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Network-level molecular evolutionary analysis
of the insulin/TOR signal transduction pathway
across 12 Drosophila genomes
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Biological function is based on complex networks consisting of large numbers of interacting molecules. The evolutionary
properties of molecular networks and, in particular, the impact of network architecture on the sequence evolution of its
individual components are, nonetheless, still poorly understood. Here, we conducted a fine-scale network-level molecular
evolutionary analysis of the insulin/TOR pathway across 12 species of Drosophila. We found that the insulin/TOR pathway
components are completely conserved across these species and that two genes located at major network branch points
show evidence for positive selection. Remarkably, we detected a gradient in the strength of purifying selection along the
pathway, increasing from the upstream to the downstream genes. We also found that physically interacting proteins tend
to have more similar levels of selective constraint, even though this feature might represent a byproduct of the correlation
between selective constraint and the pathway position. Our results clearly indicate that the levels of functional constraint
do depend on the position of the proteins in the pathway and, consequently, the architecture of the pathway constrains
gene sequence evolution.

[Supplemental material is available online at www.genome.org.]

Biological function is based on complex networks consisting of

large numbers of molecules. Indeed, genes do not act in isolation

but interact in molecular pathways. The evolutionary dynamics of

biochemical networks is, moreover, a fundamental issue in sys-

tems biology. Establishing the patterns of genetic variation across

networks and the impact of natural selection on such variability

can provide important insights into the evolutionary forces acting

in network evolution. Most evolutionary studies, however, have

focused on individual genes or gene families; consequently, the

properties and mechanisms underlying network evolution remain

largely unknown.

A central question in biological network evolution concerns

the role of topology in the evolution of individual network com-

ponents and, in particular, the effect of the position of an element

in the network on the strength of positive and purifying selection.

Whole-genome analysis has shown that better connected network

elements (e.g., hubs) tend to be more functionally constrained

(Fraser et al. 2002; Hahn and Kern 2005; Lemos et al. 2005; Vitkup

et al. 2006) and that physically interacting elements tend to ex-

hibit similar levels of selective constraint (Fraser et al. 2002; Lemos

et al. 2005). The position of an element in a network, therefore,

clearly affects its evolutionary fate. Nevertheless, little research has

addressed this question on well-characterized molecular path-

ways, showing that elements located at network branch points

tend to evolve adaptively (Eanes 1999; Flowers et al. 2007). More-

over, the upstream elements in some biochemical pathways are

more constrained than those in downstream positions (Rausher

et al. 1999; Lu and Rausher 2003; Riley et al. 2003). This kind of

selective constraint gradient along the upstream/downstream axis

has been explained by the hierarchical organization of these

pathways; namely, mutations in upstream genes would generate

greater pleiotropic effects than those in genes at the downstream

part of the pathway, being therefore more likely to have a delete-

rious effect.

Biochemical pathways can be classified into three categories:

metabolic; transcriptional regulatory; and signal transduction (or

signaling) pathways. Signaling pathways transduce signals (such

as hormones acting as ligands of extracellular receptors) from

outside to inside the cell. The ligand–receptor interaction triggers

a cascade of biochemical reactions (often through protein phos-

phorylation and dephosphorylation). The transduced signal ulti-

mately activates the effector elements of the pathway, which are

responsible for mediating the response.

The insulin/TOR (IT) signal transduction pathway plays

a central role in many critical biological processes in animals, in-

cluding organism growth, anabolic metabolism, cell survival, fer-

tility, and lifespan determination (Goberdhan and Wilson 2003;

Oldham and Hafen 2003). Both the network topology and the

molecular functions of its components have been well character-

ized in different organisms, including Drosophila melanogaster

(Supplemental Fig. S1), and are highly conserved across metazoans.

Current knowledge of IT signaling in D. melanogaster, with

the recent addition of the complete genome sequences for 12

species of the same genus, offers the possibility of conducting

a fine-scale evolutionary analysis of a signal transduction pathway.

Here, we have studied the molecular evolution of the IT signaling

pathway genes of 12 Drosophila species within a network-level

framework.

Results

Identification of insulin/TOR pathway genes
in Drosophila genomes

We identified a total of 315 putative orthologs of the 27 D. mela-

nogaster IT signaling pathway genes (Table 1) in 11 Drosophila

genomes. Therefore, we analyzed 342 DNA sequences (Supple-

mental Table S2). Since current genomic projects include many
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unsequenced regions, this should be considered as the minimum

number of actual genes. Additionally, recent gene duplication

events are difficult to identify given the low divergence between

the resulting paralogous copies, which might have been treated as

a single copy during genome assembly. Some of the identified

sequences are incomplete (they are located in partially sequenced

regions), and seven of them reveal some pseudogenization foot-

print (frameshifts, premature stop codons, or indels; Supplemental

Table S2).

All the IT pathway genes studied have orthologs in all 12

genomes, except eIF4E-6, which is present only in the melanogaster

subgroup of Drosophila. The D. melanogaster eIF4E-6 and 4EHP

genes, which belong to a seven-member paralogous group (Table

1), may be either nonfunctional or negative IT signaling regulators

(Hernandez et al. 2005). Current results, therefore, suggest that the

IT signaling pathway is well conserved across available Drosophila

genomes. Seventeen IT pathway genes have a 1:1 orthology re-

lationship, while the remaining 10 genes underwent a number

of duplication and/or loss events (20 duplications, 1 loss, and 5

pseudogenization events; Fig. 1).

Synonymous and nonsynonymous divergence along
the IT pathway

We inferred the impact of natural selection on the IT pathway

genes of the D. melanogaster group from the nonsynonymous (dN)

to synonymous (dS) substitution rate ratio (v = dN/dS). The values

of v range from 0.009 for CG6904 to 0.220 for Pten (Table 1). We

detected the footprint of positive selection in the eIF2B-e, Akt1,

and Tor genes by comparing the M7 and M8 models (the M7

model assumes a discrete beta distribution for v [0 # v # 1],

whereas the M8 model adds an extra class of sites [v > 1]; Sup-

plemental Table S3). The test is only significant for eIF2B-e and

Akt1 at a false discovery rate (FDR) of 5%.

To study the relationship between the v values and the ar-

chitecture of the IT signaling pathway, we evaluated whether: (1)

Table 1. Summary statistics used in the multivariate analysis

Gene Position
Protein
lengtha

Percent of
analyzed codonsb dN

c dS
c v Connectivityd

Effective no.
of codons

mRNA
abundancee

Akt1 5 530 94.15 0.042 1.059 0.040 4 53.71 144
chico 1 968 89.46 0.159 1.826 0.087 1 56.25 138
dm 7 717 57.04 0.221 2.833 0.078 14 45.77 221
eIF2B-e 7 669 96.11 0.096 1.909 0.050 1 42.99 195
eIF-4Ef 10 259 85.71 0.035 1.240 0.028 11 45.63 1002
eIF4E-3f — 244 100.00 0.236 1.423 0.166 6 48.33 225
eIF4E-4f — 229 100.00 0.081 1.007 0.080 0 46.74 114
eIF4E-5f — 232 81.47 0.119 1.364 0.087 10 47.21 248
eIF4E-6f — 173 0.00 — — — 0 54.24 8
eIF4E-7f — 429 47.79 0.243 2.295 0.106 8 54.46 53
4EHPf — 223 99.55 0.045 0.531 0.085 2 44.93 70
foxo 6 613 89.23 0.041 0.909 0.046 2 43.95 91
gig 6 1847 97.13 0.065 1.780 0.036 0 49.21 93
melt 4 488 96.88 0.036 1.499 0.024 0 47.75 17
Pi3K21B 2 992 91.90 0.142 2.483 0.057 12 48.77 173
Pi3K92E 3 506 95.86 0.102 2.102 0.049 1 46.55 221
Pk61C 4 1088 77.83 0.064 1.397 0.046 8 50.12 276
Pten — 836 98.25 0.139 0.634 0.220 2 54.36 174
Rheb 7 514 100.00 0.049 2.095 0.024 0 46.42 383
RpS6 10 182 98.01 0.023 0.956 0.024 8 33.48 3186
S6k 9 251 98.16 0.010 0.769 0.013 1 51.81 151
sgg 6 490 71.88 0.035 0.872 0.040 1 48.91 181
step — 1067 96.72 0.088 1.255 0.070 11 52.64 204
Thor 9 117 100.00 0.034 2.301 0.015 3 39.47 1317
Tor 8 2470 89.12 0.052 2.110 0.025 0 52.77 136
Tsc1 5 1100 93.27 0.086 1.831 0.047 9 48.35 169
CG6904 7 709 100.00 0.014 1.495 0.009 13 44.25 997

aNumber of amino acids in the D. melanogaster protein.
bPercentage of the D. melanogaster codons used for the v estimations (the rest represent positions poorly alignable or with alignment gaps).
cThe dN and dS values correspond to the sums across all branches of the melanogaster group phylogeny.
dNumber of PPIs involving each D. melanogaster protein.
emRNA signal level in D. melanogaster adults (Chintapalli et al. 2007).
fParalogous genes encoding the eukaryotic initiation factor 4E (eIF4E).

Figure 1. Gene duplication (.), loss (•), and pseudogenization (j)
events detected in the IT pathway across the Drosophila phylogeny.
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physically interacting elements within the IT pathway have more

similar v values, and (2) the v values are affected by the position of

the elements in the pathway. The first analysis revealed that

physically interacting IT pathway proteins (Fig. 2C) tend to evolve

at more similar rates: The average absolute difference between the

v values of the physically interacting elements in the IT pathway

(Xv = 0.015) is significantly lower than expected from a network

with the same elements and the same number of interactions

assigned at random (�Xv = 0.023, P = 0.010). To establish which v

component is the main contributor to this trend, we conducted

the analysis for dN and dS independently. The results of the Monte

Carlo test showed that the nonsynonymous changes are the main

contributors to the tendency (XN = 0.031, P = 0.004; XS = 0.591, P =

0.164).

We found a significant negative correlation between v esti-

mates for IT pathway genes and their position in the pathway

(computed as the number of steps required to transduce the signal

from InR to the other elements; Fig. 2) (Spearman’s rank correla-

tion coefficient, r =�0.607; P = 0.006; Fig. 3A). This result suggests

that the topology of the IT pathway influences the distribution of

selective constraint along it. More specifically, the downstream

elements (Fig. 2) have higher levels of selective constraint than the

upstream elements. When this analysis was conducted separately

for dN and dS, we again found that nonsynonymous changes are

the main contributors to the tendency (dN: r = �0.622, P = 0.004,

Fig. 3B; dS: r = –0.165, P = 0.499).

We considered whether the correlation between v and

pathway position was a general trend in the phylogeny or—on the

contrary—whether it might be attributable to some specific line-

age. To establish this, we analyzed each of the nine lineages (the

six external and the three internal branches of the melanogaster

group phylogeny) separately using the v values estimated under

the free-ratio model (FR). This test is only significant for the D.

yakuba (r = –0.524, P = 0.021), D. erecta (r = –0.511, P = 0.025), and

D. ananassae (r = –0.729, P = 0.0004) lineages. Even though this

correlation is not significant in the six remaining lineages, the r

statistic is also negative in five of them. We also applied a specific

two-ratio branch model to estimate the v ratios in two groups: one

including the D. yakuba, D. erecta, and D. ananassae lineages, and

the other comprised of the six remaining lineages. The correlation

is significant in the two groups (r = –0.669, P = 0.002; r = –0.455,

P = 0.050; respectively), indicating that the negative correlation

between the v values and the position of the elements in the

pathway is a phylogeny-wide trend and not caused by any lineage-

specific pattern.

The estimates of v used in the previous analyses were

obtained from nucleotide sequence data clearly alignable across

the six species of the melanogaster group. Since removing the most

divergent regions might bias the results, we reanalyzed the data

using the noncurated data set (the direct output of the ProbCons

alignment software). This analysis does not change the main

conclusion, namely, that v correlates negatively with the position

Figure 2. Graphs used in the network-level analysis. (A) Directed graph (G graph) representing the interactions across the D. melanogaster IT pathway
elements. Arrows (arcs) indicate the direction of signal transduction. Numbers on the left represent the position of the elements in the pathway. (B) Graph
T is a directed spanning tree of G used to compute the position of each element in the IT pathway (i.e., the number of signal transduction steps required to
transduce the signal from InR to the downstream elements of the pathway). This graph was obtained by removing some arcs from G (according to specific
biochemical criteria). We eliminated the three arcs involving feedback loops (activation of Chico by PIP3, which is synthesized by p110; activation of InR
by the transcription factor dFOXO; phosphorylation of PKB by TOR). Furthermore, if a particular node is reached by different paths (d4E-BP, dFOXO, PKB,
S6K, and Tsc2) we considered only one of them. For dFOXO, PKB, and S6K, we chose the longest path, since each of the paths allows the transduction of
one necessary but not sufficient signal for the activation/inhibition of these proteins (i.e., the elements need to receive all the signals for activation/
inhibition). Indeed, the recruitment of dFOXO to the cell membrane by Melt is a prior step to the phosphorylation (and consequent inhibition) of dFOXO
by PKB (the Akt1 product). In the same way, the recruitment of PKB to the cell membrane through its interaction with PIP3 (synthesized by p110) is also
a prior step to the phosphorylation of PKB by PDK1 (the Pk61C product). S6K needs to be phosphorylated by both PDK1 and TOR for full activation (Chou
and Blenis 1995; Dufner and Thomas 1999; Avruch et al. 2001). d4E-BP (the Thor encoded protein) is an inhibitor of the pathway activated by its
transcription factor dFOXO and inhibited by the TOR kinase. Given that only the second interaction activates the pathway, we eliminated the first from
the analysis. (C) Graph S is a subgraph of G that includes only the direct physical PPIs between the elements of the IT pathway.
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of the elements in the pathway (r = –0.559, P = 0.013). Another

putative source of bias is the use of an inadequate codon frequency

model (the v values reported here were estimated using the F334

codon frequency model; Goldman and Yang 1994). However, the

correlation was significant independently of the codon frequency

model used to estimate v (Fequal, F134, or F61).

Finally, as the selective constraint of a given gene is known to

correlate with different factors, including gene expression level,

codon bias, protein length, and connectivity (number of protein–

protein interactions [PPIs]), we considered whether these factors

could account for the correlation between v and the position of

the elements in the pathway. We found that (1) expression level,

codon bias, and protein length show a significant correlation with

the position of the elements in the pathway (r = 0.484, P = 0.036

for expression level; r = –0.497, P = 0.030 for codon bias, measured

as the effective number of codons [ENC]; r = –0.480, P = 0.037 for

protein length; Supplemental Fig. S2B–D), whereas connectivity

does not (r = 0.083, P = 0.734; Supplemental Fig. S2A), and (2)

these factors do not correlate with v (r = –0.213, P = 0.381 for

expression level; r = 0.207, P = 0.395 for ENC; r = 0.354, P = 0.137

for protein length; r = 0.213, P = 0.380 for connectivity; Supple-

mental Fig. S2E–H). Since expression level, codon bias, and protein

length are intercorrelated, some of the observed correlations

might actually result from indirect rather than from direct effects.

We used path analysis to better characterize the relationships

among these factors, connectivity, dN, v, and the position in the

pathway. This joint analysis (Fig. 4) shows that (1) the dN values

are clearly affected by the position of the elements in the pathway

(standardized path coefficient, b = –0.481; P = 0.035), even after

removing the effects of putatively relevant factors (gene expres-

sion level, codon bias, and protein length); (2) connectivity and dN

are positively associated after factoring out the effects of all other

variables (b = 0.389, P = 0.027); and (3) apart from dN, only the

gene expression level is significantly influenced by the pathway

position (b = 0.484; P = 0.006). The multiple regression model

explains 44.4% of the dN variability. Path analysis using two other

causal models (considering gene expression and protein length as

exogenous and endogenous variables, respectively) yielded similar

results.

Discussion

Distribution of IT pathway genes across Drosophila genomes

Our analysis shows that the IT pathway genes underwent 20

gene duplications, one loss, and five pseudogenization events

throughout the evolution of the 12 Drosophila species (Fig. 1).

Nevertheless, all the IT pathway genes have representatives in the

12 Drosophila species; the only exception is the eIF4E-6 gene,

which may be a nonfunctional paralog of the eIF4E multigene

family (Hernandez et al. 2005). The existence of nearly all the

genes in all the surveyed species, together with the relatively high

selective constraint levels (v < 0.25), suggests that the IT pathway

is functional across all these species.

It has been suggested that proteins that interact with each

other tend to show similar phylogenetic patterns of gene dupli-

cation and loss, owing to coordinated evolution (Fryxell 1996).

Noticeably, we found that some genes encoding physically inter-

acting proteins underwent gene duplication in the same lineages

(Akt1, Tor, Thor, and eIF-4E in the D. willistoni lineage; eIF4E-3 and

Thor in the D. grimshawi lineage) (Fig. 1). Nevertheless, the null

hypothesis of random accumulation of gene duplications across

the branches of the phylogeny could not be rejected (Monte Carlo

simulation test; P = 0.190).

Figure 4. Path analysis used to characterize the relationships among
element positions in the IT pathway, nonsynonymous divergence (dN),
dN/dS ratio (v), gene expression level, codon bias (measured by the ENC),
protein length, and connectivity. Pathway position, protein length, and
connectivity were treated as exogenous variables (those with no explicit
causes in the model), while the rest were treated as endogenous variables
(those caused by one or more variables in the model). The causal de-
pendencies between variables assumed in the model are represented by
single-headed arrows. Correlations between exogenous variables are
represented by double-headed arrows. The numbers on the arrows rep-
resent the standardized path coefficients (b). Solid and broken lines
represent significant and nonsignificant relationships, respectively.

Figure 3. Correlation between the position of the elements in the IT
pathway and the v (A) and dN (B) estimates. Continuous lines represent
regression lines.
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Impact of positive selection

We found that eIF2B-e, Akt1, and Tor genes show the footprint of

positive selection (only eIF2B-e and Akt1 after controlling for the

FDR). It has been suggested that elements located at branch points

of metabolic pathways exert a greater flux control and, therefore,

may tend to evolve under positive selection (Eanes 1999; Flowers

et al. 2007). If this is so, it should also be true for signal trans-

duction pathways. Interestingly, both PKB and TOR (the encoded

products of Akt1 and Tor, respectively) locate at major network

branch points (Fig. 2). Upon activation by insulin, p110 catalyzes

the synthesis of the membrane lipid PIP3, which acts as a docking

site for a number of pleckstrin homology domain-containing

proteins, including PKB. Consistent with the flux control hy-

pothesis, the Akt1 codons identified as evolving under positive

selection are located in the pleckstrin homology domain. Fur-

thermore, since TOR phosphorylates multiple IT pathway ele-

ments, it also locates at a major branch point of the IT pathway.

Selective constraints along the IT pathway

We found that physically interacting elements of the IT pathway

tend to have more similar v and dN values (P < 0.010). This pattern,

already observed in interactomic-level analyses, has been attrib-

uted to the coevolution of amino acids involved in protein inter-

actions (Fraser et al. 2002; Lemos et al. 2005). In our study,

however, this pattern might be a byproduct of the current corre-

lation between selective constraint and the pathway position. In

fact, after factoring out this effect, the association between v (and

dN) values of physically interacting elements is no longer signifi-

cant (Xv = 0.013, P = 0.105; XN = 0.030, P = 0.057), although close

to the critical value.

Remarkably, our study reveals a robust positive correlation

between the position of the elements in the pathway and func-

tional constraint levels. Although both v and dN estimates exhibit

a statistically significant correlation with the pathway position

(P < 0.006), results of the path analysis (Fig. 4) clearly indicate that

nonsynonymous divergence (dN) would be the main responsible.

A number of factors might underlie the detected correlation be-

tween selective constraints and pathway position. First, it has been

suggested that regulatory genes tend to evolve faster than struc-

tural genes (Tucker and Lundrigan 1993; Whitfield et al. 1993;

Purugganan and Wessler 1994; Gaut and Doebley 1997; Rausher

et al. 1999), and the structural genes (eIF-4E, RpS6, eIF2B-e, and

CG6904) in the IT pathway are located downstream. Thus, the

observed correlation might be a byproduct of this downstream

location of the structural genes. However, the correlation between

the position of the elements in the pathway and selective con-

straint remains significant even after removing these genes from

the analysis (r = –0.691, P = 0.004 for v; r = –0.594, P = 0.034 for

dN). Second, four IT pathway genes (chico, melt, Pk61C, and Akt1)

that encode proteins with a pleckstrin homology domain are

located in the upstream part of the pathway; therefore, relaxed

purifying selection in this domain might explain the observed

correlation along the pathway. However, the elimination of these

genes from the analysis does not affect the results (r = –0.620, P =

0.014 for v; r = –0.652, P = 0.008 for dN). Finally, throughout our

study we consider that the TOR pathway locates downstream of

the insulin pathway. Some experimental studies have questioned

this and place some elements of the TOR pathway (Tsc1, Tsc2,

Rheb, and TOR) on a route parallel to the insulin pathway (Old-

ham et al. 2000; Gao et al. 2002; Radimerski et al. 2002; Dong and

Pan 2004). Again, the observed correlation remains significant

after removing these four elements from the analysis (r = –0.581,

P = 0.023 for v; r = –0.683, P = 0.005 for dN).

Thus, our results suggest that the structure of the IT pathway

constrains the sequence evolution of its components. However, it

is not clear what the biological explanation is for the polarity in

the strength of purifying selection along the pathway. Diverse

factors might affect selective constraints in molecular pathways.

For instance, interactomic-level analyses have revealed a negative

correlation between evolutionary rate and connectivity (Fraser

et al. 2002; Hahn and Kern 2005; Lemos et al. 2005). In contrast,

our path analysis uncovered a positive association between dN and

connectivity. Hence, a polarity in the element’s connectivity along

the pathway might explain the correlation between selective

constraint and the pathway position. However, no significant cor-

relation was detected between connectivity (Table 1) and pathway

position (Supplemental Fig. S2A); therefore, the connectivity

pattern would not explain the correlation between selective con-

straints and the position of the elements in the pathway. Results

based on interactomic data, however, should be taken with cau-

tion since current D. melanogaster interactomic data is incomplete

and unreliable.

Gene expression level, expression breadth (the number of

different tissues in which a gene is expressed), codon usage bias,

and the length of the encoded proteins can also affect selective

constraints. In fact, genes with higher expression levels, higher

codon bias, or shorter encoded proteins tend to be more con-

strained (Duret and Mouchiroud 1999; Pal et al. 2001; Rocha and

Danchin 2004; Subramanian and Kumar 2004; Wright et al. 2004;

Lemos et al. 2005; Drummond et al. 2006; Ingvarsson 2007). As all

IT pathway genes seem to be expressed in all body tissues and

structures (Chintapalli et al. 2007), expression breadth cannot

account for the pathway polarity of the v values. A putative higher

translation rate of downstream IT pathway genes might justify the

observed correlation between v and the position of the elements

in the pathway. In fact, given the signal-amplifying kinetic be-

havior of the insulin pathway—at least in mammals (Sedaghat

et al. 2002), a higher protein abundance is expected in down-

stream IT pathway elements. On the other hand, shorter protein

lengths at the downstream IT pathway part might also generate

the observed selective constraint polarity. Interestingly, we de-

tected (1) a positive correlation between the position of the ele-

ments in the pathway and both expression level and codon bias

(Supplemental Fig. S2B,C) and (2) a negative correlation between

protein length and the position of the elements in the pathway

(Supplemental Fig. S2D). Namely, downstream IT pathway genes

encode shorter and more actively translated proteins. In this

pathway, however, none of these factors correlate with v or dN

(Supplemental Fig. S2F–H). Consequently, these would not be the

main factors responsible for the correlation between v and the

position of the elements in the IT pathway. It is conceivable that

some coupled effect emerging from codon bias, expression level,

and protein length might generate the selective constraint polar-

ity, even though these factors do not correlate with v or dN sepa-

rately. However, path analysis confirms that the relationship

between selective constraint and the position of the elements in

the pathway is significant even after factoring out the effects of

gene expression level, codon bias, protein length, and connec-

tivity (Fig. 4). Consequently, other biological factors are needed to

explain the purifying selection polarity along the IT pathway.

The number of molecular pathways in which a gene is in-

volved may affect its functional constraint levels; for instance,

highly pleiotropic genes are expected to be more constrained
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(Waxman and Peck 1998). Therefore, the distribution of the

strength of purifying selection along the upstream/downstream

axis of a pathway may be affected by its particular pattern of

interconnections with other pathways. A signal transduction

pathway receiving signaling inputs from a number of pathways

(i.e., with multiple inputs and a single output) is expected to be

more constrained at the downstream part given that the down-

stream elements would be involved in a greater number of path-

ways (Fig. 5A). Conversely, a network with a branching topology

including multiple outputs along the pathway will exhibit the

opposite trend in its selective constraint pattern (Fig. 5B). Hence,

the balance between the biological relevance of the signaling

inputs and outputs might generate a selective constraint polarity

along the pathway.

The correlation between functional constraint levels and the

position of the elements in the IT pathway might, therefore, be ex-

plained by its information flux pattern; in particular, on the basis

of the predominance of inputs over outputs along the pathway (in

terms of biological relevance). Indeed, even though the IT path-

way connection patterns for Drosophila are far from being fully

known, it does receive inputs from other pathways (Supplemental

Table S4). However, some IT pathway elements also transduce

signals to other pathways (i.e., there is not just one single output

signal) (Supplemental Table S4). Moreover, the biological impact

(in terms of fitness) of the interrelations of the IT pathway with

these other routes cannot be easily evaluated; therefore, it is dif-

ficult to determine whether the effects of signaling inputs over-

weigh those of the outputs.

Rausher et al. (1999) have shown that the selective constraint

levels in the plant anthocyanin biosynthetic pathway also corre-

late with the position of the elements in the pathway. However,

the correlation has the opposite sense to that observed in the IT

pathway (i.e., upstream anthocyanin biosynthetic pathway ele-

ments are more constrained than those in the downstream part).

In this case, the upstream elements are located above major

branch points and are consequently involved in the biosynthesis

of a greater number of compounds, whereas the downstream

genes only affect anthocyanins biosynthesis. The pathway, there-

fore, has more outputs than inputs (Fig. 5B). Polarity in the se-

lective constraint along the anthocyanin pathway was explained

by the involvement of upstream elements in a greater number of

biochemical routes (Rausher et al. 1999).

The sensitivity of the overall pathway function to the kinetic

properties of a given element will also affect selective constraint

levels. If genetic variation in the kinetic properties strongly affects

the pathway function, the element should be more constrained

than if the system works with relative independence from these

properties. Therefore, the selective constraint of a protein would

be determined not only by its kinetic properties, but also by its

position in the pathway and the properties of the interconnected

pathway elements. Along these lines, a theoretical analysis con-

ducted in the Ras signaling pathway (Nijhout et al. 2003) pre-

dicted that the pathway output would be more sensitive to the

upstream enzymes, which therefore should be more constrained.

This prediction was supported by DNA polymorphism analysis

(Riley et al. 2003). Applying this sensitivity analysis to the IT sig-

naling pathway would probably provide valuable insights into the

major biological processes that determine the selective constraints

along the pathway.

In summary, even though the biological processes underlying

the polarity in the selective constraint levels along the IT pathway

remain unclear, our results provide strong evidence that the

pathway architecture constrains the molecular evolution of its

components. Further work studying the patterns of molecular

evolution in pathways encompassing a wide range of topologies

and analyzing the biological impact of the interconnection pat-

terns is required to fully understand how network topology con-

strains the evolution of its components.

Methods

Identification of IT signaling pathway genes
in Drosophila genomes
The protein coding sequences (CDS) of the IT pathway genes in
the D. melanogaster genome (release 5.1) (Adams et al. 2000) were
retrieved from the FlyBase database (Crosby et al. 2007). Orthol-
ogous sequences of these genes in the 11 additional Drosophila
species with completely sequenced genomes (D. simulans, D.
sechellia, D. yakuba, D. erecta, D. ananassae, D. pseudoobscura, D.
persimilis, D. willistoni, D. mojavensis, D. virilis, and D. grimshawi)
were obtained from the Assembly, Alignment and Annotation site
(http://rana.lbl.gov/drosophila; CAF1 release; Clark et al. 2007).
For those genes with multiple splicing isoforms we chose the
variant encoding the longest protein among those shared across
the 12 species (Supplemental Table S1).

To obtain a bona fide set of genomic orthologous sequences,
we curated available preliminary gene annotations and ortholo-
gous relationships (GLEAN-R and fuzzy reciprocal BLAST data sets,
respectively; Clark et al. 2007). For this purpose, we discarded er-
roneous automatic orthology assignations; merged those groups
of adjacent gene predictions actually corresponding to different
regions of a single gene; and annotated coding regions that were
unannotated in the original GLEAN-R data set. Putative premature
stop codons and frameshift mutations were confirmed by ana-
lyzing the genomic trace archives (raw DNA sequence data); these
features were discarded if there was at least one sequencing trace
without the disrupting mutations. D. simulans sequences with
incomplete information were curated using DNA sequence data

Figure 5. Schematic representation of the selective constraint levels
expected along two hypothetical signaling pathways with different con-
nection patterns. (A) Pathway receiving multiple signaling inputs along
the pathway and with a single output. In this scenario, selective constraint
levels will be higher at the downstream part, since the elements are
progressively involved in a greater number of pathways. (B) Pathway with
multiple outputs along the pathway (i.e., with multiple branching points
able to transmit information to other pathways). In this scenario, the se-
lective constraint levels will be higher for the upstream elements. The
more constrained elements (nodes) are darker. The numbers in the nodes
represent the number of pathways in which each element is involved.
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information from the population genomics project for this species
(DPGP Simulans Syntenic Assembly version 2; Begun et al. 2007).

To identify putative unannotated genes, we conducted a two-
round search for each orthologous group. First, for each D. mela-
nogaster protein we performed a TBLASTN search against all other
11 genomes. Second, each hit (E-value # 10�5) was in silico
translated and used as a query for searching the D. melanogaster
genome. If the best hit in this second round corresponded to the
original D. melanogaster gene, the sequence was considered an
orthologous sequence.

We checked whether identified duplicated genes were arti-
factual (i.e., attributable to sequencing errors and the consequent
erroneous assembly). For this purpose, we used Fisher’s exact test
to contrast whether the relative number of nucleotide differences
between duplicates was similar for silent and nonsynonymous
positions. Copies with significantly different ratios were consid-
ered to be true paralogs. For the remaining cases, we checked the
quality of either the genomic sequences or the trace archives at the
mismatch positions, discarding those sequences with poor quality
(phred score < 20).

We confirmed the orthologous/paralogous relationships of
the different eIF4E genes in the 12 Drosophila species by analyzing
the topology of the protein gene tree. Orthologous relationships
of highly incomplete sequences were established by colinearity
conservation analysis.

Phylogenetic reconstruction

We generated a multiple sequence alignment (MSA) of the amino
acid sequences of each orthologous group using the software
ProbCons 1.11 (Do et al. 2005). This MSA was used to guide the
alignment of the CDS. The resulting CDS alignments were man-
ually improved using the software BioEdit 7.0.5.2. Unreliably
aligned regions were removed with Gblocks 0.91b (Castresana
2000) using the default protein alignment parameters.

For each orthologous group, we conducted a bayesian
phylogenetic reconstruction using the software MrBayes 3.1.2
(Ronquist and Huelsenbeck 2003), applying the nucleotide sub-
stitution model that best fits the data according to the Akaike in-
formation criterion. The FindModel program (http://hcv.lanl.gov/
content/sequence/findmodel/findmodel.html or http://www.hiv.
lanl.gov/content/sequence/findmodel/findmodel.html; an imple-
mentation of the MODELTEST software; Posada and Crandall
1998) was used for model selection. When the best-fitting model
was the HKY+G (not implemented in MrBayes), we used the
GTR+G model (i.e., the next most complex model implemented in
MrBayes). All analyses were conducted allowing for a proportion
of sites to be invariable (I). The eIF4E protein phylogenetic tree was
reconstructed by bayesian inference using the Whelan-Goldman
model of amino acid evolution (Whelan and Goldman 2001).

Codon-based analysis

We evaluated the impact of natural selection by estimating non-
synonymous (dN) and synonymous (dS) divergence, and their ratio
(v = dN/dS) using the program codeml from the PAML 3.15 package
(Yang 1997). We restricted this analysis to the six melanogaster
group species (D. melanogaster, D. simulans, D. sechellia, D. yakuba,
D. erecta, and D. ananassae) to avoid saturation at synonymous
sites, which could bias the dS estimates and therefore the v values,
and also because of the impossibility of obtaining reliable align-
ments for all 12 species. We used MSAs based on 1:1 ortholog sets.
In the two cases in which there were more than one gene copy in
a given species (i.e., co-orthologs), we used the gene with the most
complete sequence or the one without any pseudogenization

features (stop codons or frameshift mutations). Only clearly
alignable regions of the MSAs were used.

The M0 model (the simplest model, which assumes a single v

value for all lineages and sites) was used for most analyses. We also
applied the FR model (which assumes that each lineage has a dif-
ferent v value) and a specific two-ratio model (assuming two dif-
ferent v values across the phylogeny). To determine whether some
codon positions evolve under positive selection, we compared the
M1a and M2a models (Wong et al. 2004) and also the M7 and M8
models (Yang et al. 2000) using the likelihood ratio test (Whelan
and Goldman 1999). The FDR associated with multiple testing was
controlled at q = 0.05 (Benjamini and Hochberg 1995). The Bayes
Empirical Bayes approach (Yang et al. 2005) was used to identify the
codons evolving under positive selection (posterior probability $

95%).
Given the differences between gene trees and the species tree

concerning the phylogenetic position of the D. erecta and the D.
yakuba lineages (Pollard et al. 2006), for each orthologous group
we used the topology (from the three competing alternatives) that
best fits the data according to the M0 model. We conducted all
likelihood estimations using three different v starting values (0.1,
1, and 2) to overcome the problem of multiple local optima. All
these analyses were conducted using the F334 codon frequency
model (Goldman and Yang 1994).

Network-level analysis

We coded the structure of the IT pathway into a directed graph
(termed G, Fig. 2A) with nodes and arcs representing genes/pro-
teins and signaling (activation/inhibition) interactions, respec-
tively. We restricted the analyses to the intracellular part of the
pathway. Elements that do not directly interact with any other
element in the graph (PTEN) or which have an unclear position in
the pathway (Step; Fuss et al. 2006) were not included in G. Ad-
ditionally, to avoid using redundant information, we considered
only one of the seven genes encoding the eIF4E isoforms: the gene
with the highest mRNA abundance in D. melanogaster (eIF-4E;
Chintapalli et al. 2007; Hernandez et al. 2005). In total, the
resulting G graph has 19 nodes connected by 25 arcs. Twenty of
these interactions are physical—direct PPIs, four are metabolic
(p110 catalyzes the synthesis of the membrane phospholipid PIP3,
which recruits Chico, Melted, PDK1, and PKB proteins to the cell
membrane), and the other involves the activation of the Thor gene
by the dFOXO transcription factor.

We generated two subgraphs of G (termed S and T) by re-
moving some arcs. The S graph contains only the 20 physical PPIs
(Fig. 2C) and was used to contrast whether levels of selective
constraint and patterns of gene duplication are more similar for
physically interacting proteins. T is a directed spanning tree of G
obtained according to biochemical criteria; in this graph, Chico is
in the root (upstream) while the effectors of the pathway are
downstream (Fig. 2B). This graph was used to establish the posi-
tion of the elements in the pathway, defined as the number of
steps required to transduce the signal from InR to the other ele-
ments (the maximum number of steps was 10).

To establish whether physically interacting proteins in the IT
signaling pathway exhibit similar levels of selective constraint, we
applied the Monte Carlo method described in Fraser et al. (2002)
to the S graph. For the analysis we used the X statistic, defined as

X =
1

n
+
n

i = 1

xi1 � xi2j j

where xi1 and xi2 are the evolutionary parameters (either dN, dS, or
v; the analysis was conducted separately for the three parameters)
of the two genes encoding interacting proteins (1 and 2) at pair i,
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and n is the total number of interacting protein pairs (20 for the IT
pathway). The statistical significance of X was determined by
generating 100,000 randomizations of S. Each randomization had
the same 19 nodes as S, and the same number of arcs (n = 20). Each
arc was generated by randomly choosing two distinct nodes from
S. To factor out the effect of the correlation between the pathway
position and selective constraint, we conducted a modification of
this Monte Carlo test. After fitting a linear model to the data (i.e.,
obtaining the regression equation relating the pathway position
and either v or dN), we used the residuals of the linear model to
obtain the X statistic value (i.e., for each gene we used as evolu-
tionary parameter the difference between the observed and pre-
dicted selective constraint—v or dN—values).

We carried out an additional Monte Carlo test to determine
whether the genes encoding physically interacting proteins tend
to duplicate in the same phylogenetic branch. We used as statistic
the number of gene pairs encoding physically interacting proteins
that duplicated in the same phylogenetic branch. The statistical
significance was evaluated on the basis of 100,000 replicates. In
each replicate we incorporated 20 duplication events (sampled
with replacement from that observed in our data; Fig. 1) across the
22 branches of the phylogenetic tree. Each duplication event was
incorporated into a given branch with a probability proportional
to its branch length. For the analysis we used the Drosophila tree
topology and branch lengths reported in Russo et al. (1995).

Multivariate analysis

We performed a multivariate analysis considering dN, v, the
pathway position, and some parameters influencing purifying
selection levels (expression level, codon bias, protein length, and
connectivity). First, we evaluated whether these parameters cor-
related using Spearman’s rank correlation coefficient (r). Later, we
analyzed the data using path analysis, an extension of multiple
regression analysis that allows decomposing the regression coef-
ficients into their direct and indirect components by considering
an underlying user-defined causal model, and to assess the statis-
tical significance of the relevant direct components. This analysis
was conducted using the Amos 6.0 software.

Connectivity was estimated as the number of PPIs involving
each D. melanogaster IT pathway protein. Putative PPIs dealing
with these proteins were obtained from Giot et al. (2003). mRNA
abundance in the D. melanogaster adult body of each gene was
obtained from the FlyAtlas database (Chintapalli et al. 2007).
These data were log-transformed for the path analysis to improve
normality. The codon usage bias of each orthologous group was
measured as the median of ENC (Wright 1990) of the six mela-
nogaster group species. ENC values of each sequence were obtained
using the DnaSP 4.20.1 software (Rozas et al. 2003).
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