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Abstract

Recombination rate and linkage disequilibrium, the latter a function of population genomic processes, are the critical
parameters for mapping by linkage and association, and their patterns in Caenorhabditis elegans are poorly understood. We
performed high-density SNP genotyping on a large panel of recombinant inbred advanced intercross lines (RIAILs) of C.
elegans to characterize the landscape of recombination and, on a panel of wild strains, to characterize population genomic
patterns. We confirmed that C. elegans autosomes exhibit discrete domains of nearly constant recombination rate, and we
show, for the first time, that the pattern holds for the X chromosome as well. The terminal domains of each chromosome,
spanning about 7% of the genome, exhibit effectively no recombination. The RIAILs exhibit a 5.3-fold expansion of the
genetic map. With median marker spacing of 61 kb, they are a powerful resource for mapping quantitative trait loci in C.
elegans. Among 125 wild isolates, we identified only 41 distinct haplotypes. The patterns of genotypic similarity suggest that
some presumed wild strains are laboratory contaminants. The Hawaiian strain, CB4856, exhibits genetic isolation from the
remainder of the global population, whose members exhibit ample evidence of intercrossing and recombining. The
population effective recombination rate, estimated from the pattern of linkage disequilibrium, is correlated with the
estimated meiotic recombination rate, but its magnitude implies that the effective rate of outcrossing is extremely low,
corroborating reports of selection against recombinant genotypes. Despite the low population, effective recombination rate
and extensive linkage disequilibrium among chromosomes, which are techniques that account for background levels of
genomic similarity, permit association mapping in wild C. elegans strains.
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Introduction

The allelic variants that underlie heritable phenotypic variation

are distributed along chromosomes. Their distribution is shaped

by the machinery of meiosis within individuals and by mutation,

selection, and drift among them. To discover the genetic basis of

complex traits, and to understand the evolutionary dynamics that

shape this genetic architecture, we must characterize empirical

patterns of linkage and linkage disequilibrium. We have

undertaken this task in the nematode C. elegans.

Mapping of thousands of mutants to the genome and molecular

studies of meiotic machinery have provided a view of the large-

scale landscape of the C. elegans recombination map. The

chromosomes exhibit nearly complete crossover interference [1],

such that each chromosome experiences one crossover per meiosis

and has a genetic length of 50 cM [2]. Accumulated data from

thousands of two- and three-point mapping crosses and small-scale

SNP-based analyses have demonstrated a general pattern of large,

nearly constant-rate domains on the autosomes, with high

recombination in chromosome arms and low recombination in

chromosome centers. Despite strong global regulation of crossover

number, many details remain unclear, including the locations of

the domain boundaries, the occurrence of fine-scale variation

within domains, and the existence of domain structure on the X

chromosome. Moreover, evidence for the genetic control of

crossover number and position [1–4] leaves open the possibility

that segregating variants may influence recombination patterns in

experimental crosses of natural isolates. Because recombination

patterns have been studied only on broad scales in individual

crosses, involving fewer than two dozen markers per chromosome,

dense characterization of a massive cross promises to clarify the

recombinational landscape.

C. elegans is one of the most exhaustively studied of all species

with respect to developmental, behavioral, and physiological

genomics, but studies of its population biology have lagged.

Although natural genetic variation has been a source of alleles for

genetic analysis in C. elegans since long before the system became a

model [5], the widely accepted notion that worms exhibit little

variation has discouraged investigations of their diversity. The

difficulty of collecting C. elegans from the wild has compounded the

problem. Nevertheless, recent work has revealed abundant

heritable phenotypic variation among wild C. elegans strains [6–
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20] and has begun to reveal the ecological context for this species

[16,17,21–25]. C. elegans geneticists have exploited this variation to

map quantitative trait loci [26–37], and in a handful of cases to

identify the causal mutations underlying phenotypic variation (in

genes npr-1, mab-23, tra-3, zeel-1, plg-1, and scd-2 [10,30,38–43]).

In parallel, studies of variation at molecular markers have begun

to provide an account of the distribution of genetic variation

within and among localities and across genomic regions

[6,7,23,24,40,41,43–60]. These studies have shown that the

species exhibits substantially lower levels of polymorphism and

higher levels of linkage disequilibrium than other model systems,

even those, like Arabidopsis thaliana, that share with C. elegans a

primarily selfing mating system. The empirical pattern of linkage

disequilibrium may result as much from selection against

recombinant genotypes as from attributes of population biology

such as population size and outcrossing rate [24,61]. A genome-

wide assessment of linkage disequilibrium is required to determine

whether natural isolates of C. elegans will be useful for mapping loci

by association.

We generated and genetically characterized a recombinant

inbred advanced intercross population to gain insights into the

recombination map in C. elegans, and we characterized a large

panel of wild strains to characterize linkage disequilibrium. The

data on recombination in the lab and in the wild reveal the role of

population genomic processes in shaping genotypic diversity in C.

elegans, and they lay the groundwork for rapid discovery of the

genes underlying phenotypic variation.

Results

Patterns of Recombination in Recombinant Inbred
Advanced Intercross Lines

We genotyped 1454 nuclear SNP markers in 236 recombinant

inbred advanced intercross lines (RIAILs). These lines represent

the terminal generation of a 20-generation pedigree founded by

reciprocal crosses between the laboratory wild type strain N2

(Bristol) and the Hawaiian isolate CB4856. The pedigree includes

ten generations of intercrossing (random pair mating with equal

contributions of each pair to succeeding generations [62]) followed

by 10 generations of selfing.

The SNP markers span 98.6% of the physical length of the

chromosomes (Table S1). The median spacing is 61,160 bp, and

80% of intervals are shorter than 100 kb. Only 35 marker intervals

(2.4%) are greater than 200 kb. The RIAILs contain 3,629

breakpoints in 772 marker intervals; some breakpoints may be

identical by descent because of the shared ancestry during the

intercrossing phase of RIAIL construction. An estimate of the

mapping resolution of the panel, based on the distances between

intervals containing breakpoints, yields a median bin size of 98 kb.

Because larger bins contain more of the genome than smaller bins,

the expected size of a bin in which a uniformly distributed QTL

will fall is 225 kb.

The RIAILs exhibit a genetic map length of 1588 cM, a 5.3-

fold expansion of the 300 cM F2 genetic map. The realized

expansion is 93% of the expected 5.7-fold map expansion, a

difference attributable, at least in part, to the action of selection

during the construction of the lines.

Although selection and drift may alter the relationship between

recombination fraction and meiotic recombination rate [63,64],

the observed recombination fractions are qualitatively informative

about global patterns of recombination rate variation across C.

elegans chromosomes. The genetic maps for the six C. elegans

chromosomes are similar to one another and exhibit five distinct

domains: two tips with effectively zero recombination, two high

recombination arms, and a low recombination center, consistent

with the pattern observed in classical two- and three-point

mapping crosses [65]. These domains are evident in Marey maps

[66], which show genetic position as a function of physical position

(Figure 1; Table 1). As the recombination rate within each domain

Figure 1. Recombination rate domains. Marey maps for each
chromosome show genetic position of each marker (black points) as a
function of physical position. Genetic position is measured in
centiMorgans as defined on the recombinant inbred advanced
intercross line population; these are not meiotic distances. Gray lines
show the fits of segmented linear regressions, which estimate the
boundaries of the recombination domains and their relative recombi-
nation rates. The shaded boxes above each plot show the genetically
defined positions of the pairing centers [69].
doi:10.1371/journal.pgen.1000419.g001

Author Summary

C. elegans is a model system for diverse fields of biology,
but its ability to serve as a model for quantitative trait
gene mapping depends on its recombination rate in the
laboratory and in nature. The latter is a function of how
worms mate and migrate in the wild. We examined the
patterns of recombination in a population that we put
through thousands of meioses in the laboratory and in a
collection of strains isolated from nature. The data suggest
that meiotic recombination rate is highly regular in worms,
with discrete domains whose boundaries we identify. The
pattern in natural strains suggests that population
structure, population size, outcrossing rate, and selection
combine to suppress the overall effects of recombination.
Moreover, some ‘‘wild’’ strains appear to be laboratory
contaminants. Nevertheless, the history of recombination
in wild worms is sufficient to permit correlations between
genotype and phenotype to pinpoint the loci responsible
for phenotypic variation.

Linkage and LD in C. elegans
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is relatively constant, we used a segmented linear regression to

identify the boundaries between the domains.

The central domain of each autosome occupies roughly half the

chromosome’s length, despite the very different lengths of the

chromosomes (Table 1). For example, the center of chromosome

V is 10.7 Mb, 51% of the chromosome length, while the center of

chromosome III is 6.6 Mb, 48% of that chromosome’s length.

Because all the centers have very similar rates of recombination

per base pair (Table 1), their different physical lengths mean that

the amount of recombination in each center (its genetic length)

varies with total chromosome length. The constraint of one

breakpoint per chromosome then requires that the amount of

recombination in the arms of each chromosome varies inversely

with chromosome length; shorter chromosomes have a larger

fraction of their recombination events in their arms, and the

physical sizes of the arms explain much of the variation among

arms in recombination rates (r2 = 0.51, p = 0.009). Nevertheless,

the arms are heterogeneous in relative and absolute length and

recombination rate, and the central domains are not perfectly

centered on the chromosomes, consistent with the finding of

Barnes et al. [65]. Most notably, the left arm of chromosome IV

has a relative recombination rate more than twice that of the right

arm, though they differ in size by only 15% (Figure 1; Table 1).

Inspection of the Marey maps suggests that there may be

additional rate variation within the defined domains. To

determine whether such variation is expected in the case of

constant-rate domains, we simulated chromosomes along the

RIAIL pedigree with discrete, constant-rate recombination

domains, and we recorded the simulated genotypes at the same

marker intervals as our actual genotype data. The simulated

chromosomes exhibit patterns of variation within the discrete rate

domains qualitatively similar to the observed data, preventing us

from placing confidence in the fine-scale patterns in the data

(Figure 2A). Nevertheless, the fine-scale variation observed in our

data is largely concordant with that present in genetic maps

derived from independent two- and three-point mapping crosses

with classic visible markers (Figure S1), compiled in WormBase

[67]. The general concordance between our map, derived from

meioses at 25uC, and the WormBase map, which comes from

crosses performed at various temperatures but primarily at 20uC,

does not support the notion that the distribution of crossovers is

strongly temperature dependent [68].

In our data, each chromosome has one very sharp center-arm

boundary and one that is less sharp, and boundaries exhibit the

identical pattern in the classical maps. In five of the six

chromosomes, the less-sharp boundary is on the side of the

chromosome that holds the pairing center [69] (Figure 1). The

exception is chromosome III.

We find two points of disagreement between our results and

previous discussion of recombination maps in C. elegans. First, the

X chromosome clearly possesses domain structure similar to that

of the autosomes (Figure 1), contrary to inferences from sparser

data. The major distinguishing feature of the X-chromosome

center is its relative size, 36% of the chromosome length, which is

substantially less than the 47–52% on the autosomes. Second, we

find that the chromosome tips have extremely low recombination

rates; the terminal domain of each chromosome end is a region of

Table 1. Chromosomal Domains.

Chr left tip left arm center right arm right tip

I Size (kb) 527 3331 7182 3835 197

Size (%) 3.5 22.1 47.7 25.4 1.3

Right end (kb) 527 3,858 11,040 14,875 15,072

Ratea (cM/Mb) 0 3.43 1.34 6.78 0

II Size (kb) 306 4573 7141 2589 670

Size (%) 2.0 29.9 46.7 16.9 4.4

Right end (kb) 306 4,879 12,020 14,609 15,279

Ratea (cM/Mb) 0 4.92 1.33 8.47 0

III Size (kb) 494 3228 6618 2877 567

Size (%) 3.6 23.4 48.0 20.9 4.1

Right end (kb) 494 3,722 10,340 13,217 13,784

Ratea (cM/Mb) 0 7.83 1.17 7.24 0

IV Size (kb) 720 3176 9074 3742 782

Size (%) 4.1 18.2 51.9 21.4 4.5

Right end (kb) 720 3,896 12,970 16,712 17,494

Ratea (cM/Mb) 0 7.65 1.05 3.64 0

V Size (kb) 643 5254 10653 3787 583

Size (%) 3.1 25.1 50.9 18.1 2.8

Right end (kb) 643 5,897 16,550 20,337 20,920

Ratea (cM/Mb) 0 3.22 1.32 5.47 0

X Size (kb) 572 5565 6343 3937 1302

Size (%) 3.2 31.4 35.8 22.2 7.3

Right end (kb) 572 6,137 12,480 16,417 17,719

Ratea (cM/Mb) 0 3.81 1.70 5.14 0

ALL Size (kb) 3262 25127 47011 20767 4101

aRates are derived from the slopes of the segmented linear fits, scaled to yield a
total genetic length of 50 cM for each chromosome.

doi:10.1371/journal.pgen.1000419.t001

Figure 2. Simulated chromosomes. (A) The Marey maps for actual
chromosome III data (black) and 10 chromosome III datasets simulated
with discrete, constant-rate recombination domains (colors) show that
variation within domains and indistinct boundaries between domains
are expected. (B) The observed genetic length of chromosome III is
smaller than expected. The histogram shows the lengths of 1000
chromosome III datasets simulated assuming one crossover per meiosis.
doi:10.1371/journal.pgen.1000419.g002

Linkage and LD in C. elegans
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effectively zero recombination, a pattern observed previously only

for the right tip of the X [65] and more recently for chromosome

III [68]. Every chromosome terminus contained a series of

nonrecombining markers, and these domains ranged in size from

200 kb (IR) to 1300 kb (XR), averaging 600 kb.

Selection
We previously showed that the allele frequencies in the RIAILs

depart from the neutral expectation, implicating selection during

the application of the cross design [40].We extend that analysis

here, estimating expected allele frequency skew using our

simulations that explicitly incorporate marker spacing and

recombination domain structure. Chromosome I (p,0.001) and

chromosome II (p = 0.001) exhibit significant allele frequency

departures from the neutral expectation (Figure 3). The other

chromosomes exhibit allele frequencies consistent with neutrality

(III, IV, V, X: p = 0.449, 0.213, 0.155, 0.323 for observing the

largest allele frequency skew by chance).

In addition to selection on individual alleles, a more subtle form

of selection is likely to operate in a cross of divergent selfing strains:

epistatic selection to maintain coadapted combinations of alleles.

Such selection should decrease the recombination fraction

between coadapted loci without altering allele frequencies [70].

We compared the genetic lengths we observed for the RIAIL

chromosomes to the expected genetic lengths determined by the

RIAIL simulations, which employed 50 cM meioses and yielded

expected lengths of approximately 300 cM for each autosome and

214 cM for the X chromosome. Chromosomes I, II, and III were

shorter than expected in the absence of selection (one-sided

p = 0.011, 0.002, 0.010, respectively; Figure 2B), while the others

were not different from their expected lengths. For chromosomes I

and II, the shortened genetic length is attributable at least in part

to selection on single loci causing associated allele frequency skews.

Chromosome III, however, is about 11% shorter than expected,

despite no evidence of selection altering single-locus allele

frequencies and no sign of distortion relative to the WormBase

map of chromosome III (Figure S1).

The simulations were performed under the assumption that

male meiosis is identical to hermaphrodite meiosis, and that

oogenic and spermatogenic meioses within hermaphrodites are

identical, with exactly one cross-over per chromosome per meiosis.

That chromosomes IV and V exhibited the expected lengths

suggests that the different settings for meiosis do not alter global

crossover rates, although we cannot test sex-differences in local

patterns of recombination frequencies.

We next sought evidence for epistatic selection generating

associations between alleles on different chromosomes [70,71]. We

calculated p-values for Fisher’s Exact Test for the 877,079 pairs of

non-syntenic SNPs and found that the distribution of p-values is

uniform; 1.2% of tests were significant at p,0.01, and 0.09% were

significant at p,0.001. No tests were significant at the Bonferroni-

corrected threshold. An analysis of the false discovery rate, based

on permutations of genotypes by chromosome, found no threshold

at which the FDR fell below 0.5. The maximum observed r2

between nonsyntenic sites was 0.087, demonstrating the absence of

strong correlations among chromosomes.

Recombination Rate Modifiers
Segregating modifiers of recombination rate may influence the

number or distribution of recombination breakpoints in the

genomes of recombinant inbred lines [72,73]. Such modifiers may

be detected as QTLs for breakpoint number. We counted the

breakpoints on each chromosome and mapped the number as a

quantitative trait using structured nonparametric interval mapping

[74–76]. The total number of breakpoints varies among the

RIAILs from 6 to 29 with mean 15.

Total breakpoint count links significantly to chromosome II

(lod = 3.80, genome-wide p = 0.026; Figure 4). The Hawaii allele

of the QTL is associated with slightly higher breakpoint numbers

on every chromosome.

Meiosis in C. elegans involves regulatory proteins that are unique

to individual chromosomes or pairs of chromosomes, raising the

possibility that segregating modifiers of recombination may have

Figure 3. Allele frequencies in the recombinant inbred
advanced intercross lines. (A) The frequency of the N2 allele at
each marker along the chromosomes. The expected frequency, 0.5, is
represented by the gray line. (B) A close view of the allele frequencies
on the left side of chromosome II shows a significant skew toward N2
alleles. The histogram on the right represents the maximum allele
frequency skew for 1000 simulated chromosome II datasets. The red
line represents the p = 0.01 significance threshold from the simulations.
doi:10.1371/journal.pgen.1000419.g003

Figure 4. Breakpoint counts exhibit linkage to genomic
intervals. Lod scores from nonparametric interval mapping are plotted
as a function of genetic position for the four breakpoint count traits
that exhibit significant linkage. Horizontal lines represent trait-specific
genome-wide significance thresholds (p = 0.05) estimated by structured
permutation.
doi:10.1371/journal.pgen.1000419.g004
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effects limited to individual chromosomes [77]. Similarly,

modifiers may act in cis to alter recombination probabilities. To

address these possibilities, we considered the number of break-

points on each chromosome separately (Figure 5). Chromosome I

breakpoint number exhibited a very significant linkage to

chromosome I (lod 7.21, genome-wide p,0.001 by structured

permutation). A second QTL, located on chromosome II, reached

nominal genome-wide significance (lod 3.62, p = 0.050). Chromo-

some II breakpoint number exhibited significant linkage to

chromosome II (lod = 4.154, p = 0.008), and X chromosome

breakpoint number linked to the X chromosome (lod = 3.98,

p = 0.022). Breakpoint number on chromosomes III, IV, and V

did not link to any QTLs, even at the less stringent p-values

required for significance at the chromosome-wide level.

The linkages of chromosome I and II breakpoint number to

their own chromosomes are readily interpreted as artifacts

attributable to unbalanced allele frequencies shaped by selection

(Figure 3). As selection drives one allele to low frequency, the

presence at a nearby locus of the allele from the same donor

increases the probability that a breakpoint will be present between

the two loci. Thus a selective sweep causes an association of linked

alleles from the disfavored genome with high recombination

breakpoint numbers. In our cross, presence of a Hawaii allele in

the center of chromosome 1 all but guarantees the presence of a

breakpoint to its left, due to the strong selection against Hawaii

alleles at the gene zeel-1.

Haplotype Diversity and Population History of Wild
Isolates

Genotype data from 1460 N2-CB4856 SNPs (Table S2)

distinguished only 41 haplotypes among 125 wild isolates (Table

S3). Of the 1460 loci assayed, 101 exhibited genotyping failures in

one or more wild isolates, consistent with deletions or SNPs in

those strains interfering with the genotyping assay. These

genotyping failures exhibit significant LD with adjacent SNPs,

and in strain JU258, where large deletions have been identified by

tiling array experiments [53], 15 of the 25 such calls fall within

deletion predictions. The segregating genotyping failures are

dramatically overrepresented on the chromosome tips and arms,

particularly IIL and VR (Table 2), and depleted from the centers

(Fisher’s exact test, p = 10213). Despite the additional information

provided by these putative deletion genotypes, they distinguished

only two haplotypes otherwise identical according to SNP

genotypes.

Among wild isolates from recent systematic collections, most

haplotypes are confined to a single locality, though each locality

may harbor multiple haplotypes (Table S3), as others have

observed [23,24,45,47,50]. The only exceptions are haplotype 25,

shared between Le Blanc and Hermanville in France [23]

(,310 km apart), and haplotype 40, shared between Mecklenbeck

and Roxel in Germany [50] (,5 km apart). Among the classical

wild isolates from the CGC, a collection assembled without

systematic sampling, SNP haplotypes are often shared among

distant localities. Haplotype 1 is shared by N2, from Bristol,

England, PX176 from Eugene, Oregon, and TR388 and TR389,

from Madison, Wisconsin. Haplotype 19 is shared by AB2, from

Adelaide, Australia, CB4855, from Palo Alto, California, and

CB4858, from Pasadena, California. The similarities among

classic strain haplotypes raise the possibility that these strains are

not independent wild isolates, a point to which we return in the

Discussion.

The SNPs are derived entirely from a comparison of N2 and

CB4856 sequences, creating a strong ascertainment bias. In a

panmictic population of constant size, ascertainment from a pair

of chromosomes should bias the allele frequency spectrum

observed in the rest of the population, yielding a uniform

distribution [78]. In our data, the allele frequency is strongly

skewed, with a dramatic excess of alleles observed only once

(Figure 5). The skew is not consistent with a simple explanation in

terms of population expansion, because the two alleles are not

equally represented among the minor alleles. Instead, the allele

found in CB4856 is almost always the rare allele (83% of sites;

Figure 5). For 461 SNPs (32%), the Hawaii allele is unique to the

Hawaiian strain, while no alleles are unique to Bristol, nor to

haplotype 1. At two sites, only haplotypes 1 and 2 have the Bristol

allele, and at just 12 of the 1460 sites is the Bristol allele found in

fewer than 10 of the 41 haplotypes.

The excess of Bristol alleles is explained by the combination of

ascertainment bias and population structure. The effects of these

Figure 5. The Hawaiian isolate CB4856 has a large excess of
rare alleles. Each of 1460 SNPs is plotted according to the frequency
of the minor allele (black) or the frequency of the CB4856 allele (blue).
Under panmixis, our SNP ascertainment should cause both sets of
points to fall on straight lines, connecting allele frequencies 1/41 and
20/41 for minor allele frequency and 1/41 and 40/41 for Hawaii allele
frequency. The plot shows that there is a large excess of rare alleles and
that these rare alleles are CB4856 alleles.
doi:10.1371/journal.pgen.1000419.g005

Table 2. Distribution of Putative Deletions in Wild Isolates.

Chr left tip left arm center right arm right tip

I 0/7 2/47 0/103 7/58 0/3

II 0/3 18/67 1/104 4/40 1/9

III 4/9 5/47 3/89 2/43 0/9

IV 0/2 4/45 5/131 3/65 4/11

V 3/10 9/77 7/156 14/58 2/7

X 0/5 1/87 0/93 2/58 0/11

All 7/36 (19%) 39/370 (11%) 16/676 (2%) 32/322 (10%) 7/50 (14%)

Markers Segregating Putative Deletions/Total Markers.
doi:10.1371/journal.pgen.1000419.t002
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phenomema are revealed by the sequence of allelic states along the

wild isolate chromosomes. Considering a single wild isolate and

the two ascertainment strains, there are three possible genealogies

for each nonrecombining segment of the genome (Figure 6A).

Because we observe only those SNPs that arose as mutations on

the branches connecting N2 and CB4856, the three genealogies

predict distinct patterns of allelic states in the wild isolate genome

(Figure 6B). Under panmixis, we should expect the genealogies to

be equally common, but because our sample is conditioned on the

presence of a SNP between N2 and CB4856, genealogies 1 and 3,

which have more opportunity for such SNP-generating mutations

to occur, should be overrepresented. In our data, however, the

genealogy with CB4856 most closely related to the wild isolate

(genealogy 3) appears to be absent (Figure 6C). Instead, the wild

isolate chromosomes are mosaics of the other two genealogies,

consistent with ongoing genetic exchange among such strains to

the exclusion of the CB4856 lineage.

The excess of N2 alleles characterizes every strain (Figure 7); the

least N2-like of the strains, haplotype 39 from the Portuguese

island of Madeira and haplotype 40 from northern Germany,

carry 58% and 57% N2 alleles (p,1027 for each under the null

hypothesis that alleles are equally likely, as expected in the absence

of structure). The only evidence for recent genetic exchange

involving CB4856 is the X chromosome of haplotypes 29 (MY1)

and 39 (JU258), which share a run of 30 out of 31 CB4856 alleles

(Figure 6C). Much of the rest of the MY1 X chromosome is highly

Figure 6. Wild isolate genomes. (A) The effects of SNP ascertainment on haplotypes. All SNPs were ascertained by comparing N2 and CB4856, and
must therefore have arisen by mutation on the genealogical branches connecting those two strains. When a third strain is considered, there are three
possible genealogies, but all SNP-generating mutations must reside on the ascertained branches, shown in red. The allelic states of the ascertained
strains are shown as blue (CB4856) and orange (N2), and the wild isolate allele will be shared with either strain with probabilities that depend on the
genealogy. (B) Expected wild isolate haplotypes from each of the genealogies under ascertainment. Typical haplotypes are represented as strings of
SNP alleles colored by whether they are identical to N2 or to CB4856. In genealogies 1 and 3, most mutations will fall on the long outgroup branch,
and the wild isolate will resemble the strain with which it shares a recent ancestor. In genealogy 2, the two ascertained branches have equal length
with respect to the wild isolate, yielding an equal probability of each allele at each position. (C) Haplotypes of wild isolates. Each of the 41
distinguishable haplotypes is represented as a row for each chromosome. N2 carries haplotype 1 (all orange alleles) and CB4856 carries haplotype 41
(all blue). Putative deletions are red. The bracket above the X chromosome labels the interval across which haplotypes 29 and 39 exhibit haplotypes
consistent with genealogy 3.
doi:10.1371/journal.pgen.1000419.g006
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N2-like, but the JU258 X chromosome contains a significant

excess of CB4856 alleles (59%; p = 0.002), uniquely among all the

wild isolate chromosomes.

The wild isolate chromosomes differ in their distributions of

SNP genealogies (Figure 6C). The centers of chromosomes I and

V, in particular, are almost entirely N2-like (genealogy 1) in the

wild isolates, while the majority of wild isolate chromosomes

exhibit outgroup-like (genealogy 2) haplotypes across the centers of

chromosomes II and X. For almost every chromosome, at least

one strain retains a chromosome whose haplotype is largely

consistent with genealogy 2, in which N2 and CB4856 are more

closely related to one another than to the wild strain (Table 3).

These haplotypes represent repositories of allelic variation that

exceeds that available in N2-CB4856 comparisons. For chromo-

some V, however, only one wild isolate has more than 40%

CB4856 alleles, and most strains are entirely N2 through the

center of the chromosome. The wild isolate carrying the least N2-

like haplotype varies by chromosome, meaning that there is no

single ‘next-best’ strain for SNP discovery genome-wide. The most

useful strains for each chromosome are indicated in Table 3.

Pairwise similarity among haplotypes is plotted in Figure S2.

We attempted to characterize the global population structure of

C. elegans using the Bayesian approach of structure 2.2, which

estimates the proportion of each strain’s ancestry derived from

each of a fixed number of ancestral populations [79,80]. The

analysis strongly favored multiple ancestral populations and

conferred the highest likelihood on a population history involving

three ancestral populations now extensively admixed (Figure 7).

The ancestral populations correspond roughly to a Bristol-like

strain, a Hawaii-like strain, and a third population. The

proportions of ancestry inferred for each wild isolate correspond

roughly to the fractions of each genotype drawing from the three

genealogies possible given our SNP ascertainment scheme.

Consequently, the CB4856 alleles present in the wild isolates

largely represent recent shared ancestry not with CB4856 but with

a common ancestor of both N2 and CB4856 (genealogy 2). To the

extent that much genealogical information is missing in genomic

regions characterized by genealogy 2, due to ascertainment bias,

the interpretation of the third ancestral population inferred by

structure is unclear.

Recombination in the Wild
We calculated bounds on the minimum number of recombina-

tion events, Rmin, required to explain the haplotype data under the

assumption that each mutation is unique (i.e. an infinite sites

model)[81]. The lower bound on Rmin is 40 or greater for each

chromosome and is 90 for chromosomes III and X (Table 4).

These numbers are substantially higher than those calculated from

previous data sets, reflecting the larger number of markers in our

analysis.

To assess the global pattern of linkage disequilibrium, we

calculated r2 for each pair of sites on each chromosome, excluding

Figure 7. Population Structure. Distinguishable wild isolate
haplotypes are represented as rows. At left, the allelic composition of
each haplotype is represented by orange and blue bars. At right,
population assignments from structure are shown for each haplotype,
with the most N2-like ancestral population orange and the most
CB4856-like blue. Likelihoods for alternative numbers of ancestral
populations (K) are shown below each plot. At K = 1, lnL = 223076.
doi:10.1371/journal.pgen.1000419.g007

Table 3. Divergent Chromosomal Haplotypes.

Chr

% N2 alleles in
least N2-like
haplotype

Least N2-like
haplotype
(locality)

Number of 41
haplotypes with
,60% N2 alleles

I 50.2 35 (Germany) 1

II 44.6 19 (California) 22

III 47.2 26 (California) 14

IV 51.8 7,8 (France) 7

V 58.3 40 (Germany) 1

X 40.7 39 (Madeira) 6

doi:10.1371/journal.pgen.1000419.t003

Table 4. Estimates of Rmin Bounds and r/Mb (Standard Error).

Chr Rmin r/Mb

lower bound Left arm Center Right Arm

upper bound (se) (se) (se)

I 53 4.69 0.24 1.43

116 (0.41) (0.07) (0.18)

II 67 1.23 0.01 2.30

143 (0.15) (0.01) (0.27)

III 90 4.00 0.40 3.91

177 (0.39) (0.03) (0.39)

IV 63 2.73 0.29 0.21

139 (0.24) (0.02) (0.05)

V 40 0.91 20.04 1.66

79 (0.11) (0.01) (0.19)

X 90 0.49 0.60 2.63

177 (0.03) (0.05) (0.24)

doi:10.1371/journal.pgen.1000419.t004
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sites with minor allele frequencies less than 0.1, and we made a

rough estimate of r, the population effective recombination

parameter, by nonlinear regression of r2 on physical distance

separating the sites. Sites exhibit high correlations across megabase

scales and even among unlinked sites (Figure S3), consistent with

findings from microsatellites [24,50], AFLPs [23], SNPs [52,82],

and sequence data [45–47]. Considering all pairs of linked sites, r2

decays to half its initial value over a distance of 3.3 Mb (Figure

S4), an LD half-length orders of magnitude higher than observed

in most obligately outcrossing species, including Caenorhabditis

remanei [82], Drosophila melanogaster [83], and maize [84], which

exhibit half-lengths measured in tens to hundreds of base pairs,

and humans, where the number is in the tens of kb [85]. Even in

Arabidopsis thaliana and rice, partial selfers like C. elegans, the LD

half-length is measured in kb rather than Mb [86,87].

To gain a finer-scale understanding of LD, we estimated r for

2 Mb windows centered on each SNP and for whole recombina-

tion rate domains (Figure 8A; Table 4). Variation in estimates of r
along the chromosomes echoes the variation in recombination

rates seen in the RIAILs, with r̂r higher in arms and lower in

centers. The similarity continues to the pattern of rate differences

between the left and right arms of each chromosome, with the

exception of chromosome I, where selection in the RIAILs

resulted in a compressed genetic map on IL and where balancing

selection at the same interval among wild strains may result in

reduced LD and elevated estimates of r [40]. The half-lengths of

LD for arm domains range from 500 kb (IL) to 9.9 Mb (IVR). The

center-domain half-length is shortest on the X chromosome

(3.5 Mb), while several chromosome centers exhibit no meaningful

decay of LD with distance (IIC and VC). Treating each arm and

center domain as an observation (Figure 8B), r̂r and recombination

rate are well correlated (r = 0.692, p = 0.001; r = 0.860, p,1025,

when IL is excluded). The estimated population effective

recombination rate is about 40% the meiotic recombination rate

c estimated from the recombination fraction in the RIAILs, with

the left arm of chromosome I a notable outlier.

Linkage disequilibrium extends among unlinked chromosomes.

We calculated r2 for all unlinked pairs of sites and found an excess

of linkage disequilibrium across the entire range of r2. With a false

discovery rate of 5%, 77,447 of 254,343 nonsyntenic pairs (30%)

exhibited linkage disequilibrium, and 1918 pairs were in LD with

zero false discoveries. Nonsyntenic associations extend primarily

between chromosomes 2, 3, and X (Figure 9; Figure S2). In many

strains these three chromosomes exhibit haplotypes consistent with

genealogy 2 (Figure 6C), implying that both population structure

and ascertainment bias may contribute to the elevated LD.

Association Mapping
The potential to map loci at high resolution by association in

wild C. elegans populations relies on appropriate levels of historical

recombination to break correlation among markers while

preserving correlations between markers and functional variants.

To assess the utility of C. elegans for association mapping, we

explored the correlations between the 907 non-singleton SNPs in

out dataset that are not missing any data and two traits, copulatory

plugging and epistatic embryonic lethality, that we have

phenotyped in the wild isolates and whose underlying causative

variants are known [40,41].

By Fisher’s exact test, 14% of all tested SNPs are significantly

associated with copulatory plugging after Bonferroni correction for

907 tests (Figure 10). The known plg-1 locus is on chromosome III

[6,41], where the most significant associations were observed, but

significantly associated SNPs were also located on chromosomes I,

II, and X.

Mixed-model approaches to control for family and population

structure have been successful at identifying SNPs associated with

traits in a background of high relatedness among strains [88,89].

We incorporated pairwise similarity (identity-by-state, IBS) and

admixture proportions estimated by structure into a mixed-model

analysis using EMMA [88]. Only ten SNPs, all on chromosome III,

remained associated with copulatory plugging in the mixed-model

analysis incorporating the IBS matrix. Eight SNPs are in perfect

LD with one another and with the trait; these SNPs are spread

across roughly 2 Mb of chromosome spanning the causal locus at

8.86 Mb. Results were similar whether or not the structure results

were incorporated into the analysis (Figure 10). The distribution of

p-values from mixed-model analysis are nearly uniform (Figure

S5), demonstrating the efficacy of the mixed-model approach for

controlling background relatedness among strains.

The epistatic embryonic lethality involves two tightly linked

genes mapping to the left side of chromosome I, with the two

Figure 8. Population genetic and meiotic recombination rate
estimates. (A) The population effective recombination parameter
estimate r̂r (per base pair) is plotted in black for sliding windows of
2 Mb centered on each SNP. Estimates are derived from the rate of
decay of linkage disequilibrium with physical distance. Red bars indicate
the estimates of r̂r for whole recombination rate domains (arms and
centers), and green bars indicate ĉc, the estimated meiotic recombina-
tion rate per base pair, inferred for each domain from the
recombination fraction observed in RIAILs (Figure 1; Table 1). (B)
Domain-specific estimates of r and c are correlated, and r̂r is about 40%
the magnitude of ĉc.
doi:10.1371/journal.pgen.1000419.g008
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haplotypes maintained at intermediate frequency by balancing

selection [40]. Fisher’s exact test identified only 9 SNPs associated

with the phenotype after Bonferroni correction, spanning 1 Mb

centered on the causal insertion/deletion polymorphism at

2.35 Mb (Figure 10). The most highly associated SNP

(p = 3.661028), at 2,318,113, is 22 kb from the causal deletion.

Mixed-model analysis incorporating only the pairwise identity

matrix reduced the number of significant associations to just two,

with the significance of the SNP at I:2,318,113 dramatically

increased. An additional SNP, very distantly linked at I:12,967,075

is falsely weakly associated with the lethality phenotype when

structure output is incorporated as an additional fixed effect in the

model. Overall, however, the p-values at sites distant from the

causal variant are nearly uniform (Figure S5).

Discussion

Recombination in C. elegans RIAILs
The genotype data from our 20-generation cross and from a

global panel of wild isolates reveal the landscape of recombination

and diversity across the C. elegans genome.

The RIAIL genotype data corroborate the domain structure of the

C. elegans genetic map, with low recombination centers and high

recombination arms, and we found the first clear evidence for

recombination rate domains on the X chromosome. We used a

segmented linear regression approach to estimate positions for the

boundaries of the recombination rate domains. These boundaries

show that the autosome centers are very similar to one another in

relative size despite substantial differences in absolute size. The arms

vary substantially in both absolute and relative size, and they vary

substantially in recombination rate as well. Part of the variation

among arms is explained by chromosome size, with shorter

chromosomes forced to fit their obligatory crossover into a smaller

physical distance.

All of the chromosomes exhibit large subtelomeric regions that

effectively exclude nearly all recombination events. The tip

domains, previously characterized as regions of high gene density

on the basis of small genetic distances between mutations, are in

fact physically large domains in which genes are almost perfectly

linked. Overall we estimate that more than 7 Mb of the C. elegans

genome (7%) falls in the tip domains of extremely low

recombination. Despite the nonrecombining regions at the end

of each chromosome, the RIAILs have a dramatically expanded

genetic map and an expected mapping resolution of 225 kb,

making them a useful tool for mapping QTL.

Two patterns confirm that local sequence features shape the

recombinational landscape, despite the existence of potent

mechanisms of chromosome-scale regulation of crossover events

[90]. First, the low recombination central domains are not

physically centered on the chromosomes, as would be expected

if recombination rate is shaped merely by position in relative

chromosomal coordinates. Second, the recombination rate

variation we observe within domains, though not sufficient by

itself to exclude constant-rate domains, is well mirrored by

variation observed from the two- and three-point cross data

compiled in WormBase. These repeatable patterns of small-scale

rate variation establish that recombination is responsive to local

variables.

Many questions about the C. elegans recombinational landscape

remain unanswered. Each chromosome has one sharply defined

arm-center boundary and one with a more gradual change in rate.

The gradual boundary is closer to the pairing center on all but

chromosome III, where neither boundary is as sharp as is typical

for other chromosomesand where epistatic selection may distort

the evidence of recombination rate variation. The role of

temperature and sex in regulating crossover position also remains

unclear, as our results, which include male and hermaphrodite

Figure 10. Association mapping in wild C. elegans. Negative log p-
values for each of 907 SNPs are shown for two traits and three tests of
association. SNPs are ordered by physical position from chromosome I
through X. Gray lines represent Bonferonni-corrected p = 0.05 signifi-
cance thresholds. In the upper plot, the highly significant red points
cover identically positioned green points, and these points are plotted
at an arbitrary 2ln(p) of 40 because the perfect genotype-phenotype
association yields an infinite 2ln(p) under the mixed-model LRTs. The
key applies to both panels.
doi:10.1371/journal.pgen.1000419.g010

Figure 9. Linkage disequilibrium among unlinked sites. Every
pair of unlinked SNPs with a significant r2 at the specified false discovery
rate is plotted. The axes represent the physically ordered SNPs spaced
equally and not by distance.
doi:10.1371/journal.pgen.1000419.g009
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meioses at 25uC, are similar to WormBase maps, derived primarily

from hermaphrodite meioses at 20uC.

Selection
Selection on the left arms of chromosomes I and II resulted in

shorter than expected genetic maps, causing underestimation of

meiotic recombination rates along those arms. Epistatic selection

may also have compressed the genetic map of chromosome III.

Epistatic selection may be common in C. elegans, because strains

occur primarily as inbred, selfing lineages, within which coadapted

alleles at unlinked loci have ample opportunity to arise and persist.

Experimental data from laboratory crosses [40,61] and from

ecological genetics of natural populations [24] provide strong

support for selection against recombinant chromosomes and

interstrain hybrids.

Each mating during the RIAIL cross involved the random

selection of an equal number of offspring, two, from each mating

pair, giving the design the character of a selection-minimizing

mutation accumulation experiment [91]. Consequently, selection

must be extremely strong to have altered allele frequencies among

the RIAILs. Moreover, because both N2 and CB4856 are viable

strains with similar developmental rates, the selection must involve

an interaction between alleles of the two strains. Strong epistatic

selection clearly obtains in the chromosome I case, where

paternal-effect-by-zygotic epistasis between tightly linked loci

causes embryonic lethality [40]. Selection against the CB4856

alleles on IIL may be due to partially penetrant epistatic lethality

or sterility, or possibly to a substantial growth rate defect such that

the worms with the slow-growth genotypes remained early larvae

at the time their more mature siblings were picked for subsequent

crosses; growth rate variation is known to segregate in C. briggsae

crosses [47]. The selected region of chromosome II, which spans

the interval from roughly 0.5 Mb to 2.2 Mb, does not exhibit

elevated linkage disequilibrium with other regions of the genome,

which might be expected in the event of epistatic selection. One

scenario is that the selected region, where CB4856 contains large

deletions relative to N2 [53], may interact weakly with many

regions of the genome, such that the interacting loci experienced

little individual selection during the cross. The selected region is

also strongly enriched for rapidly evolving F-box and MATH-

domain genes, which exhibit evidence for positive selection in

nature [92,93], increasing the potential for coadaptation with

other regions of the genome.

The shorter than expected map of chromosome III is not

associated with allele frequency skew or apparent distortion of the

recombination rate distribution compared to the WormBase map

(Figure S1). There are four possible explanations for the

observation. First, the short map may be due to chance

(p = 0.010). Second, it may be due to epistatic selection involving

multiple close pairs of sites, resulting in a short but proportionate

map. Third, chromosome III may truly have a smaller genetic

length than the other chromosomes. Both the WormBase map and

data from other studies documenting the 50 cM length of

chromosome III argue against this possibility [94]. Finally, the

RIAIL map may truly be distorted but the WormBase map is

erroneous in some details. The WormBase map derives from

thousands of independent crosses performed over many decades in

many labs, and the composite map may not accurately reflect the

underlying recombination probabilities in any single cross.

We detected apparent QTLs accounting for recombination

breakpoint number on chromosomes I and II that are clearly due

to selection-driven allele frequency skew. Allele frequency skews

are common in experimental crosses and attempts to map

recombination modifiers must take them into account. Neverthe-

less, these skews lead only to false linkages of recombination

modifiers to their own chromosomes (false cis-acting modifiers).

We identified distant linkages for chromosome I breakpoint

number and for total breakpoint number, and others have

identified such distant linkages in other species [73]. These QTLs

may represent true modifiers, but the strong evidence for highly

constrained meiosis in C. elegans, with nearly complete interference

[1], and the expectation that RIAIL designs will be poorly

powered to detect modifiers [72] suggest that the approach of

using breakpoint number to map recombination rate modifiers

may suffer from additional unidentified biases.

Population History of Wild Isolates
The 1460-SNP genotypes of 125 wild isolates represent only 41

distinct genome-wide haplotypes, consistent with the well-estab-

lished prevalence of selfing among C. elegans in nature. Individuals

from single localities are often genotypically identical, though we

also observe substantial diversity among strains within localities.

The recent collections from France and Germany confirm that

strains from different localities are typically distinct, with minor

exceptions for proximate collections. Those results contrast with

the pattern evident among the less systematically collected strains

acquired over many years by the Caenorhabditis Genetics Center

(CGC), where identical haplotypes are found among strains

collected in far corners of the globe. The pattern suggests that

these older collections may include strains whose origins are

discordant with those implied by their locality data, perhaps as the

result of sample mislabeling during their histories in the lab.

Recent findings by McGrath and colleagues [43] confirm these

concerns. They determined that LSJ1, a strain maintained at a lab

in California for decades, is most likely an early derivative of the

same strain from Bristol that later gave rise to the laboratory strain

N2, which carries haplotype 1. LSJ1 carries haplotype 2, which

differs from N2 at just one SNP among the 1460 genotyped, but it

also differs by functional mutations in two genes, npr-1 and glb-5

[43]. The N2 allele at these loci are present exclusively in strains of

haplotypes 1–4, and the N2 npr-1 allele occurs in all such strains

with the exception of LSJ1. The implication is that the N2

mutations arose in the laboratory subsequent to the separation of

the Bristol strain into its LSJ1 and N2 derivatives, and that strains

carrying the npr-1 and glb-5 mutations are laboratory-derived

descendents of N2.

Our genotype data corroborate documentary evidence suggest-

ing that haplotypes 3 and 4 may be derived from laboratory

crosses between N2 and a derivative of the Bergerac strain

(haplotype 7), as foreseen by Egilmez et al. [48] on the basis of

patterns of Tc1 transposon content. The likely laboratory origin of

haplotypes 1–4 has several consequences. One is that all wild

strains described from the Midwestern United States (TR388,

TR389, and TR403) are dubious. Another is that the allelic

variants cloned from haplotypes 1–4, including those in npr-1, glb-

5, and perhaps scd-2, likely originated in the laboratory. Moreover,

early inferences about C. elegans population biology may have been

influenced by inclusion of multiple samples of similar laboratory

strains as putative wild isolates from different geographic locations;

of the 32 strains characterized for Tc1 patterns by Hodgkin and

Doniach [6], 12 carry haplotypes 1–4.

Finally, the reliability of locality data from other early

collections is called into question. A potential mixup involving

the provenance of CB4555, DR1349, and CB4858, presumed

derivatives of a strain from Pasadena, has been noted previously

[6], and our data show CB4858 to be very distinct from CB4555

and DR1349, with the latter two carrying dubious haplotype 4 in

common with strain DH424. We found that CB4858 shares
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haplotype 20 with strains from other localities, including AB2-4,

from Adelaide, Australia, and CB4855, from Palo Alto, California.

The genotypic similarity among CB4858, CB4855, and AB2-4,

which has been noted previously [6,45,50], superficially suggests

that they may share an ancestor in a laboratory. However, distinct

chemoreceptor pseudogenization [59] and Tc1 patterns [6]

provide evidence for the distinctness of CB4855 from the other

strains, and AB4 and CB4858 appear quite distinct from one

another in other SNP datasets [46,52]. Our 1460 SNPs also fail to

distinguish among recently collected strains known from other

data to be distinct; for example our haplotype 33 includes strains

known to vary at a microsatellite locus [50].

We used the RIAIL genotypes as a standard against which to

evaluate wild isolate genotypes, and this control allowed us to

identify 101 loci at which wild strains segregate alleles distinct from

N2 and CB4856. Third alleles likely represent deletions overlap-

ping the target SNP or imply the presence of additional SNPs that

disrupt hybridization of the genotyping oligos. These variants are

strongly enriched in chromosome arms and tips, particularly IIL

and VR, previously identified as enriched in deletions based on

hybridizations of genomic DNA to microarrays [53]. The elevated

levels of putative deletion polymorphisms are not strictly

attributable to recombination rate, as the levels are highest in

the chromosome tips, which are very recombination poor.

Variation among chromosomes also points to sequence-specific

properties influencing these polymorphisms.

Hawaiian Exceptionalism
C. elegans geneticists have long recognized that the Hawaiian

strain, CB4856, collected from a pineapple field in 1972 [6], is

divergent relative to other wild isolates [46,52,57,59], with some

loci dramatically diverged uniquely in this strain [46]. Our data

confirm that CB4856 has experienced genetic isolation from all

other sampled strains. The large excess of alleles unique to Hawaii,

the excess of N2 alleles among all other strains, and the prevalence

of two of the three possible genealogies for wild isolate

chromosomes all point to the lack of recent reproductive contact

between the population in which CB4856 resides and the

remainder of the global C. elegans population. Every other wild

isolate exhibits long stretches of N2-like alleles (genealogy 1;

Figure 6), consistent with a recent common ancestor for N2 and

the wild isolates for those regions of the genome. However, most

wild isolates also carry large regions of genome consistent with

genealogy 2, implying that these strains retain allelic variation

beyond that present in the N2-CB4856 comparison. Consequent-

ly, the period of isolation of CB4856 must be short relative to the

average coalescence time of C. elegans alleles. Population genetic

analyses of resequencing data from selected genomic regions

support the same conclusion; the Hawaiian strain is often nested

well within the genealogy for particular loci [45–47]. The short

period of isolation suggests that hyperdivergent sequences unique

to the Hawaiian strain may represent targets of positive selection

in Hawaii [46] rather than evidence for ancient divergence

between lineages.

Stronger inferences about C. elegans population history are

confounded by a severe and unusual SNP ascertainment problem,

intermediate between phylogenetic ascertainment bias [95] and

population genetic ascertainment bias [78]. The problem is

worsened by the presence of population structure [96,97], a

variable whose effect on ascertainment bias depends on the nature

of the structure, which is unknown in this case. The striking

variation among chromosomes in haplotype patterns (Figure 6)

may represent differences among chromosomes in the recency of

common ancestry between N2 and CB4856, influencing the

probability of observing genealogy 2 in wild isolates, or it may

represent true differences among chromosomes in the prevalence

of genealogy 2, due perhaps to selection. One reassuring

observation is a strong qualitative correspondence between the

haplotype pattern we observe for CB4858 and the genomewide

SNP density between N2 and CB4858 inferred from whole

genome resequencing [51]. The correspondence implies that our

genealogical model of haplotypes from ascertained SNPs accu-

rately reflects SNP density independent of N2-CB4856 divergence.

The excess of genealogy 1 through the center of chromosome V

among nearly all wild isolates may therefore represent a selective

sweep favoring an N2 allele.

As all wild isolates should be similarly affected by ascertainment

bias, we can infer that the relative divergence of JU258, a strain

from Madeira, is not attributable to its origin from an island, as is

sometimes supposed. Several strains from Northern Germany

(e.g., MY2) exhibit similarly divergent haplotypes. At the same

time, JU258 is unique among wild isolates in carrying a

chromosome with a significant excess of CB4856 alleles, consistent

with very modest reproductive contact between ancestors of those

strains subsequent to the apparent isolation of CB4856 from all

others [53,59].

Outcrossing and Recombination in Nature
Estimates of the frequency of outcrossing in wild C. elegans vary

substantially [23,24,45,55,98], but all estimates derived from

patterns of linkage disequilibrium point to very low rates. The first

evidence for recombination among wild chromosomes appeared

only in 2000 [52], and as recently as 2003 it was possible to invoke

a single outcrossing event to explain C. elegans genotype data [46].

Our much denser dataset finds support for a large number of

recombination events, with a minimum of 90 events required to

explain variation on each of chromosome III and X.

Despite the evidence for ample recombination, linkage

disequilibrium is high within and among C. elegans chromosomes.

Our estimate of the population effective recombination parameter

is strongly correlated with our estimate of recombination rate from

the RIAILs, much more than is observed in Arabidopsis thaliana

[86], although the scale over which rates are estimated may

influence these analyses.

Strikingly, the magnitude of r̂r is only about 40% that of ĉc, the

estimated meiotic recombination rate. In a random sample of

chromosomes, in the absence of ascertainment bias and popula-

tion structure, r̂r is an estimator of 4Nec(1-s) [99], where Ne is the

effective population size and s is the selfing rate. The effects of

ascertainment bias and population structure prevent rigorous

quantitative inference from our estimate of r; simple ascertain-

ment bias is expected to elevate r2 [100], but confounding

structure irremediably complicates the matter. Supposing that our

estimate reflects biological phenomena and not merely statistical

artifact, there are two general explanations for the extremely low

value of r̂r. First, we may infer that the effective population size is

very small and that the selfing rate is very large. Both s and Ne have

to be at the extremes of biological plausibility for this model to fit

the observed relationship between r̂r and ĉc, such that the product

of the population size and outcrossing rate (1-s) is roughly 0.1. For

example, the effective population size estimated from nucleotide

polymorphism level p̂p, N̂Ne*5|104 (at equilibrium, p = 4 Nem;

empirically, m̂m*9|10{9 from mutation accumulation experi-

ments[101] and p̂p*2|10{3 from population resequencing [45]),

implies a low outcrossing rate of ,261026. Although this very

rough estimate of outcrossing rate is less than an order of

magnitude smaller than other estimates based on linkage

disequilibrium in C. elegans [23,45], direct estimates of outcrossing
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from heterozygote frequencies are much higher, in the range of

1022 and greater [24,55]. These direct estimates, in conjunction

with our estimate of r, imply an effective population size smaller

than 10. The disconnect between population genetic and direct

estimates of outcrossing rates yields a second explanation for the

low population effective recombination rate — selection against

outcross progeny or recombinant genotypes, i.e., outbreeding

depression [24,61]. Heterozygotes produced by outcrossing may

have low reproductive success and their offspring, with recombi-

nant genotypes, may experience epistatic selection against

deleterious combinations of alleles [24]. Outbreeding depression

has been observed repeatedly in the laboratory [40,61], including

in the genotypic patterns evinced by the RIAILs on chromosomes

I, II, and III. Moreover, a longitudinal study of wild populations of

C. elegans provided strong evidence of selection against recombi-

nant genotypes in nature [24]. That selection can influence r̂r is

evidenced by the elevated estimate on the left arm of chromosome

I, where zeel-1/peel-1 haplotypes are maintained by balancing

selection [40].

Outbreeding depression may explain some of the strong linkage

disequilibrium among unlinked sites (Figure 9), as epistatic

selection against recombinants can preserve correlations among

chromosomes. Because such patterns of LD among chromosomes

are expected in the presence of population structure, however,

strong inferences about the causes of LD are not possible.

Association Mapping
Despite the exceptional levels of linkage disequilibrium across

the C. elegans genome, we have demonstrated the feasibility of

mapping common, large-effect variants by association. Ordinary

correlations between alleles and phenotypes resulted in large

numbers of false positive associations, but use of a mixed-model

approach to control for background similarity among strains

[88,89] was successful.

The two traits we mapped, copulatory plugging and embryonic

lethality, are best case scenarios for association mapping, with

intermediate frequencies and Mendelian inheritance. Even in

these cases, associations in regions of high LD necessarily span

large intervals, more than 2 Mb in the case of plg-1. High-

resolution association mapping in the C. elegans isolates collected to

date is most likely to be fruitful for associations with markers on

chromosome arms.

The very-high-resolution (,20 kb) association detected for

embryonic lethality reflects the exceptionally low LD around the

loci responsible for the trait, attributable to the long-term

maintenance of the alleles by balancing selection. The low LD

around zeel-1 and peel-1 further confirms that the alleles are ancient

and not involved in genome-wide differentiation between the two

incompatibility classes [40].

Conclusion
We have used high-density SNP genotyping to extensively

characterize patterns of recombination in a large panel of C. elegans

recombinant inbred advanced intercross lines. These lines provide

a powerful permanent resource for high-resolution genetic

mapping of phenotypic variation. We also genotyped a large

collection of wild isolates, allowing us to define a set of isolates with

distinct haplotypes and to describe in detail the genetic history of

the C. elegans population. These results call into question

commonly held beliefs about the origins of a number of isolates.

Further insights into C. elegans population biology await broader

surveys of sequence variation among the isolates.

Methods

Generating RIAILs
We generated recombinant inbred advanced intercross lines

[102] from a cross between N2 and CB4856. We performed

reciprocal crosses, yielding two classes each of male and

hermaphrodite progeny differing in their mitochondrial and X

chromosomes. We performed each of the four possible crosses

among these strains, yielding four classes of F2 hermaphrodites

and a single class of F2 males, ignoring the male mitochondrial

genome, which is not transmitted. We performed the four possible

crosses among these F2s, with each class of cross contributing 64

male and 64 hermaphrodite worms to the 512-worm F3

population, at which point we initiated random pair mating with

equal contributions of each pair to each generation [62]. The

random pair mating continued until the tenth generation.

Each cross plate contained a single male and a single

hermaphrodite, and each generation some crosses failed due to

poor male mating, evident from the absence of male offspring

among the progeny. Other crosses failed due to segregating

sterility, as evidenced by the failure of the hermaphrodite to

produce any offspring. In addition, in some cases crosses failed

because worms crawled to the edge of the plate and desiccated. To

expand the population, we derived two lines from each plate

containing tenth generation hermaphrodites. Each of the lines was

then propagated by selfing a randomly selected hermaphrodite for

each of 10 generations.

Worms were cultured using standard methods [103] and were

maintained at 25uC during the construction of the RIAILs.

Wild Isolate Strains
We acquired 125 wild isolates from three main sources.

Forty-three strains received from the Caenorhabditis Genetics

Center come from unsystematic collections from sites in Europe,

North America, and Australia since the 1940s. The origins of most

of these strains are recounted in Hodgkin and Doniach [6], and

the sources of the others (JU258, LSJ1, PB303, PB306, PX174,

PX176, PX178, and PX179) are given in WormBase [67]. Two

strains lack locality data. PB303 and PB306 were isolated by Scott

Baird from isopods obtained from biological supply companies;

the geographic origins of the isopods are unknown. LSJ1 derives

from a laboratory in California, but it may represent an

independent culture of the Bristol strain that gave rise to N2

[43]. The CGC received the strain in 1995.

The remaining wild isolates come from two systematic field

collections. Haber et al. [50] collected 23 strains in northern

Germany in 2002. We acquired these strains from the CGC.

Barriere and Felix [23,24] collected C. elegans from localities across

France and we acquired from them 59 strains collected from 2001

through 2005.

Genotyping
We collected DNA from each RIAIL and wild isolate using a

salting-out protocol [104] applied to populations of each strain.

We genotyped the strains using Illumina’s GoldenGate assay

[105]. The assay interrogated 1536 loci reported in public

databases as SNPs between N2 and CB4856. The databases

contained 1099 confirmed SNPs and more than 17,000 SNPs

predicted from sequence but not confirmed. 795 confirmed SNPs

passed Illumina’s design criteria. These were supplemented with

741 unconfirmed high-confidence SNPs with good design scores to

make up the final set of 1536. This set was selected with the

SNPdome algorithm (Illumina) to ensure uniform coverage of the

C. elegans genome and to minimize gaps.
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We used the RIAIL genotypes to validate the SNPs and confirm

their map order. From the 1536 assay results, we identified 1205

high-quality SNPs with the following properties: N2 and CB4856

DNA samples were assigned different, homozygous genotypes with

Illumina confidence scores .0.5; fewer than 5% of the 236

RIAILs had confidence scores ,0.5; fewer than 2 RIAILs were

called as heterozygotes. For these 1205 SNPs, we examined the

wild isolates and assigned genotypes to calls with confidence scores

.0.35. For the 285 SNPs that yielded some confidence scores

between 0.35 and 0.5, fluorescence intensities were individually

inspected and calls assigned manually when unambiguous.

For many of the 1205 RIAIL-confirmed SNPs, one or more

wild isolates failed to give any genotyping signal. We identified a

threshold of normalized intensities of both fluors #0.009 at which

768 wild isolate genotypes gave no signal (0.5018% of all calls)

while the RIAILs gave only 8 genotypes at the same level

(0.0028%), a 180-fold enrichment for the wild isolates. As these

failed wild isolate genotypes exhibit linkage disequilibrium with

well-genotyped SNPs, they likely represent mutations that disrupt

the hybridization of the Illumina oligos to the genotyping interval.

We assigned a third-allele call to these genotypes.

The remaining 331 SNP assays were individually examined to

assign genotype calls. For 46 assays, N2 and CB4856 yielded the

same genotype, implicating false-positive SNPs predictions. An

additional 29 SNPs produced uninterpretable fluorescence

intensity scatterplots. We were able to assign genotype calls for

196 SNPs which failed to pass the confidence threshold due

primarily to low intensity. The remaining 70 SNPs exhibited more

than two clusters of genotypes in plots of fluorescence intensities.

We found that the extra clusters were due to hybridization of the

SNP-assay oligos to additional loci which themselves exhibited

segregation. As a result, each cluster could be assigned a

homozygous genotype call on the basis of linkage disequilibrium

with adjacent SNPs among the RIAILs.

The final dataset included 1460 SNPs. We excluded one RIAIL

from subsequent analysis because its genotypes included a large

proportion of ambiguous calls. The resulting dataset includes 236

RIAILs and 125 wild isolates scored at 1460 SNPs. The 527,061

genotypes include 1450 third allele (putative deletion) calls among

the wild isolates, 654 Ns for bad data, and 180 heterozygote calls.

Eight of the RIAILs exhibited short tracts of residual heterozy-

gosity.

The mitochondrial genotype for each RIAIL was determined by

PCR-RFLP, using primers 59-CTCGGCAATTTATCGCTTGT and 59-

CTTACTCCCCTTTGGGCAAT and digesting with PmeI.

We estimated a genetic map for the RIAIL cross using r/qtl [74]

and found that 6 SNPs had expected physical positions on

chromosomes other than those to which they mapped. These may

represent errors in the genome assembly or in oligo production;

the oligo sequences map uniquely in the genome assembly. The

expected and mapped physical positions of these SNPs are in

Table S4. Analyses of RIAILs employed the 1454 physically

mapped SNPs; the complete dataset is provided in Table S1. We

considered the mismapped SNPs in analyses of WI haplotypes but

excluded them from analyses that required physical positions. The

complete wild isolate dataset is provided in Table S2.

In all cases where a RIAIL genotype contained an allele from

one strain flanked by alleles from the other parental strain (i.e., a

single-marker segment), we re-examined the plots of fluorescence

intensities to confirm the genotype call; such a pattern is expected

for a genotyping error and can strongly bias estimates of map

lengths and breakpoint counts [71].

We estimate bin size as the distance from the end of a

chromosome to the midpoint of the first breakpoint-containing

interval or as the distance between the midpoints of successive

breakpoint-containing intervals. This approach ignores bins

created by multiple independent breakpoints within a single

interval and uses interval midpoints rather than outside markers to

avoid overlapping bins. Expected bin size is the per-base-pair sum

of the squares of the bin lengths [106].

Recombination Rate Domain Analysis
We estimated genetic distances in r/qtl using the Haldane map

function, treating observed recombination fractions as though they

had been observed in a backcross. The marker density is

sufficiently high that the exact form of map function employed

has little effect on estimated genetic distances.

We defined the tip domains of each chromosome to include all

markers between the chromosome ends and the first recombina-

tion breakpoint observed in the RIAILs. The midpoint of this most

distal recombinant interval was chosen as the tip-arm domain

boundary. The non-tip markers were included in a segmented

linear regression analysis, using the segmented package in R [107], to

identify arm-center domain boundaries. To estimate confidence

intervals for the domain boundaries, we used simulations of the

RIAIL chromosomes. We simulated 1000 RIAIL populations for

each chromosome, using the known pedigree. Each gamete

received a meiotic chromosome with 0 or 1 breakpoints (i.e.,

complete interference [4]), the position of the breakpoints

determined by the relative recombination fractions of the centers

and arms estimated from the RIAILs. The tips were specified to be

non-recombining and the two arms of each chromosome were

assigned equal recombination probabilities per base pair; that is,

intra-chromosomal differences in rate between arms were not

modeled. Each chromosome was simulated as a sequence of

markers with one marker for every kilobase of chromosome. We

then sampled markers at spacing defined by the genotyped SNPs,

yielding a dataset of RIAIL chromosomes simulated with discrete,

constant-rate recombination domains. We estimated domain

boundaries for the simulated chromosomes by segmented linear

regression. The 95% confidence intervals vary in size depending

on the size of the chromosome and the difference in recombina-

tion probability between adjacent domains. On average the

intervals span 1.1 Mb.

The simulated RIAIL chromosomes were also used to estimate

expected allele frequency skews and expected genetic lengths for

each of the chromosomes. The RIAIL allele frequencies at each

marker were estimated using the sim.geno function in r/qtl [74] to

infer missing data.

WormBase [67] genetic maps are derived from data available

on June 7, 2008, for 4542 genes with experimentally determined

map positions and known physical positions. As our analyses of

these data are qualitative, we made no effort to screen these data

for quality, as evident from several obviously mismapped data

points in Figure S1.

Breakpoint Count QTL Analysis
We performed non-parametric interval mapping [76] in r/qtl

[74]. The RIAILs differ in their relatedness as a result of the

derivation of two selfing lines from each 10th generation intercross

hermaphrodite. The paired lines exhibit substantially higher

similarity (mean percent bases shared 6standard deviation,

69.6611.4%) than unpaired lines (52.869.5%), so that back-

ground similarity could inflate lod scores at markers unlinked to

QTLs. Moreover, the significance of the lod scores would be

overestimated by conventional permutation, because the RIAILs

are not exchangeable; permuted datasets would break the

associations between genetically and phenotypically similar
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RIAILs [75,108]. Note that the mean similarity among unpaired

lines is greater than the expected 50% because of the influence of

selection on allele frequencies during RIAIL construction. For this

reason we have not used simulated genotypes [108] to assess QTL

significance. Instead we used a structured analysis and structured

permutations. We split the dataset into two subsets with each

RIAIL pair split between the two. We performed linkage scans

separately for the two subsets and summed the lod scores. We

permuted the two subsets separately 1000 times to derive genome-

wide significance estimates for each phenotype.

Structure Analysis
Estimation of population structure used a dataset of 40

haplotypes (haplotype 21, which differs from haplotype 20 only

by a single putative deletion allele, was excluded, as the analysis

treats these genotypes as missing data) and 1454 SNPs. We ran

structure 2.2 [80] ten times at each of five values of K, the number

of ancestral populations. We used the linkage model [79] with a

burn-in period of 10,000 replicates followed by 50,000 replicates

to collect estimated parameters and likelihoods. The outputs of the

repeated runs at each K were aligned using CLUMPP 1.1.1 [109]

and Figure 8 generated using distruct 1.1 [110].

Linkage Disequilibrium
We computed lower bounds on Rmin for each chromosome using

HapBound and upper bounds using SHRUB [81]. We used a dataset

with 1318 SNPs, after excluding all sites with missing data or

putative deletion alleles.

We used Haploview 4.0 [111] to calculate r2 between all pairs of

the 1042 sites with minor allele frequencies greater than 0.1 in the

40-haplotype dataset. We used these r2 values to estimate r per

basepair and its standard error by nonlinear regression using

equation 3 of Weir and Hill [112], implemented with the R function

nls. This simple method of moments estimator roughly approxi-

mates a likelihood estimator. Estimates of the half-length of LD

represent the distance at which the expected value of r2 from the

nonlinear regression drops below half its initial value. To estimate r
in sliding windows, we used the r2 values among SNPs within 1 Mb

to either side of each focal SNP. These 2 Mb windows are the

smallest practicable windows given our marker density. We also

estimated r for whole arms and centers, using the domain

boundaries estimated from the RIAILs and shown in Table 1.

We estimated the distribution of r2 among nonsyntenic sites in

the absence of association from 100 permutations of chromosomes

among the 40 wild isolate haplotypes, preserving allele frequencies

and chromosomal haplotype frequencies but breaking correlations

among chromosomes. The means of the ranked nonsyntenic

r2values across permutations provides an estimate of the number of

false discoveries at each quantile of the r2 distribution. Permuta-

tions and calculations were performed in R, and r2 was calculated

using the LDmat function in the popgen library (http://www.stats.

ox.ac.uk/,marchini/software.html). The dataset included 784

sites with no missing data and minor allele frequencies greater

than 0.1.

Association Mapping
We excluded singleton SNPs and those with missing data and

used the resulting 406907 matrix to estimate an identity-by-state

kinship matrix using EMMA [88]. We did not remove SNPs in

perfect linkage disequilibrium with other SNPs because we sought

to discern the genomic extent of intervals associated with traits.

We estimated the significance of associations in the mixed-model

analysis using likelihood ratio tests with the function em-

ma.ML.LRT, incorporating the kinship matrix and in some cases

the ancestral population admixture assignments from structure

(K = 3) as fixed effects.

Supporting Information

Figure S1 RIAIL maps recapitulate classical marker mapping

results. Chromosomal and regional rate variation patterns

observed in the recombinant inbred advanced intercross lines

(black points) are similar to those observed from thousands of two-

and three-point mapping experiments reported in WormBase (red

points). The RIAIL map distances represented here are scaled to

yield 50 cM total lengths for each chromosome. The classical

mapping data corroborate the great difference in rate between the

left and right arms of chromosome IV, with an exceptionally high

rate on IVL between roughly 1.0 and 2.4 Mb. At a sub-arm scale,

we see corroboration for variation along IIL very clearly and IR,

VR, and XL less so. Other regions that show variation in the

WormBase map are not evident in the RIAIL map, notably IVR,

VL, and XR. Nevertheless, our results support the claim of Barnes

et al. [65] that the arms are not truly constant-rate regions.

Found at: doi:10.1371/journal.pgen.1000419.s001 (3.99 MB EPS)

Figure S2 Pairwise identity among wild isolate haplotypes. For

each chromosome, pairwise allele-sharing between each haplotype

is plotted below the diagonal. Above the diagonal we present

results of the same analysis excluding all singleton SNPs, all of

which are unique to CB4856 (haplotype 41).

Found at: doi:10.1371/journal.pgen.1000419.s002 (1.65 MB EPS)

Figure S3 Linkage disequilibrium within chromosomes. Pair-

wise r2 values for all sites with minor allele frequencies .0.1 are

plotted. The axes represent physical position along each

chromosome. Pairs of sites with r2.0.5 are in black and those

with r2.0.9 are red.

Found at: doi:10.1371/journal.pgen.1000419.s003 (0.06 MB PDF)

Figure S4 Decay of linkage disequilibrium. Each point plots r2

for a pair of sites with minor allele frequencies .0.1, colored by

chromosome, as a function of the physical distance between the

two sites. The curves plot the nonlinear regression of r2 on distance

using the sample-size-corrected relationship between the variables

from Weir and Hill [112].

Found at: doi:10.1371/journal.pgen.1000419.s004 (0.19 MB PDF)

Figure S5 Distributions of p-values for tests of association. The

calculated p-value for each SNP marker is plotted under three tests

of association as in Figure 10: Fisher’s exact test, mixed-model

likelihood ratio tests incorporating a genotypic similarity (IBS)

matrix, and mixed-model LRT incorporating both genotypic

similarity and the results of structure analysis. The straight line

represents the expectation for uniformly distributed p-values.

Without mixed-model control for genomic similarity, the p-value

distribution is profoundly skewed to low values.

Found at: doi:10.1371/journal.pgen.1000419.s005 (4.04 MB PDF)

Table S1 SNPs and RIAIL Genotypes. SNP details and

genotype data for 236 recombinant inbred advanced intercross

lines.

Found at: doi:10.1371/journal.pgen.1000419.s006 (0.94 MB

TXT)

Table S2 SNPs and Wild Isolate Genotypes. SNP details and

genotype data for 125 wild isolates.

Found at: doi:10.1371/journal.pgen.1000419.s007 (0.62 MB

TXT)

Table S3 Strains and their Haplotypes. Strain, haplotype

number, locality, and counts of genotype calls.
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Found at: doi:10.1371/journal.pgen.1000419.s008 (0.03 MB

XLS)

Table S4 Misplaced SNP markers. Illumina oligo sequences,

expected positions, and map-based positions.

Found at: doi:10.1371/journal.pgen.1000419.s009 (0.02 MB

XLS)
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