responses (changes for the parameter ‘‘y0’’, representing the

amplitude of the untuned component in the response, will be

presented later). Fig. 4 shows, as distribution histograms, percent

change in tuned response amplitude for cells in which responses at

two or three contrasts could be compared.

In the mixed contrasts condition, tuned response amplitude

varied with contrast, and, not unexpectedly, firing rates were lower

at low contrast compared to higher contrasts in the vast majority of

the cells (Fig. 4A). We examined the significance of the changes at

the single cell level (t test, see Methods). The black bars (Fig. 4A)

represent the cells for which response amplitude was significantly

decreased (p,0.05) when contrast was decreased. This occurred in

71% (44/62) of the cells when comparing medium and high

contrast, and in 86.7% (26/30) of the cells when comparing low

and high contrast. At the population level, median firing rate was

14.2 sp/sec at high contrast, 9.7 sp/sec at medium contrast, and

7.5 sp/sec at low contrast (Table 1). Differences were highly

significant (p,0.0001 for medium vs. high, low vs. high and low

vs. medium contrasts in paired comparisons). The tuned response

amplitude at medium contrast represented 64.4% (median) of that

obtained at high contrast. The tuned response amplitude at low

contrast represented 39.5% of that obtained at high contrast and

57.2% of that obtained at medium contrast (Table 2).

The amplitude of the tuned response component decreased with

decreases in contrast in the adapted situation as well (Table 1), but

differences were less than in the mixed contrasts condition. Percent

changes in tuned response amplitude are presented in Fig. 4B and

Table 2. At the single cell level, response amplitude significantly

decreased in 64.5%, 79.1% and 79.1% of the cells when comparing

medium and high contrast, low and high contrast, and low and

medium contrast, respectively. At the population level, responses

obtained at low contrast were significantly lower than at medium

contrast (p,0.0001), and responses at medium contrast were

significantly lower than at high contrast (p,0.0001). Tuned

response amplitude at low contrast represented 67.2% (median) of

the amplitude obtained at medium contrast, and tuned response

amplitude at medium contrast represented 78.5% of the amplitude

obtained at high contrast. However, as a result of adaptation to each

contrast individually, differences in tuned response amplitude are of

lesser importance than those obtained in the mixed contrasts

condition (57.2% and 64.4% respectively, Fig. 4A).

Effect of adaptation on tuned response amplitude
During the mixed contrasts block, neurons adapted to a contrast

representing the mean of the three contrasts used, whereas they

adapted to the only contrast in use during the constant contrast

blocks. It was therefore expected that response should be lower for

high contrast after adaptation to high contrast than after

adaptation to the mixed contrasts. Conversely, it was expected

that responses should be higher for low contrast after adaptation to

low contrast than after adaptation to mixed contrasts. Finally,

Figure 4. Distribution of changes in tuned response amplitude with different contrasts. A. Mixed contrasts. B. Constant contrasts. Tuned
response amplitude for medium contrast is expressed as a percentage of the tuned response amplitude at high contrast in the upper histograms.
Tuned response amplitude for low contrast is expressed as a percentage of the tuned response amplitude at high contrast in the middle histograms,
and as a percentage of the tuned response amplitude at medium contrast in the lower histograms. 100% on x-axis corresponds to no change in
response amplitude. Relative to 100%, all distributions are shifted to the left, indicating decreased response strength with decreased contrast in
nearly all cases. Black bars correspond to significant decreases, and hatched bars to significant increases in response amplitude, tested at the single
cell level (p,0.05, t test). In the vast majority of cells, the response amplitude was significantly lower when contrast was decreased.
doi:10.1371/journal.pone.0004781.g004
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given that, by experimental design, medium contrast should have

yielded a response close to the mean obtained with the mean of the

three contrasts in use, response amplitude after adaptation to

medium contrast was expected not to differ much from response

amplitude after mixed contrasts adaptation.

The results obtained were close to this expectation. Changes in

response amplitude were calculated as the ratio of the response

amplitude, for a given contrast, after adaptation to that contrast in

the constant (cst) contrast block, to the response amplitude to the

same contrast in the mixed (mix) contrasts block: 1006Acst/Amix.

Fig. 5 plots distribution histograms for this ratio. At the single cell

level, with high contrast stimuli, matched adaptation (constant

high contrast) resulted in a significant decrease in response

amplitude in 30.4% (Fig. 5, top histogram, black bars) of the cells

and no significant change in 65.2% of the cells, compared to

unmatched adaptation. With medium contrast, matched adapta-

tion induced a significant increase in response amplitude in 21.3%

of the cells (Fig. 5, middle histogram, hatched bars), and no

significant change in 72.1%. Finally, with low contrast stimuli,

matched adaptation induced an increase in response amplitude in

53.6% (Fig. 5, bottom histogram, hatched bars), and no significant

change in 39.3% of the cells, compared to unmatched adaptation.

At the population level, response amplitude with high contrast

stimuli was significantly (p,0.0001) lower after adaptation to high

contrast compared to adaptation to mixed contrasts (median

percent change: 91.3%). Response amplitude with medium

contrast was significantly (p = 0.006) larger after adaptation to

medium contrast than in mixed contrasts blocks but the median

(102.6%) indicates relatively small changes in this case. Finally,

response amplitude with low contrast stimuli was significantly

(p = 0.0004) higher after adaptation to low contrast than in mixed

contrasts blocks (median 132.9%); in this later case, responses to

low contrast stimuli were relatively depressed due to adaptation to

the mean of the three contrasts in use in the mixed contrasts

blocks, and recovered from this depression when given time to

adapt to the low contrast only.

Effect of contrast on preferred orientation
We next examined whether changing contrast modified neurons

preferred orientation, as has been reported in a cat study [67]. We

quantified changes in preferred orientation (hc) by calculating the

difference between the value obtained with one contrast (C1) from

the one obtained with a higher contrast (C2), hcC12hcC2.

Distributions of differences in preferred orientation are shown in

Fig. 6 for each of the 3 pairs of comparison.

In the mixed contrasts condition, a significant change in preferred

orientation occurred in 37.1%, 53.3% and 56.7% of the cells for

high vs. medium, high vs. low and medium vs. low contrasts,

respectively (Fig. 6A). With adaptation to each single contrast

(Fig. 6B), significant changes in preferred orientation occurred less

often than in the mixed contrasts blocks: 19.4% for high vs. medium

contrast, 27.9% for high vs. low contrast, and 32.6% for medium vs.

low contrast. This data show that preferred orientation does change

significantly in a considerable fraction of the cells when the contrast

is modified, especially in the mixed contrasts condition.

However, the differences in preferred orientation appear to be

small in most cases. At the population level, the absolute values of

preferred orientation differences were ,8 deg for 80% of the cells

in the mixed contrasts condition, and ,6 deg in 80% of the cases

in the constant contrast condition. Furthermore, as shown in Fig. 7,

the changes in preferred orientation were generally less than the

tuning width of the cells. The scatter plots (Fig. 7) show the

difference in preferred orientation against the mean of the HWHH

obtained for the same contrasts comparison. The diagonal lines

correspond to a change in preferred orientation equal to 6 half of

the mean HWHH. The majority of data points are confined

Table 1. Tuned response amplitude, half-width at half-height and relative untuned response amplitude at different contrasts, in
mixed or constant contrasts conditions.

Mixed contrasts (mismatched adaptation)

Contrast Low Medium High

n = 31 n = 67 n = 70

Tuned response amplitude (sp/sec) 7.5 [10.2] 9.7 [11.2] 14.2 [19.4]

9.167.1 11.869.6 18.1613.6

Half-width at half-height (deg) 12.2 [9.8] 18.9 [13.6] 23.1 [14.8]

13.966.2 20.669.6 23.869.7

Relative unselective response amplitude (%) 0.0 [4.4] 1.4 [5.0] 3.2 [8.9]

0.764.1 4.6612.4 6.8610.6

Constant contrasts (matched adaptation)

Contrast Low Medium High

n = 46 n = 63 n = 80

Tuned response amplitude (sp/sec) 7.7 [14.4] 10.1 [11.8] 10.5 [16.1]

10.468.3 12.969.9 14.8612.2

Half-width at half-height (deg) 15.5 [10.9] 20.5 [15.7] 21.8 [10.7]

18.469.4 21.969.4 23.168.3

Relative unselective response amplitude (%) 0.6 [3.7] 0.6 [4.5] 3.1 [10.9]

3.069.8 1.468.6 7.5612.3

For each column, ‘‘n’’ indicates the number of cells with significant response and acceptable orientation tuning fit (see methods). For each parameter, the numbers on
the top row are the median and the interquartile (between brackets). The numbers on the bottom row correspond to the mean61 standard deviation.
doi:10.1371/journal.pone.0004781.t001
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between these lines. The scatter increases with increase in tuning

width; in other words, changes in preferred orientation may be

large for broadly tuned cells but are in general small for sharply

tuned cells. Cells whose preferred orientation changed by a value

larger than the mean HWHH are relatively few in the mixed

contrasts condition (Fig. 7A) and even rarer in the constant

contrast condition (Fig. 7B).

Effect of contrast in the mixed contrasts condition on the
half-width at half-height of orientation tuning curves

We found that, in the mixed contrasts condition, contrast had a

strong and highly significant effect on the HWHH of orientation

tuning curves, with HWHHs being on average larger with higher

contrast. Cumulative distributions of HWHHs for each contrast

group are shown in Fig. 8A. Means and medians are presented in

Table 1. Distributions obtained for medium and high contrast are

comparable to those obtained using flashing stimuli in behaving

macaques [68]. Median HWHH was 23.1 deg with high contrast

(n = 70), similar to values previously reported in marmoset V1

[46,48]. It was less (18.9 deg) at medium contrast (n = 67). The

cumulative distribution for HWHH at low contrasts is clearly

displaced to the left, and the median HWHH at low contrast was

only 12.2 deg (n = 31).

Distributions of percent change in HWHH are presented in

Fig. 8B and means and medians displayed in Table 2. Changes are

expressed as the HWHH for a given contrast (low or medium) as a

percentage of the HWHH obtained with higher contrasts (medium

or high). Cells for which tuning width decreased significantly at the

single cell level are indicated by black bars. Significant decrease in

tuning width was observed in 27.4% (17/62) of the cells when

comparing medium and high contrast, in 56.7% (17/30) of the

cells when comparing low and high contrast, and in 53.3% (16/30)

of the cells when comparing low and medium contrast. These

proportions are much larger than the expected proportion of false

positives (type 1 error, ,5%), given our threshold criteria for

significant differences (p,0.05, Methods).

Given that the sample size varied for the different contrasts, we

used paired comparisons to compare data at the population level.

We found that HWHH at medium contrast was significantly less

than at high contrast (p,0.0001, n = 62 pairs), with the HWHH at

medium contrast representing 88.9% (median) of the HWHHs at

high contrast. Similarly, HWHH at low contrast was significantly

less than at high contrast (p,0.0001, n = 30 pairs), with the

HWHH at low contrast representing 73.9% of the value obtained

at high contrast. Finally, HWHH at low contrast was significantly

less than at medium contrast (p,0.0001, n = 30 pairs), and the

Table 2. Paired comparison and associated ratios for tuned response amplitude and half-width at half-height, and differences for
relative untuned response amplitude, at different contrasts and with matched or mismatched adaptation.

Mixed contrasts (mismatched adaptation)

Contrast comparison Low vs. High Low vs. Medium Medium vs. High

n = 30 n = 30 n = 62

Tuned response amplitude (ratio, %) 39.6 [37.1] 57.2 [34.2] 64.4 [35.9]

47.4629.8 60.0628.0 68.8631.9

(p,0.0001) (p,0.0001) (p,0.0001)

Half-width at half-height (ratio, %) 73.9 [35.5] 76.6 [35.0] 88.9 [25.2]

72.6627.9 76.2622.0 86.6622.4

(p,0.0001) (p,0.0001) (p,0.0001)

Relative unselective response amplitude (difference, %) 0.36 [5.20] 20.78 [4.62] 1.22 [5.06]

1.4965.38 20.8564.56 2.3265.28

(ns) (ns) (p = 0.0035)

Constant contrasts (matched adaptation)

Contrast comparison Low vs. High Low vs. Medium Medium vs. High

n = 43 n = 43 n = 62

Tuned response amplitude (ratio, %) 54.9 [27.9] 67.2 [33.1] 74.0 [28.9]

58.1629.5 67.1625.1 78.5627.7

(p,0.0001) (p,0.0001) (p,0.0001)

Half-width at half-height (ratio, %) 84.5 [29.0] 89.5 [20.7] 96.0 [23.8]

86.6621.9 89.9619.2 100.6619.5

(p = 0.0001) (p = 0.0002) (ns)

Relative unselective response amplitude (difference, %) 1.28 [5.43] 0.06 [1.62] 1.25 [5.32]

3.1065.23 0.7464.74 2.4865.93

(p = 0.0006) (ns) (p = 0.0008)

For each column, ‘‘n’’ indicates the number of pairs of cells that were compared. For each parameter comparison, the numbers on the top row are the median and the
interquartile (between brackets). The numbers on the middle row correspond to the mean61 standard deviation. The lower row shows p values in paired comparisons
(ns: not significant). For the tuned response amplitude and the half-width at half-height, numbers correspond to the ratios (in percent) of values for one contrast vs. the
other: low/high, low/medium and medium/low contrast. For the relative unselective response amplitude, numbers correspond to the difference of values for one
contrast vs. the other: high minus low, medium minus low, and high minus medium.
doi:10.1371/journal.pone.0004781.t002
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median value of percent change indicate that the HWHH at low

contrast represented 76.4% of that obtained at medium contrast

(Table 2).

Effect of contrast in constant contrast conditions on the
half-width at half-height of orientation tuning curve

In contrast to what was observed in the mixed contrasts

condition, the cumulative distributions (Fig. 9A) show that HWHHs

of orientation tuning curves obtained in the constant contrast

condition with high and medium contrast are quite similar.

However, HWHHs for tuning curves obtained at low contrast still

seem to be narrower than those obtained at medium and high

contrasts, despite the fact these data were obtained once the cells

were adapted to each of the contrasts in use (Table 1). These

impressions are statistically confirmed in paired comparisons

(Table 2). HWHH at medium contrast was not significantly

different from that obtained at high contrast (p = 0.47, n = 62

pairs), with the HWHH at medium contrast representing 96.0%

(median) or 100.6% (mean) of the HWHH at high contrast (Fig. 9B).

At the single cell level, tuning width was not significantly modified in

80.6% of the cells, while 6.5% showed significant increase in tuning

width, and 12.9% significant decrease in tuning width.

On the other hand, HWHHs at low contrast were still

significantly less than at high contrast (p = 0.0001, n = 43 pairs)

and still significantly less than at medium contrast (p = 0.0002,

n = 43 pairs). HWHH at low contrast represented 84.5% of the

value obtained at high contrast and 89.5% of that obtained at

medium contrast (Fig. 9B). However, although still significant,

these differences are less than those obtained in mixed contrasts

conditions (73.9% and 76.4%, respectively, Fig. 8). At the single

cell level, the proportion of cells showing a significant decrease in

tuning width also appears to be less than in the mixed contrasts

condition: it is 37.2% for low vs. high contrast, and 32.6% for low

vs. medium contrast, compared to 56.7% and 53.3% in the mixed

contrasts condition (Fig. 8). Contrast adaptation therefore restored

invariance of orientation tuning when comparing high and

medium contrast, and reduced differences in tuning width when

comparing with low contrast.

Interaction between change in response strength and
change in tuning width

Decreasing contrast reduced both tuning width and response

strength. We next examined interactions between these two

parameters. Indeed, a simple ‘‘iceberg’’ effect predicts that

orientation tuning becomes broader when response becomes

stronger. This, however, was not found to be the case. The scatter

plots in Fig. 10 show percent changes in HWHH plotted against

percent changes in tuned response amplitude. For what concerns

the mixed contrasts condition (Fig. 10A–C), most data points can

be found in the quadrant defined by the 0–100% ranges on both

the x and y axes, indicating that most cells showed both lower

response amplitude and sharper tuning at lower contrast.

However, there was no significant correlation between changes

in tuning width and change in response strength (for medium vs.

high contrast changes: Rho = 0.12, p = 0.34, 95% confidence

interval: 20.13 to 0.38; for low vs. high contrast changes:

Rho = 0.25, p = 0.17, 95% confidence interval: 20.12 to 0.63; for

low vs. medium contrast changes: Rho = 20.008, p = 0.97, 95%

confidence interval: 20.39 to 0.37).

No significant correlation was obtained between changes in

tuning width and changes in response strength for low vs. high

contrast and for low vs. medium contrast in the constant contrast

condition as well (Fig. 10E and 10F, respectively) (low vs. high:

Rho = 20.015, p = 0.9, 95% confidence interval: 20.32 to 0.29,

low vs. medium: Rho = 20.082, p = 0.6, 95% confidence interval:

20.39 to 0.23). However, although HWHH at high and medium

contrasts do not differ significantly at the population level after

adaptation, there nevertheless appears to be an interaction

between changes in response strength and changes in HWHH,

which indicates there is still a remnant effect of contrast on

orientation selectivity for these two contrasts. This is illustrated in

Fig. 10D, where a significant correlation appears between change

in response strength and change in tuning width for medium vs.

high contrast (Rho = 20.492, p = 0.0001, 95% confidence inter-

val: 20.79 to 20.28). Nevertheless, the trend reported here is

relatively weak (r2 = 0.156 with a linear relationship). It is,

furthermore, a negative correlation, suggesting increases in tuning

width at medium contrast, provided response amplitude is less

than at high contrast.

Figure 5. Comparison of tuned response amplitude with the
same contrast in mixed and in constant contrast blocks. The
distribution histograms show response amplitude obtained, for a given
contrast, in constant contrast blocks as a percentage of that obtained in
the mixed contrasts block. Upper histogram shows distribution for high
contrast, middle histogram for medium contrast, and lower histogram
for low contrast. Bar filling refers to significance of changes at the single
cell level (t-test): black indicates significant decrease of response
amplitude after matched adaptation compared to unmatched adapta-
tion, gray indicates lack of significant changes (p.0.05), and hatched
indicates significant increase. 100% on x-axis corresponds to no change
in response amplitude. Relative to 100%, the distribution for high
contrast is shifted to the left, indicating that response amplitude was
larger for high contrast when neurons were adapted to a mixture of
contrasts, compared to when neurons were adapted to the high
contrast. On the contrary, the distribution of percent change for low
contrast stimuli appears shifted to the right: response amplitude was
lower on average for low contrast stimuli when neurons were adapted
to mixed contrasts compared to when neurons were adapted to the
low contrast. The distribution for medium contrast is more centered,
although responses to medium contrast were slightly stronger, on
average, after adaptation to medium contrast compared to adaptation
to mixed contrasts.
doi:10.1371/journal.pone.0004781.g005
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The distribution histograms (Fig. 4) and scatter plots (Fig. 10)

also show that the firing rate in a small number of cells either did

not change significantly when contrast decreased, or was actually

significantly higher at medium, and sometimes at low contrast

than at high contrast. This corresponds to cells that were

saturating and ‘‘supersaturating’’, respectively. (Note that presence

of saturating or supersaturating cells was initially not desired. It is

to be remembered that, during the course of the experiment, the 3

contrast values to be used for the stationary flashing gratings were

chosen on the basis of CRFs generated with drifting gratings and

analyzing the multi-unit response. Single-unit isolation was made

off-line, and it sometimes happened that one isolated single-unit

had lower contrast sensitivity and saturated at lower contrasts in

comparison to the multi-unit. Furthermore, it also sometimes

happened that, for a given single-unit, response amplitude

obtained with stationary stimuli at different contrasts differed

from that expected from the CRFs obtained with drifting gratings.)

However, these neurons (in particular Fig. 10A) show that the

HWHH could decrease even when response amplitude was larger

with lower contrasts.

The fact that there is no statistically significant correlation

between change in response strength and change in tuning width

in 5/6 cases and a negative correlation in the remaining, and the

fact that, for some of the saturating and supersaturating neurons,

tuning was broader with higher contrast, suggest that the effect of

contrast on tuning width is largely independent of the effect of

contrast on response amplitude.

Comparison of tuning width for one given contrast, with
and without matched adaptation

The data presented in Fig. 8 and 9 compared tuning widths

obtained with different contrasts in the same stimulus regime:

either after adaptation to the same contrast, or with adaptation to

a mixture of contrasts whose average does not correspond to at

least 2 of the 3 contrasts used for calculating the tuning curves. We

shall now examine changes in tuning width obtained for the same

contrast, but in different adaptation regimes. This directly

examines the effects of contrast adaptation on orientation tuning.

The consequence of adaptation to each contrast individually is a

narrowing of the distributions of HWHHs, as shown in Fig. 11A

(this combines data from Fig. 8A and Fig. 9A). Data in red

correspond to data obtained in the mixed contrasts blocks. Data in

green correspond to data obtained after adaptation to the contrast

used to make the measurements (constant contrast conditions).

The distribution for low contrast (triangles) is clearly shifted to the

right by adaptation to low contrast. This corresponds to a

broadening of the tuning curves by adaptation to low contrast,

compared to adaptation to mixed contrasts. When examined in a

paired fashion the difference is highly significant (p = 0.004).

Percent changes in HWHH (Fig. 11B, bottom) were calculated as

the HWHH obtained in constant contrast blocks divided by

HWHH obtained in mixed contrasts block. It shows a median of

120.7% (n = 28). When examined at the single cell level, significant

increase in tuning width was observed in 35.7% of the cells (10/28,

hatched bars).

HWHHs obtained with high contrast stimuli showed the

opposite trend, although in a less striking fashion: a narrowing

of the tuning curves after adaptation to the high contrast,

compared to adaptation to the mixed contrasts. A small

proportion of cells showed significant increase and decrease in

tuning width (7.2%, 5/69 cells in both cases, Fig. 11B, top

histogram). At the population level, change in tuning width was

rather small (median percent change: 96.3%). However, this

decrease was statistically significant (p = 0.02).

Figure 6. Distribution of differences in preferred orientation with different contrasts. A. Mixed contrasts. B. Constant contrasts. Upper
histograms show the differences for medium vs. high contrast. Middle histograms show the differences for low vs. high contrast. Lower histograms
show the differences for low vs. medium contrast. Black bars correspond to cases for which the difference was found to be significant at the single
cell level (p,0.05, t test).
doi:10.1371/journal.pone.0004781.g006
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Finally, HWHHs obtained with medium contrast were expected

to change little: medium contrast was intended to evoke response

close to the mean obtained with the three contrasts in mixed

contrasts protocols (although slightly lower by experimental

design), therefore inducing comparable amount of adaptation.

However, cumulative distributions do not overlap (Fig. 11A,

circles) and there appears to be a significant, although small,

broadening of the tuning curves after adaptation to the medium

contrast (median 105%, n = 61, p = 0.02). At the single cell level,

significant increase in tuning width was observed in 16.4% of the

cells (10/61).

The conclusion up to this point is that orientation-tuning width

appears to be adjusted by contrast adaptation. Adapting to a high

contrast stimulus slightly reduced the HWHH compared to a

situation in which stimuli had a lower (on average) contrast. An

opposite and quite stronger effect occurred with low contrast

stimuli: when adapted to a higher (on average) contrast, responses

to low contrast stimuli were depressed and tuning widths were

thinner. Conversely, adapting to low contrast allowed for recovery

from adaptation to a higher (on average) contrast, and this resulted

in both an increase in response amplitude and an increase in

tuning width, though these effects were not correlated on a cell by

cell basis. Thus, the way matched adaptation reduced the effects of

contrast on tuning width was mostly by increasing tuning width

with low contrast stimuli, and to some extent with medium

contrast stimuli.

Figure 7. Changes in preferred orientation vs. half-width at
half-height of tuning curves. A. Mixed contrasts. B. Constant
contrasts. The x-axis corresponds to the mean of the two HWHHs
obtained with the two contrasts that are compared. The y-axis
represents the difference in preferred orientation observed with the
same contrasts. Squares: high compared to medium contrast. Triangles:
high compared to low contrast. Circles: Medium compared to low
contrast. Cells for which preferred orientation changed significantly
(p,0.05, t test) are represented by filled symbols (‘‘sig’’) and cells for
which preferred orientation did not change significantly by open
symbols (‘‘n. s.’’). The diagonals represent the relation y = 60.5x. Data
points between the diagonals correspond to cells for which the
difference in preferred orientation is less than the mean HWHH.
doi:10.1371/journal.pone.0004781.g007

Figure 8. Changes in orientation tuning width with different
contrasts in mixed contrasts blocks. A. Cumulative distribution of
HWHH for the three different contrasts. Horizontal dashed line
corresponds to the median. B. Distribution of percent change in
HWHH with different contrasts. HWHH for medium contrast is
expressed as a percentage of the HWHH at high contrast in the upper
histogram. HWHH for low contrast is expressed as a percentage of the
HWHH at high contrast in the middle histogram, and as a percentage of
the HWHH at medium contrast in the lower histogram. 100% on x-axis
corresponds to no change in HWHH. Relative to 100%, all distributions
are shifted to the left, indicating decreased HWHH with decreased
contrast. Black bars in histograms correspond to significant decrease in
HWHH when contrast decreases, and hatched bars to significant
increase in HWHH, tested at the single cell level (p,0.05, t test).
doi:10.1371/journal.pone.0004781.g008
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Effect of contrast on the untuned response component
Fits made to orientation tuning data included a parameter, y0,

which reflects the untuned component in the response of the cells.

This term does not correspond to spontaneous activity that was

removed prior to the fit. Since response strength varies greatly

among cells, we examined, not the y0 itself, but its amplitude

relative to the full response height. This measure has previously

been named ‘‘relative untuned response amplitude’’ (RURA) [69].

It is expressed, as a percentage, as:

RURA~100|
y0

y0zA

This is complementary to the ‘orientation index’ used in other

studies: OI = A/(y0+A). Note that RURA and HWHH represent

different facets of orientation selectivity. Depending on contrast,

correlation between HWHH and RURA were either weak, or not

Figure 9. Changes in orientation tuning width with different
contrasts for constant contrast blocks. A. Cumulative distribution
of HWHH for the three different contrasts. B. Distribution of percent
change in HWHH with different contrasts. Same conventions as in
Figure 8. Both cumulative distributions and percent change distribu-
tions show reduced effect of contrast on tuning width in the constant
contrast conditions compared to the mixed contrasts condition (Fig. 8).
doi:10.1371/journal.pone.0004781.g009 Figure 10. Percent change in orientation tuning width vs.

percent change in tuned response amplitude. In these scatter
plots, the x-axis represents percent change in tuned response
amplitude and the y-axis represents percent change in HWHH. A.
Medium vs. high contrast, mixed contrasts condition. B. Low vs. high
contrast, mixed contrasts condition. C. Low vs. medium contrast, mixed
contrasts condition. In these three scatter plots, most data points are
located in the quadrant delimited by 0 and 100% on both x and y axis,
indicating that most cells showed both reduced response amplitude
and reduced HWHH when contrast was decreased. However, the two
variables were not significantly correlated. D. Medium vs. high contrast,
constant contrast condition. E. Low vs. high contrast, constant contrast
condition. F. Low vs. medium contrast, constant contrast condition. In
the scatter plots in E and F, most data points can be found in the
quadrant delimited by 0 and 100% on both x and y axes, indicating that
most cells showed both reduced response amplitude and reduced
HWHH when contrast was decreased. This is not the case for the scatter
plot in D, reflecting the fact that orientation tuning width was not
different, on average, between medium and high contrast after
adaptation. There is, however, a significant inverse relationship
between the two variables in this case. The line corresponds to the
linear relationship between the two variables.
doi:10.1371/journal.pone.0004781.g010
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significant (not illustrated). For high contrast, the correlation

(linear) was significant (p,0.0001) but with a low correlation

coefficient (r2 = 0.135). For medium contrast, the correlation was

not significant (p = 0.16). For low contrast, the correlation was

significant (p = 0.003) but showed an inverse relationship between

the two variables (r = 20.51, r2 = 0.26). Cells with broad HWHH

may show RURA values close to zero while cells with thin

HWHH may show RURA values larger than zero. We also

checked for the possibility that the RURA is not cleanly separated

from orientation bandwidth, as would occur if orientation tuning is

not truly Gaussian, by examining the residuals in a dozen cases.

We have not found any systematic structure that would indicate

‘‘fatter tails’’ compared to the Gaussian. Thus, while we cannot

exclude that departure from Gaussian may be present in some

cases, this does not appear to be a systematic trend.

In most cells, the RURA represented only a small percentage of

the total response amplitude (Fig. 12A,C, Table 1). A large

number of cells showed values very close to zero. In a small

number of cases, values are ,0%, indicating firing rate reduction

below spontaneous activity level by orientations perpendicular to

the optimal. However, in both mixed and constant contrasts

conditions, a significant proportion of cells showed a RURA.10%

at high and medium contrast (Fig. 12A,C). Cumulative distribu-

tions shown in Fig. 12A,C suggest a tendency for RURA to

increase with contrast, which was tested in a pairwise fashion.

Changes in RURA were calculated as RURAC22RURAC1, with

C1 and C2 two different contrasts (C1,C2), and the distributions

of this difference are shown in Fig. 12B,D.

Contrast did change the RURA, when comparing medium and

high contrast (p = 0.0035) in the mixed contrasts condition. The

median increase in RURA with high contrast was +1.22% (mean

+2.32%). This means that, with an increase in contrast, response

to non-optimal orientations did increase proportionately more than

expected given increase in tuned response amplitude. In this case,

changes in RURA corroborated changes in HWHH, implying

further decrease in orientation selectivity with increase in contrast.

On the other hand, RURA did not change significantly when

comparing high and low contrast (p = 0.16, median difference

0.36%) or medium and low contrast (p = 0.38, median difference

20.78%).

When considering constant contrast conditions, RURA did not

differ significantly between low and medium contrast (p = 0.38):

cumulative distributions superimpose almost completely (Fig. 12C,

Table 1) and differences showed a median value (0.06) close to

zero (Fig. 12D bottom; Table 2). On the other hand, RURA

values obtained with high contrast were significantly larger –

implying less selectivity – than those obtained with either medium

(p = 0.0008) or low contrasts (p = 0.0006). In particular,

RURA.10% was found in 28% of the cells with high contrast,

but in only ,10% of the cells with low or medium contrasts

(Fig. 12D). At the population level, high contrast added 1.25%

(median) of untuned response to the full response compared to

medium contrast, and 1.28% compared to low contrast responses

(Fig. 12D, Table 2) (means were, respectively, 2.48% and 3.10%).

It therefore appears that, unexpectedly, contrast adaptation did

not reduce, but rather increased the differences between contrasts

for this variable.

Comparison of RURA for one given contrast, with and
without matched adaptation

In contrast to HWHH, the RURA showed almost no difference

between matched and unmatched adaptation. RURA for low and

medium contrasts were not significantly modified by adaptation

(not illustrated). For high contrast, there was a moderate but

significant decrease in RURA (p = 0.046; median difference:

20.79%, mean difference: 21.41%) with adaptation to high

contrast compared to adaptation to mixed contrasts (not

illustrated). Thus, the relative proportion of unselective response

appears to be slightly reduced after adaptation to high contrast.

Figure 11. The effects of contrast and contrast adaptation on
HWHH. A. Cumulative distribution of HWHH. Data in red were
obtained with the mixed contrasts block and data in green obtained
with constant contrast blocks. The effect of matched contrast
adaptation is a narrowing of the distributions, with the largest shift
observed for the low contrast. B. Distributions of percent change in
HWHH for one contrast in two stimulation regimes. HWHH obtained in
the constant contrast block for a given contrast (matched adaptation) is
expressed as a percentage of the one obtained for the same contrast in
the mixed contrasts block (mismatched adaptation). Cells showing
significant (t-test, p,0.05) decrease in HWHH with adaptation to
constant contrast are indicated in black, and cells showing significant
increase in HWHH by hachure. Upper histogram: adaptation to high
contrast resulted in a small but significant reduction of HWHH
compared to adaptation to mixed contrasts (median: 96.3%). Middle
histogram: adaptation to medium contrast resulted in a small but
significant increase in HWHH compared to adapting to mixed contrasts
(median: 105.0%). Lower histogram: adaptation to low contrast resulted
in a significant and larger increase in HWHH compared to adapting to
mixed contrasts (median: 120.7%).
doi:10.1371/journal.pone.0004781.g011

Contrast-Invariance in V1

PLoS ONE | www.plosone.org 16 March 2009 | Volume 4 | Issue 3 | e4781



Relation to receptive field type
Spread in the distributions of changes in HWHH or RURA

with changes in contrast indicates important heterogeneity in the

behavior of individual neurons (Fig. 8, 9, 12). We examined

whether this heterogeneity could be related to differences in other

cell properties. The first property we studied was the RF types of

the cells, that have been classified as ‘‘simple’’ or ‘‘complex’’ using

the ‘‘relative modulation’’ (see Methods) in 61 of the 87 orientation

selective cells analyzed in this study. Sixteen cells were simple

(26%) and 45 complex (74%). These proportions appear similar to

those previously reported for marmoset V1 [46]. Increases in

HWHH with increases in contrast did not differ between simple

and complex cells, in mixed as well as in constant contrast blocks

(Mann-Whitney U test, p.0.05). Similarly, changes in RURA

consequent to changes in contrast did not depend on RF type

(p.0.05).

Relation to contrast range and to contrast sensitivity
We next examined whether heterogeneity between cells with

respect to the effect of contrast on orientation tuning could be

related to differences in their contrast sensitivities and to the actual

contrast values that were used.

CRFs were quantified using the hyperbolic ratio equation in 81

cells (see Methods; not illustrated). The half saturation constant (C50)

was 27.7% (median; interquartile: 17.6%). There was no significant

correlation between C50 and changes in HWHH or changes in

RURA induced by changes in contrast. The exponent of the CRF

(n) was 3.1 (median; interquartile: 1.8). There was also no significant

Figure 12. Changes in relative untuned response amplitude with different contrasts. A. Cumulative distribution for the three contrasts in
the mixed contrasts condition. The RURA expresses the proportion of response amplitude that lacks orientation selectivity, relative to the total
response amplitude. Values close to zero indicate null response to the orientation orthogonal to the preferred one. Values less than zero indicate
firing rates lower than spontaneous activity, suggesting cross-orientation suppression. Values larger than zero indicate responses to orthogonal
stimuli. B. Distribution of differences in RURA with different contrasts, in the mixed contrasts condition. Upper histogram: RURA obtained with high
contrast minus RURA obtained with medium contrast. Middle histogram: RURA obtained with high contrast minus RURA obtained with low contrast.
Lower histogram: RURA obtained with medium contrast minus RURA obtained with low contrast. At the population level, a significant difference was
observed between high and medium contrast only, with larger RURA, on average, at high contrast. C. Cumulative distributions for each of the three
contrasts, for the constant contrast blocks. D. Distribution of differences in RURA with different contrasts, for the constant contrast blocks. RURA
values obtained with high contrast were significantly larger than those obtained with either medium (upper histogram) or low contrast (middle
histogram). RURA did not differ between medium and low contrasts (lower histogram). We did not test differences in RURA at the single cell level as
RURA calculation combines two parameters, each with its own associated standard error.
doi:10.1371/journal.pone.0004781.g012

Contrast-Invariance in V1

PLoS ONE | www.plosone.org 17 March 2009 | Volume 4 | Issue 3 | e4781



relationship between changes in tuning width and the exponent of

the CRFs. Changes in orientation tuning with contrast therefore are

not related to the contrast sensitivity of the cells.

Changes in HWHH or changes in RURA were also unrelated

to the actual range of contrast used: depending on cell sensitivities,

the ratios of high/low contrasts we used ranged between 2 and 5.6.

However, changes in HWHH were not correlated with these

ratios.

Relation to receptive fields eccentricity
Sixty out of the 114 cells examined in this study were recorded

in the operculum (eccentricity ,3 deg) and 54 in the calcarine

(eccentricity between 6 and 16 deg, most around 7–8 deg). Studies

showing contrast-invariance of orientation selectivity were usually

based on recordings obtained parafovealy. It was therefore

possible that our discrepant result could be due to a different

behavior for neurons with RFs located at larger eccentricity.

Whether recordings were obtained in the calcarine or in the

operculum did not affect the proportion of orientation selective

and non-selective cells (p = 0.27, Chi2 test). Orientation selective

cells represented 44/54 cells (81.5%) in the calcarine and 43/60

cells (71.7%) in the operculum.

When considering HWHH of orientation tuning curves

obtained in the mixed contrasts blocks, there did not appear to be

any significant difference between opercular and calcarine

recordings (Mann-Whitney U test, p = 0.12 for high contrast,

p = 0.09 for medium contrast and p.9.99 for low contrast; not

illustrated). However, HWHH obtained in constant contrast block did

show a near significant difference between opercular and calcarine

recordings (p = 0.05 for high contrast, p = 0.06 for medium

contrast and p = 0.05 for low contrast). Median HWHH for

opercular recordings were 25.9 (n = 40), 23.9 (n = 27) and 20.6

(n = 19) deg for high, medium and low contrasts respectively. For

calcarine recordings, median values were 19.9 (n = 40), 18.4

(n = 36) and 13.2 (n = 27) deg, respectively. Confirming this trend

will require a larger sample.

Nevertheless, decreases in orientation tuning width with

decreases in contrast were not related to the recording sites (not

illustrated). In mixed contrasts blocks, percent changes in HWHH

were not significantly different between the calcarine and the

operculum (Mann Whitney U test, medium vs. high contrast:

p = 0.70; low vs. high contrast: p.0.99; low vs. medium contrast:

p = 0.72). Percent changes in HWHH also did not differ

significantly in the case of constant contrast blocks (medium vs.

high contrast: p = 0.37; low vs. high contrast: p = 0.07; low vs.

medium contrast: p = 0.86). This indicates that the lack of contrast

invariance observed with briefly flashed stimuli is not the

consequence of some peculiar behavior for neurons with RFs

located at relatively large eccentricity.

Relation to cortical layers
We also examined orientation selectivity and the effects of

contrast on orientation tuning with respect to the layers in which

recordings were obtained (n = 94 single-units, 74 orientation

selective, 20 not orientation selective).

We first compared orientation tuning width and RURA

obtained for cells recorded in supragranular layers (n = 22 cells),

layer 4B and 4Ca (pooled together, n = 16), and infragranular

layers (n = 36) (unfortunately layer 4Cb could not be included in

this comparison; only two single-units could be isolated in this

layer, one that was not visually responsive and the other that was

not orientation selective). We did not find significant differences,

whatever the contrast and stimulation condition (not illustrated).

This agrees with quantitative studies that also failed to reveal

profound differences in orientation selectivity between layers in

macaque V1 [e. g., 70].

We next examined whether the effects of contrast on orientation

tuning width and RURA differed between layers. We found that

contrast affected tuning width and RURA in a similar fashion

when comparing layers 4Ca and 4B with infragranular and

supragranular layers (not illustrated). Lack of contrast-invariance

of orientation tuning cannot therefore be attributed to a difference

between neurons relaying magnocellular inputs (layers 4Ca and

4B) and neurons possibly receiving convergent magnocellular and

parvocellular inputs (supragranular and infragranular layers).

Discussion

The two main results of this study are: 1) Orientation tuning

does not appear to be contrast-invariant when stimuli vary in both

contrast and orientation at a high rate. 2) Orientation tuning is less

affected by contrast when neurons are given enough time to adapt

to one particular contrast, suggesting that contrast adaptation

plays a role in contrast-invariance of orientation tuning.

Contrast adaptation may contribute to contrast-
invariance of orientation tuning

Contrast-invariance of orientation tuning has been demonstrat-

ed in a large number of studies in cats [6–9,11,13], ferrets [10] and

squirrels [12]. In almost all these studies, stimuli consisted of

drifting sine-wave gratings that were presented for relatively long

durations 24 seconds usually. This long stimulation duration

makes it possible that contrast adaptation was recruited and could

have contributed to contrast-invariance of orientation tuning. One

exception is the study by Li and Creutzfeldt (1984) [7] in which

drifting light bars were used as a stimulus. However, in this study,

contrasts were not randomized; one single contrast was used for

one block of bar presentation, such that adaptation to that contrast

likely occurred.

Contrast adaptation manifests itself as a slow adjustment of

neural firing rate during the prolonged presentation of a stimulus

of constant contrast. During prolonged presentation of a high

contrast stimulus, firing rate progressively decreases with a time

course of seconds [29,31–36,71–73]. With drifting stimuli, many

cells in V1 display adaptation time constants that are less than

4 seconds [31–37]. With flashing stimuli, adaptation appears to be

faster than with drifting stimuli [65,66; and present study].

Conversely, after cessation of the high contrast stimulus, response

to low contrast stimuli is initially depressed, and progressively

recovers with a time course of seconds to tens of seconds

[29,31,33–35,74].

Contrast adaptation could therefore play a significant role

during the 4-second stimulus presentation that was typically used

in studies of contrast invariance. This has led us to examine

whether contrast-invariance of orientation tuning still holds with

briefly flashed stimuli. We thus had two purposes in mind:

determining whether contrast-invariance of orientation tuning still

occurs when the stimulus presentation time is commensurate with

the fixation duration observed in natural viewing conditions (200–

300 msec) [41–45]. And, if not, determining whether contrast

adaptation, a relatively slow phenomenon compared to fixation

duration, contributes to contrast-invariance of orientation tuning.

Our results show that orientation tuning is not contrast-

invariant with briefly flashed stimuli, when the contrasts do not

match the contrast to which the cells are adapted. We also found

that contrast-invariance of orientation tuning was partially

restored when stimuli had a contrast corresponding to the contrast

to which the cells have been adapted. However, this restoration
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was not complete and orientation-tuning curves obtained with the

lowest contrast still appeared to be slightly thinner, on average,

than those obtained with the highest contrast.

How contrast adaptation might contribute to contrast-
invariance of orientation tuning

Mechanisms responsible for contrast adaptation have been

examined in several studies. Thalamic neurons do not present

strong contrast adaptation when stimulated with sine-wave

gratings drifting with a low temporal frequency (,3 cy/sec)

[29,34,35,74–78]. In parallel, in cortical neurons with simple RFs,

the F1 component of the membrane potential response – the

modulation at the stimulus rate, which is most likely derived from

the thalamic input – is also only weakly affected by contrast

adaptation [35,79,80]. This, together with other arguments [e. g.,

29,81–83], indicates that contrast adaptation is essentially

generated intracortically.

In intracellularly recorded cortical neurons, it is observed that,

in contrast to the F1 component, the F0 component (mean

membrane potential) shows significant changes with adaptation:

high contrast stimulation in cortical neurons is associated with a

progressive membrane potential hyperpolarization [35,73,80,84]

while cessation of high contrast stimulation is associated with a

progressive recovery from hyperpolarization with a time constant

of several seconds [35,73]. This long-lasting hyperpolarization has

been shown to depend, at least partially, on intrinsic membrane

properties, as high-intensity current injection in single neurons in

vivo results in a membrane potential hyperpolarization that mimics

the one obtained with high contrast visual stimuli, and which is

able to reduce responses to visual stimuli [35,73]. In vitro studies

showed that this long-lasting hyperpolarization depends largely on

the activation of a sodium-dependent potassium current [85,86].

Channels responsible for this current have recently been cloned

and their distributions characterized [87].

Nevertheless, an intrinsic adaptation mechanism cannot explain

the fact that adaptation shows some stimulus specificity

[31,66,72,74,75,88–90]. It is also to be noted that changes in

visually evoked F0 amplitude can to some extent be ambiguous:

they do not distinguish between an intrinsic mechanism and

changes in synaptic responses that are not modulated at the

temporal frequency of the stimulus, in particular in complex cells.

To identify more precisely the relative contribution of intrinsic and

synaptic (or network) mechanisms in contrast adaptation, a study

recently examined the aftereffects of high contrast adaptation on

RFs mapped using a sparse-noise stimulation technique [73]. The

results demonstrated the occurrence, sometimes in the same

neurons, of both reduced synaptic RF amplitude, and of global

membrane potential hyperpolarization. This indicates that both

intrinsic and synaptic (or network) mechanisms contribute to

contrast adaptation. That both mechanisms contribute is consis-

tent with stimulus dependent adaptation, provided cortical

connections are made between neurons displaying different

stimulus preferences (for orientation see [91]).

In the temporal domain, the stimuli we used in the present study

correspond to square pulses, whose Fourier spectrum necessarily

includes high frequencies. Recent studies showed that contrast

adaptation could actually occur for fast temporal frequencies in

thalamic magnocellular neurons [78]. Therefore, it cannot be

excluded that subcortical mechanisms also contributed to the

adaptation we observed.

We may now examine how the mechanisms involved in contrast

adaptation may influence orientation tuning and its contrast-

invariance. Experimental and theoretical studies have identified

several possible mechanisms that could contribute to contrast-

invariance of orientation tuning. Among these, 3 at least could be

modified by contrast adaptation.

The first of these possible mechanisms is inhibition [14–

17,19,21–24]. We do not intend to review how different forms of

inhibition have been included in different models; suffice it to say

that contrast-invariance of orientation tuning requires that

inhibition and excitation grow somehow proportionately with

contrast. However, although inhibitory neurons possess an

intrinsic capacity to adapt similar to that of excitatory neurons

[92], the relative amount of excitation and inhibition a cell

receives may not be the same at the beginning and at the end of a

prolonged stimulus presentation. For example, slow synaptic

depression is stronger at excitatory synapses compared to

inhibitory synapses in vitro [93,94]. If the temporal dynamics of

synaptic responses are not identical for inhibition and excitation,

then it is conceivable that the relative amount of excitation and

inhibition required to achieve contrast-invariant orientation tuning

is reached only after some time of visual stimulation.

Inhibition may be important in setting up contrast-invariance of

orientation tuning at the membrane potential level. However, it

might not be sufficient to explain contrast-invariant orientation

tuning for the spiking response [13,14,19]. This may require two

other mechanisms on which adaptation could act. They

correspond to membrane potential fluctuations (or ‘‘synaptic

noise’’) and to the shape of the input-output relationship of cortical

neurons. These two mechanisms are strongly intertwined. Indeed,

in vitro, in the absence of synaptic noise, the input-output relation

of cortical neurons is well approximated by a linear relationship

(R =b.V) (e. g., [95,96]). In a feedforward mechanism of

orientation selectivity, this linearity would result in a tuning which

is not contrast-invariant (e. g., [9,13]). However, the presence of

membrane potential fluctuations in vivo, either spontaneous or

stimulus-induced, has the effect of expanding the relationship

between voltage and firing rate toward lower voltage values: small

membrane potential depolarizations induced by low contrast

stimuli and/or by stimuli of less than optimal orientation, which

remain subthreshold in the absence of membrane potential

fluctuations, could generate significant firing if occurring simulta-

neously with depolarizing synaptic noise. The input-output

relation then takes the approximate form of a power law

relationship (R =b.Va) [9,13,18,97,98]. Interestingly, Finn et al.

(2007) [13] found that noise amplitude tends to increase when

contrast decreases, resulting in an adjustment of the power law for

different contrasts, allowing the preservation of contrast-invariance

of orientation selectivity. In their theoretical study, Hansel and van

Vreeswijk (2002) [18] found that contrast-invariance of orientation

tuning may be obtained for some restricted ranges of noise level.

Contrast-invariance would be lost for noise levels that are either

above or below this optimal range. The fact that adaptation

partially restores contrast-invariance of orientation tuning, as

shown in the present study, might therefore be explained if the

amplitude of membrane potential fluctuations is also dynamically

adjusted by adaptation. This is certainly possible, as membrane

potential fluctuations likely result from network interactions (e.g.,

[99,100]) involving neuronal elements that exhibit contrast

adaptation.

The third mechanism involved in contrast-invariance of

orientation selectivity, which may be modified by adaptation, is

the input-output power law itself. Even if the amplitude of

membrane potential fluctuations remains constant, it is expected

that the slow membrane potential changes induced by adaptation

will result in the modification of one or the other power law

parameters (slope or exponent). This dynamic adjustment might

also be involved in the generation of contrast-invariant tuning.
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The effects of contrast adaptation on membrane potential noise

and on input-output relationship in single cortical neurons are

currently under examination.

Species differences
Although contrast adaptation did reduce contrast-dependent

differences in orientation tuning, it did not completely suppress

them. There was still a significant difference in tuning width

between the lowest and highest contrast, such that, despite

adaptation, orientation tuning was still not completely contrast-

invariant. It is possible that this reflects a difference between

flashing and drifting stimuli, involving distinct networks, or

different interaction dynamics within these networks.

Alternatively, it could represent a species difference (note

however that a recent study [13] reported occurrences of tuning

width reduction with low contrasts in the cat). It is also worth

noting that, in the cat, not only orientation tuning, but also spatial

frequency tuning is largely independent of stimulus contrast [5,8].

On the other hand, spatial frequency tuning does vary with contrast

in the primate [101]. We first hypothesized that species difference

in contrast-invariance of orientation tuning finds its roots in two

fundamental differences between cat and monkey visual processing

streams. In cat, X- and Y-cells show relatively small differences in

contrast sensitivity [3,102–106] and both afferent streams target

cells that are orientation selective [107]. On the other hand, in the

primate, neurons in the magnocellular pathway show much higher

contrast sensitivity than those in the parvocellular pathway [108–

111]; in addition, parvo- and magnocellular inputs target cells with

different orientation selectivity: neurons in the parvocellular

recipient layer 4Cb show weak or no orientation selectivity

whereas neurons in the magnocellular recipient layer 4Ca show

sharp orientation tuning [112–114]. It is therefore conceivable

that, at low contrast, mostly orientation selective cells of layer 4Ca
were activated, whereas at high contrast both orientation and non-

orientation selective neurons are activated in both layer 4Ca and

layer 4Cb. Beyond layer 4C, a large number of cells receives

converging inputs from both parvo- and magnocellular pathways

[115,116]. Thus, by changing the proportion of orientation

selective and non-orientation selective neurons, contrast might

have changed orientation-tuning width in these second order cells,

which would have been more orientation selective at low than at

high contrast. This hypothesis could also provide an explanation as

to why RURA increased with contrast. Unfortunately, we did not

find a significant difference in contrast-invariance between layers

receiving presumably pure magnocellular inputs (layers 4Ca and

4B) and layers where a proportion of neurons may receive

converging magnocellular and parvocellular inputs (supra- and

infragranular layers). It is possible, however, that magno- and

parvocellular inputs are already mixed in layer 4B [117]. An

alternative way to examine the implication of parvo- and

magnocellular inputs on the effects of contrast on orientation

tuning would be to examine orientation-tuning dynamics. In area

V1, parvocellular inputs appear to be delayed relative to

magnocellular inputs by approximately 20 msec [118]. Given this

latency difference, we predict that neurons receiving convergent

magno- and parvocellular inputs should show a short latency

response appearing with low contrast and displaying sharp

orientation selectivity, followed by a more sustained response that

should require higher contrast and should show less orientation

selectivity.

Another possible explanation for a cat vs. primate species

difference is related to their differing CRFs. One of the

mechanisms that may contribute to contrast-invariance of

orientation tuning, reported by Finn et al. (2007) [13] in the cat,

is a compression of the CRF at the cortical level, in comparison to

that in the LGN. Their median C50 for the F1 potential in simple

cells was only 7.6%. Since C50 for spiking and membrane potential

responses are comparable [119], this value may be compared to

the median we obtained with spiking responses in the marmoset,

which was 27.7%. This indicates that the CRF in the marmoset

shows considerably less saturation than in the cat. According to the

model of Finn et al. (2007) [13], this lower amount of saturation

should result in less contrast-invariance of orientation tuning.

Whatever the reason for the presence of an effect of contrast on

orientation tuning, our results are not simply explained by an

iceberg effect. Changes in orientation tuning with contrast, in both

constant and mixed contrasts conditions, were never proportional

to changes in response strength (Fig. 10). This lack of positive

correlation suggests that there might be several gain-control

mechanisms at multiple stages of the visual pathway, some

influencing response amplitude only, and others also influencing

mechanisms involved in orientation tuning.

Effect of contrast on orientation tuning and orientation
discrimination

Contrast-invariant orientation tuning, as initially reported in the

cat, provided a neuronal correlate to the observation that,

behaviorally, orientation discrimination appeared to be contrast-

invariant [8,120,121]. However, not all psychophysical studies

agree on this point; other studies showed that reducing contrast

impairs orientation discrimination [122–127]. This apparent

contradiction has been explained by studies [128,129] showing

that interaction between contrast and orientation discrimination

actually depends on stimulus size: orientation discrimination

thresholds were found to be elevated at low contrast for small

stimuli, but were found to be independent from contrast provided

stimuli were large enough.

Models suggest that orientation discrimination depends on the

differential activity of orientation detectors [66,68,120–122,130–

133]. Thus, orientation discrimination should improve when

orientation bandwidth decreases. Behaviorally observed increases

in discrimination threshold at low contrast is therefore opposite to

what would be expected given our finding that neurons are more

selective (decreased tuning width) at low contrast. However, tuning

width is not the sole relevant variable in orientation discrimina-

tion. Noise also probably plays an important role [66,68,120–

122,130,131,133]. In our results, relative decrease in tuning width

with contrast was less than relative decrease in response strength.

Given that noise grows proportionately with response strength, this

implies that the reduction in tuning width at low contrast may not

be sufficient for maintaining orientation discrimination thresholds

comparable to those obtained at higher contrasts. It nevertheless

remains possible that orientation discrimination at low contrast

would be even worse if orientation tuning was contrast-invariant.

Consequences of contrast adaptation
At the behavioral level, contrast adaptation leads to a variety of

effects: thresholds are elevated for detecting stimuli similar to the

adapting stimulus [81,82,122,132,134]; the apparent contrast of

suprathreshold stimuli appears to be decreased [135–137]; and test

stimuli appear to be repelled from the adapting stimulus as in

motion (see [138] for an historical account), tilt [139] or size [140]

aftereffects. Although these different effects are consistent with the

presence of psychophysical ‘‘channels’’ commensurate with the

selectivity of individual cortical neurons, they do not reveal the

function of contrast adaptation.

The functional role of contrast adaptation has remained

somehow elusive. At one extreme, it may be proposed that
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contrast adaptation does not have much of a functional role in

vision; contrast adaptation may simply be the by-product of the

presence of sodium-dependent potassium channels, whose main

functions may be to provide a ‘‘metabolic gate-keeper’’ and to

protect cells against ischemic stress [141,142]. At the other

extreme, it has been proposed that adaptation (to contrast as well

as to other stimulus dimensions) has a fundamental functional role,

which is to maximize information transmission [143–147].

Neurophysiological studies have suggested that contrast adap-

tation results in an adjustment of the (limited) dynamic range of

the neurons around the adapting contrast [31,34,36,74,

75,89,148]. This should be manifested behaviorally by an

improvement in contrast discrimination around the adapting

contrast. However, behavioral testing failed to show such a

beneficial effect [149,150] or showed it to be limited to extreme

values of adapting and test stimuli contrast [151,152].

Benefits of contrast adaptation have therefore been sought with

respect to other stimulus dimensions. With respect to spatial

frequency for example, a psychophysical study [153] showed that

adaptation with natural images results in a ‘‘whitening of the

neuronal image’’, that is, in a balancing of our sensitivity to spatial

frequencies, despite the dominance of low spatial frequencies in

natural scenes. With respect to temporal frequency, studies suggest

that contrast adaptation might reduce signal redundancy in the

temporal domain [154].

Finally, psychophysical studies have shown that adapting to a

high contrast stimulus of constant orientation does improve

orientation discrimination when test and adapting orientation

differ by 10–20 deg [122,132]. This result has been extended to

the single neuron level in neurophysiological studies [66]. One

possible explanation for this improvement is the repulsive shifts in

preferred orientation of the cells relative to the orientation of the

adapting stimulus [66,90,155] – But see [156]). Improvement

might also involve changes in signal-to-noise ratio [66]. However,

in the studies mentioned above, the adapting stimulus was

presented at one orientation only. Our results suggest one

additional possibility, which is that high contrast adaptation also

results in sharpening orientation tuning, relative to mismatched

adaptation. It would therefore be of interest to examine whether

adaptation, using adapting stimuli with quickly changing orienta-

tion, as in our protocol, or using natural scenes that contain a wide

range of orientations, also improves orientation discrimination.

Conclusion - Contrast invariance in general
Our results suggest that, when stimuli are presented for a

duration comparable to that of a visual fixation, and without prior

adaptation to the contrast of these stimuli, contrast-invariance of

orientation selectivity breaks down. This indicates that contrast-

invariance of orientation tuning is not instantaneous and rather

requires some time of adaptation to the prevailing contrast to be

expressed. In fact, there appear to be a number of response

properties that do not show contrast-invariance. One is spatial

frequency tuning in primate [101] – but not in cat. Another is

direction selectivity, which improves when contrast decreases

[157]. A third one is the optimal stimulus size, which increases

when contrast decreases [58–60]. Yet, studies have shown that we

are well able to perceive and identify objects after a processing

duration that is even shorter than a fixation duration (e.g.,

[158,159]), even when image contrast is severely reduced [160].

Altogether, these results suggest that accurate and stable detection,

categorization and recognition of visual objects is possible in the

face of ever changing stimulus intensity, even in the absence of

contrast-invariance for V1 neurons selectivity.
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