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Microarrays are frequently used to profile genome-wide copy number (CN) aberrations. While generally robust for
detecting CN variants in germline DNA, the methods used to derive CN from signal intensity values have been suboptimal
when applied to cancer genomes. The complexity of genomic aberrations in cancer makes it more difficult to discriminate
between signal and noise, and measuring CN as a discrete variable does not account for tumor heterogeneity. Furthermore,
standard normalization approaches detect CN changes relative to the overall DNA content, which is often not diploid in
cancer. We propose an algorithm that uses the degree of allelic imbalance as well as probe intensity, with a correction for
aneuploidy, for a quantitative CN assessment and scoring of allelic ratios. This algorithm results in a more precise def-
inition of CN and allelic aberration in the cancer genome, which is essential for translational efforts focused on using these
tools for molecular diagnostics and for the discovery of therapeutic targets.

[The OverUnder algorithm is freely available at http://stokes.chop.edu/CancerCN.]

Tumor genomics play a critical role in our understanding of can-

cer. Copy number (CN) aberrations are associated with clinical

outcome: for example, amplification of the MYCN proto-oncogene

or loss of chromosome arm 1p or 11q predicts for decreased pa-

tient survival in neuroblastoma independent of clinical risk factors

such as disease stage (Seeger et al. 1985; Attiyeh et al. 2005). CN

aberrations have often been the first clue leading to the discovery

of oncogenes or tumor suppressor genes (Mosse et al. 2008).

Overall changes in cellular DNA content resulting in aneuploidy

are also clinically relevant in human malignancies such as acute

lymphoblastic leukemia and neuroblastoma (Look et al. 1991; Pui

et al. 2004; George et al. 2005).

Microarrays have been used for profiling genome-wide CN

aberrations. Comparative genomic hybridization (CGH) relies on

measuring the hybridization intensity of target DNA to genomic

or oligonucleotide DNA probes to determine CN gains and losses

(Albertson and Pinkel 2003). Single nucleotide polymorphism

(SNP)-based genotyping arrays not only allow for the detection of

signal intensity measures, but also yield genotype data that are

used to infer loss of heterozygosity (LOH) (Bignell et al. 2004; Zhao

et al. 2004; Peiffer et al. 2006; Wang et al. 2007). The intensity

values from each oligonucleotide probe on these arrays are nor-

malized to a standard scale, and CN aberrations are typically de-

termined by measuring total hybridization intensity.

While generally accurate and robust for germline copy

number variant (CNV) discovery, there are two potential problems

common to these platforms. The first is the reliance on measuring

probe intensity to determine CN. The relationship between signal

and CN is not linear and subject to saturation effects. Furthermore,

determining gains and losses based on signal intensity alone

requires the establishment of arbitrary intensity cutoff values,

which are necessarily compromises balancing signal and noise.

The CN values returned are typically integers and, in the case of

tumor sample analyses, ignore the effect of stromal contamination

and tumor heterogeneity, which can only be measured with

fractional CNs (e.g., a locus present in three copies in a tumor with

50% stromal contamination has an ‘‘apparent’’ CN of 2.5). The

second problem occurs with aneuploid cells, which are frequently

seen in cancer. Standard normalization approaches essentially

treat the cell as if it had a diploid genome, and the relative gains

and losses are reported relative to a CN of 2. For example, a perfectly

tetraploid cell will appear normal (diploid) using the approach ap-

plied to most CGH platforms; however, in a near-tetraploid cell that

has three copies of chromosome 1 and four copies of every other

chromosome, the tetraploid chromosomes will be scored as two

copies while chromosome 1 will be scored as approximately one

copy (Ishikawa et al. 2005).

Recent advances in single nucleotide extension chemistry on

SNP microarrays have led to highly accurate genotyping of up to

1 million SNPs simultaneously (Kennedy et al. 2003; Gunderson

et al. 2005; Peiffer et al. 2006; Steemers et al. 2006). There is in-

creasing interest in using these same arrays to determine germline

and/or cancer CN variations, but the decreased signal-to-noise

ratio at the individual probe level compared to platforms using

longer oligonucleotides or PCR products from cloned DNA makes

this challenging. To address these issues, we propose an algorithm

that uses both the degree of allelic imbalance as well as the probe
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intensity for quantitative CN assessment, scoring of allelic ratios,

and mapping segments of aberration. Unique to this algorithm is

the intrinsic correction for aneuploidy leading to a more accurate

quantification of alleles present in cancer cells.

Methods

SNP array genotyping
Tumor DNA samples from 488 primary neuroblastomas and
a primitive neuroectodermal tumor were obtained from the
Children’s Hospital of Philadelphia and the Children’s Oncology
Group. Immediately after surgical removal, tumor samples were
snap-frozen or placed in tissue-culture media and shipped to
a central reference laboratory for studies of tumor biology. The
amplification status of MYCN was determined with the use of
immunohistochemical analysis (Seeger et al. 1988), fluorescence
in situ hybridization (Mathew et al. 2001), or Southern blotting
(Seeger et al. 1985). Histopathological analysis was performed
according to central review with the use of the method of Shimada
et al. (1984). The DNA index was defined
with the use of flow cytometry, as pre-
viously described (Look et al. 1991). DNA
from the tumor and blood or uninvolved
bone marrow was prepared with the use
of anion-exchange chromatography
(QIAGEN). Samples were processed by
the Center for Applied Genomics at
Children’s Hospital, which operates
a high-throughput Illumina BeadLab
Genotyping System that uses customized
standard operating procedures based on
the manufacturer’s specifications (Peiffer
et al. 2006; Hakonarson et al. 2007; Maris
et al. 2008).

Data transformation

The Illumina Infinium II arrays contain
a probe sequence for each interrogated
SNP; the discrimination between the A
and B alleles is performed by a single
nucleotide extension step using two-dye
chemistry, and the signal intensity of
each allele is read (Gunderson et al. 2005;
Steemers et al. 2006). The sum of the
measured intensities is used to calculate
the log R ratio (LRR), which is related to
the total probe intensity of a given SNP
relative to a canonical set of normal
controls. For a given SNP, the ratio of the
measured intensities from the two alleles
is used to determine the B allele fre-
quency (BAF), which indicates the rela-
tive quantity of the one allele compared
to the other. This measurement is highly
reproducible and accurate as it relies on
a single base-pair extension step for dis-
criminating between the two alleles and
not on any measure of differential hy-
bridization (Fan et al. 2006). This metric
also reduces the effect of SNP-to-SNP
hybridization variation by being a func-
tion of the ratio of the two allele
intensities.

Homozygous SNPs have BAFs near 0 (AA) or 1 (BB). These
genotypes are also seen in regions of single copy allelic loss. Het-
erozygous two-copy SNPs have BAFs near 0.5 (AB). Allelic imbal-
ance results in intermediate values: for example, a SNP present in
three copies will have four possible genotypes (AAA, AAB, ABB, or
BBB), thus giving possible BAFs of 0, 0.33, 0.67, or 1. Examples of
the effect of CN aberrations on BAF and LRR are shown in Figure 1A.

The possible genotypes resulting from an allelic gain depend
on the mechanism of gain. Duplication of a single allele, as is often
seen in cancer and in germline CNVs, results in four possible
genotypes: An (homozygous A), Bn (homozygous B), An�1B (A al-
lele duplicated), and ABn�1 (B allele duplicated). Here, the degree
of allelic imbalance (i.e., the relative amount of the B allele) is
directly related to CN. For example, four copies result in BAFs of 0,
0.25, 0.75, or 1, while five copies result in BAFs of 0, 0.2, 0.8, or 1.
Alternatively, in aneuploid cancer cells, there often is a balanced
duplication of both alleles, resulting in the three genotypes seen in
the normal diploid state (AA, AB, and BB). However, this differs
from the normal two-copy state since the total probe intensity, as
measured by the LRR, will be increased. Certainly, more complex

Figure 1. Copy number (CN) determination using B allele frequency (BAF) and Log R ratio (LRR)
across a single chromosome of a primary neuroblastoma. (A) A chromosome is displayed, from the
short arm on the left to the long arm on the right. (Top plot) BAF values range from 0 to 1: areas of
homozygosity have BAF of 0 or 1; normal diploid regions have BAF of 0, 0.5, or 1; areas of allelic
imbalance show intermediate values; homozygous deletions have no detectable signal so the calculated
BAF appears as noise. (Bottom plot) LRR values of 0 represent two copies with lower values in areas of
loss and higher values in areas of gain. (B) Illustrates how CN is determined using LRR as a function of
BAF. Each SNP window has a median LRR and median BAF, which fall in a colored zone in the plot; CN is
then calculated based on the BAF for (green zone) gains and (red zone) losses. Gains can further be
characterized by their number of minor alleles (NOMA). The yellow lines outline call zones for NOMA 1
(lowest LRR) to NOMA 4 (highest LRR). (Blue zone) Homozygous SNPs whose LRR is not consistent with
loss have CN of 2 or higher with LOH; those CN are calculated based on the LRR. CN for amplifications
(AMP) is also based on the LRR, while homozygous deletions (HD) have CN of 0. SNPs that fall in the
gray zone are undetermined; CN is determined by interpolation.
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CN aberrations also occur in cancer. Mitotic disjunction events
can occur before or after allelic gains or losses, resulting in differ-
ent degrees of allelic imbalance for a given CN. For example, the
ratio of major to minor alleles in a six-copy gain could be 6:0, 5:1,
4:2, or 3:3. Although these would all have the same probe in-
tensity (LRR) value, the BAF would distinguish between these
states. Thus, higher-order gains can be distinguished based on the
number of minor alleles (NOMA) present. In the six-copy gain ex-
ample above, the NOMA values would be 0, 1, 2, or 3, respectively.

We used quantitative genotype data to integrate total in-
tensity (LRR) and allelic ratio (BAF) for a more accurate assessment
of genomic alterations in cancer cells. As shown in Figures 1A and
2, the BAF plot across a chromosome shows equal distribution
above and below 0.5. In order to simplify the algorithm, we
transform the BAF values > 0.5 so that they range from 0 to 0.5
(Equation 1).

BAF =
BAF BAF # 0:5

1� BAF BAF > 0:5

�
ð1Þ

Aneuploidy correction

Aneuploidy affects chip-wide normali-
zation, which is originally performed
such that diploid SNPs in a diploid
genome (DNA index = 1) have LRR = 0.
In hyperdiploid samples, this nor-
malization assigns LRR = 0 to SNPs
whose CN corresponds to the overall
DNA index; therefore, SNPs with fewer
copies (i.e., diploid in a hyperdiploid
sample) will display negative LRRs.
As shown in Figure 3, this results in
chromosomes with balanced genotypes
(BAF = 0.5, indicating the presence of at
least two copies) having negative
LRRs (suggesting a CN loss). The nor-
malized signals of the A and B alleles
for an aneuploid sample can be cor-
rected for the degree of hyperdiploidy
by multiplying each of those values by
the DNA index. This is equivalent to
adding the log2 of the DNA index to the
LRR.

We determine the aneuploidy cor-
rection factor by examining the LRR dis-
tribution for SNPs with certain BAFs.
SNPs with BAF near 0.5 must have even-
numbered CNs (2, 4, 6, or 8) so each
mode of the LRR distribution must cor-
respond to one of those CNs. Similarly,
SNPs with BAF near 0.33 must have CNs
that are multiples of three (3, 6, or 9), and
SNPs with BAF near 0.4 must be present
in either five or seven copies. Therefore,
each LRR mode from these three dis-
tributions can be associated with a lim-
ited number of possible CNs. Sorting the
list of LRR modes helps eliminate some of
the possibilities; for example, if there are
two LRR modes associated with BAF near
0.5, then the greater of the two modes
cannot represent two copies. Further-
more, examining the difference between

each pair of LRR modes often results in a single pair of CNs con-
sistent with the data. For example, when comparing the differ-
ence between two modes associated with BAF near 0.33, each
possible pair of CNs (3 and 6, 3 and 9, or 6 and 9) can be clearly
distinguished because the LRR difference between each pair
is unique. Similarly, if a LRR mode associated with BAF near
0.5 and a LRR mode associated with BAF near 0.33 are equal,
then the CN corresponding to that LRR must be 6 (since that is the
only possibility that is both a multiple of two and a multiple
of three).

This resulting aneuploidy correction factor can then be added
to each LRR across the genome. In a hyperdiploid sample, this
correction results in diploid SNPs having LRRs near zero and SNPs
with more than two copies having LRRs > 0. The corrected LRR
values can then be used for CN determination.

Figure 2. B allele frequency (BAF) and log R ratio (LRR) across a single chromosome of a neuroblas-
toma cell line. The annotated chromosome regions (A–G) are plotted in the two-dimensional scatter-
plot of LRR and BAF. The regions labeled A are CN losses and fall in the light red zone (the nonzero BAF
represents the presence of a minority of cells without the loss in the sample). The regions labeled B and
C represent LOH without CN loss and fall in the blue zone (region B denotes LOH with CN gain). Region
D is a four-copy gain with BAF » 0.25 and increased LRR. The regions labeled E are made up of het-
erozygous SNPs present in two copies. The regions labeled F represent three-copy gains with BAF » 0.33
and increased LRR. Region G denotes an amplification where the very high LRR is sufficient to distin-
guish it. (Bottom plot) CN as determined by the algorithm that detects the losses, the three- and four-
copy gains, and the amplification.
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CN determination

For each SNP, a flexible user-defined window of SNPs proximal and
distal to that SNP is defined. Within that window, a median BAF is
calculated: if there are greater than or equal to three SNPs with BAF >

0.1 (i.e., heterozygous), calculate the median of those BAFs; if
there are fewer than three SNPs with BAF > 0.1 (i.e., homozygous),
calculate the median of the BAFs < 0.1. A median LRR is also cal-
culated using the LRRs of all SNPs in the window.

As CN is a function of both LRR and BAF (Equation 2), we can
derive LRR as a function of BAF in regions of loss and gain
(Equation 3).

gain 0 CopyNumber = 2 � 2LRR = NOMA
BAF

loss 0 CopyNumer = 2 � 2LRR =
1

1�BAF

(
ð2Þ

gain 0 LRR = log2
NOMA

BAF

� �
� 1

loss 0 LRR = log2
1

1�BAF

� �
� 1

�
ð3Þ

These equations define zones that determine if a given SNP
window is in a region of loss or gain based on its median BAF and
median LRR (Fig. 1B). The curves defining ‘‘loss’’ and ‘‘gain’’ (i.e.,
the boundaries of the green and red areas) were derived from the
theoretical relationship between LRR, BAF, and CN shown in
Equation 3. The yellow curves outlining the areas of higher-order
gain also respect the relationship between LRR and BAF in areas of
gain, with the offset from the baseline derived empirically. CN is
then calculated as a function of BAF according to the appropriate
line in Equation 2. CNs for homozygous SNP windows are de-
termined based on median LRR (Equation 2). The gray areas in
Figure 1B represent zones where SNPs are undetermined, as they
do not fall clearly into any given call zone. SNPs with undefined
CN are resolved by interpolation: if one of the bordering defined
SNPs is diploid and the other is aberrant, then the undefined area

is filled with the aberrant CN; otherwise, the undefined region is
filled using an average of the CNs of the bordering defined SNPs.

Amplifications and homozygous deletions are deter-
mined based on large deviations of median LRR. For each SNP,
a window of five SNPs (two proximal, two distal, and the SNP in
question) is considered to calculate a median LRR. Values above
1.0 with allelic imbalance define amplifications while values that
are 1 log below the theoretical LRR for loss define homozygous
deletions (Fig. 1).

Fluorescence in situ hybridization (FISH)

Touch imprints from frozen tissue and nuclei from cytogenetic cell
pellets from a primary primitive neuroectodermal tumor were
analyzed by FISH. The MYC, chromosome eight centromere, and
MLL probe sets were purchased from Vysis (Abbott Laboratories).
Cosmid clones for chromosome bands 17p13.3 (D17S34) and
17q25 (D17S75) were labeled by nick translation with Chromo-
Tide AlexaFluor 594-dUTP or ChromoTide fluorescein-12-dUTP
(Molecular Probes). The probes were applied to slides of the tumor
cells and co-denatured at 75°C on an Isotemp 125D heat block
(Fisher Scientific). Slides were incubated overnight at 37°C in
a moist slide moat (Boekel Scientific). They were then washed in
a 0.43 SSC solution for 2 min at 73°C, followed by a 1-min wash in

Figure 3. Aneuploidy affects chip-wide normalization. Data from three
chromosome arms from a near-triploid neuroblastoma sample (DNA in-
dex = 1.43) assayed on the SNP array (A) as well as on a BAC-based aCGH
platform (B). The leftmost chromosome shows decreased LRR and aCGH
intensity ratio; the middle chromosome shows ‘‘normal’’ baseline LRR and
aCGH intensity ratio; the rightmost chromosome shows increased LRR and
aCGH intensity ratio. These intensity values imply CN = 1 for chromosome
3, which is inconsistent with the presence of heterozygous SNPs (BAF of
0.5). The LRR values would also imply CN = 2 for chromosome 1, which is
inconsistent with the allelic imbalance seen in the BAF plot.

Figure 4. Corrected LRR and CN of a chromosomal segment from
a primary neuroblastoma. The top two plots show BAF and LRR. The third
plot shows the LRR after correction for aneuploidy. The change in LRR
across the segment indicates a change in CN. The relatively constant BAF
of ;0.33 restricts the possible CNs to multiples of three. After correcting
for aneuploidy, the LRR values are most consistent with a region of three
copies on the left and a region of six copies on the right. Algorithm output
is shown in the bottom plot.
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23 SSC/0.1% NP-40 and counterstained with DAPI (Sigma).
Fluorescent signals from 100 to 200 cells were evaluated at 1003

with a Nikon Eclipse E800 fluorescence microscope equipped with
the proper filter sets. An Applied Imaging System was used to re-
cord images of representative cells.

Algorithm implementation

The algorithm was implemented using the C# programming lan-
guage as a plug-in to the manufacturer’s BeadStudio analysis suite
(see http://stokes.chop.edu/cancerCN).

Other CN algorithms

The Illumina CN Estimate was run within Illumina BeadStudio
using the default window sizes of 1 Mb (default setting) and 100 kb
(adjusted setting). PennCNV was downloaded from http://www.
neurogenome.org/cnv/penncnv/ and applied with the default
settings and with an HMM file lowering the cutoff for three-copy
gain from 0.39 (default) to 0.2 (adjusted). Circular binary segmen-
tation (CBS) was downloaded from http://www.bioconductor.org/
and run with the following parameters: smooth outliers = yes,
nperm = 1000, and alpha = 0.01 (default)
or alpha = 0.05 (adjusted). A region of gain
was defined if the intensity ratio of a seg-
ment was >0.15.

Results

CN determination

A representative plot of CN determined
by this algorithm is shown in Figure 2.
Areas of CN loss correspond to regions
without heterozygous SNPs and with
decreased LRRs. Large regions of copy-
neutral LOH or LOH with CN gain are
identified based on their normal or in-
creased LRR. Two large areas of gain
without LOH are seen: the largest region
on the long arm contains three copies,
while the next largest one on the short
arm contains four copies. This difference
is clearly distinguished at the BAF level,
while the change in LRR is more subtle
and likely to be missed. The CN deter-
minations result from the clear de-
lineation of the CN aberrations in the
two-dimensional scatterplot.

The chromosomal segment in Figure 4
demonstrates how BAF is integrated
with LRR after correction for aneuploidy.
If only the LRR is considered, there
appears to be a normal diploid region
(LRR = 0) and a region of gain (LRR > 0).
However, the BAF of ;0.33 across
the entire segment indicates that there is
one copy of the minor allele for every
two copies of the major allele; therefore,
the absolute CN is a multiple of three (3,
6, 9, or greater). Correction for aneu-
ploidy results in a positive LRR, and the
clear difference in LRR can then be used
to discriminate between the three-copy
region (with one minor allele) and the
six-copy region (with two minor alleles).

Validation

In order to validate this approach, we analyzed samples for which
CN was characterized using standard non-microarray-based
methods: FISH, karyotype, and DNA index by flow cytometry.
Figure 5 shows three different chromosomes from a single
hyperdiploid sample. Despite the low LRR in Figure 5A, correction
for aneuploidy results in a LRR of 0 across the chromosome and
a subsequent CN determination of 2. Despite the LRR of 0 in Figure 5B,
correction for aneuploidy results in an increased LRR and a sub-
sequent CN determination of 3. Similarly, the aneuploidy correc-
tion in Figure 5C results in a significantly elevated LRR and a CN
determination of 4. These CNs were confirmed as shown in the
corresponding FISH images.

We also analyzed a set of acute lymphoblastic leukemia
samples where karyotype information from a clinical cytogenetics
lab was available to serve as a CN reference. We compared the
output from our algorithm (OverUnder) to the output from
three other widely used methods: the Illumina CN Estimate,
a hidden Markov model–based method (PennCNV) (Wang et al.
2007), and CBS (Olshen et al. 2004; Venkatraman and Olshen
2007). These data are summarized in Table 1, which lists the

Figure 5. Correcting the LRR for aneuploidy improves CN determination. Data from three chro-
mosome arms from a primitive neuroectodermal tumor assayed on the SNP array and analyzed by FISH.
The top two rows of plots show BAF and LRR. The third row shows the LRR after correction for aneu-
ploidy. Considering the corrected LRR values in conjunction with the BAF leads to the CN determi-
nations plotted in the fourth row, which reflect the number of copies seen in the FISH images at the
bottom. (A) The chromosome initially appears to be a CN loss (homozygous and negative LRR), but is
present in two copies by FISH; this is consistent with the corrected LRR near 0. (B,C) Similarly, the
corrected LRR reflects the correct CN of three and four copies, respectively.
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number (and frequency) of karyotype findings correctly called by
the various algorithms. In order to be scored as correctly identi-
fying an aberration, we required our algorithm to detect the actual
CN correctly (i.e., distinguish three copies from four copies). Since
the other algorithms generally only report intensity ratios or dis-
crete CN states (i.e., ‘‘gain’’ or ‘‘loss’’), they were deemed correct if
they detected the appropriate type of aberration. Despite the lower
standard, the algorithms designed to study constitutional DNA did
not perform as well as our approach did when analyzing cancer
genomes. The sensitivity of the other methods to detecting absolute
CN changes did not significantly improve with adjusted settings.

We performed a more global validation by estimating the
DNA index of the sample as the average CN of all SNPs. We esti-
mated the DNA index based on this approach for 488 primary

neuroblastoma samples for which the DNA index was previously
determined by flow cytometry as part of the clinical evaluation of
children with neuroblastoma. For 349 out of 488 (72%) samples,
this estimate is nearly identical to the DNA index value de-
termined by flow cytometry (Fig. 6).

Discussion
Our approach to maximize the data from SNP arrays for highly
accurate allelic quantification uses four complementary methods
to overcome some of the existing problems with genomic array
analysis. First, CN is ultimately calculated based on the BAF and
not the LRR. As with previous platforms, relying on the LRR would
introduce an unacceptable level of noise for any given cutoff

Table 1. Validation against 10 acute lymphoblastic leukemia samples with known karyotype and comparison to three other commonly
used methods

Algorithm Sample

No. of
karyotype
findings

Algorithm with default settings Algorithm with adjusted settings

Aberrations
detected Sensitivity Specificity

Aberrations
detected Sensitivity Specificity

OverUnder L-1-06 8 8 100% 100% 8 100% 100%
L-1-20 13 12 92% 78% 12 82% 78%
L-2-02 6 6 100% 100% 6 100% 100%
L-2-11 10 9 90% 83% 9 90% 83%
L-2-15 6 6 100% 100% 6 100% 100%
L-2-20 7 6 86% 100% 6 86% 100%
L-3-10 8 6 75% 83% 6 75% 92%
L-3-12 11 10 100% 81% 11 100% 91%
L-3-14 7 7 100% 100% 7 100% 100%
L-4-14 6 5 83% 81% 5 83% 94%
Average 8.2 7.5 92% 93% 7.6 93% 94%

Illumina CN
estimate

L-1-06 8 7 88% 86% 0 0% 0%
L-1-20 13 0 0% 78% 0 0% 0%
L-2-02 6 5 83% 100% 0 0% 100%
L-2-11 10 0 0% 33% 0 0% 0%
L-2-15 6 5 83% 94% 0 0% 0%
L-2-20 7 2 29% 100% 0 0% 0%
L-3-10 8 3 38% 86% 0 0% 0%
L-3-12 11 2 18% 82% 0 0% 0%
L-3-14 7 5 71% 100% 0 0% 0%
L-4-14 6 0 0% 94% 0 0% 0%
Average 8.2 2.9 41% 85% 0 0% 10%

PennCNV L-1-06 8 0 0% 100% 8 100% 93%
L-1-20 13 0 0% 100% 0 0% 100%
L-2-02 6 3 50% 100% 6 100% 100%
L-2-11 10 0 0% 100% 0 0% 100%
L-2-15 6 0 0% 100% 6 100% 94%
L-2-20 7 0 0% 100% 0 0% 100%
L-3-10 8 0 0% 100% 6 75% 86%
L-3-12 11 0 0% 100% 5 45% 82%
L-3-14 7 1 14% 100% 6 86% 100%
L-4-14 6 0 0% 100% 0 0% 100%
Average 8.2 0.4 6% 100% 3.7 51% 95%

Circular binary
segmentation

L-1-06 8 8 100% 93% 8 100% 93%
L-1-20 13 3 23% 22% 3 23% 22%
L-2-02 6 6 100% 100% 6 100% 100%
L-2-11 10 2 20% 75% 2 20% 67%
L-2-15 6 6 100% 100% 6 100% 100%
L-2-20 7 4 57% 33% 4 57% 27%
L-3-10 8 3 38% 57% 3 38% 64%
L-3-12 11 3 27% 9% 3 27% 9%
L-3-14 7 2 29% 93% 3 43% 93%
L-4-14 6 2 33% 81% 2 33% 81%
Average 8.2 3.9 53% 66% 4.0 54% 66%

Output from the algorithms was queried for the aberrations detected by karyotype. OverUnder was run with a window size of 101 (default) and 51
(adjusted). Other algorithm settings (both default and adjusted) can be found in Methods.
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value. Since the BAF is calculated based on the ratio of the separate
allele signals, it is significantly more robust as the effects of dif-
ferential hybridization are greatly reduced. CN aberrations that
have very similar LRR values (e.g., three copies vs. four copies) are
clearly distinguishable by their BAF. Conversely, CN aberrations
that have similar BAF (e.g., three copies with one minor allele vs.
six copies with two minor alleles as shown in Fig. 4) will have
largely different LRR values since they represent large changes in CN.

Second, unlike many other algorithms that model their data
into discrete states (Lamy et al. 2007; Wang et al. 2007), CN is
calculated as a continuous variable. Solid tumor samples are in-
herently ‘‘contaminated’’ with diploid genomes, both from sur-
rounding and infiltrating normal somatic tissue as well as from
intratumoral heterogeneity. There is currently no way to distin-
guish these from each other from microarray data. The best one
can achieve is to infer a ‘‘maximal’’ degree of normal tissue con-
tamination by finding the area of LOH closest to 100% LOH.
When that maximal degree of normal tissue contamination is 0%
(i.e., the sample has regions of pure 100% LOH and therefore no
normal tissue contamination), then one can safely conclude that
other areas of diploid contamination result from tumor hetero-
geneity. However, in other cases, it would be problematic to as-
sume that the presence of diploid tissue is entirely due to normal
tissue contamination. Factoring it out would potentially result in
the loss of interesting tumor heterogeneity data.

The effect of normal contamination on the allelic ratio is
analogous to its effect on the probe intensity. For example, in the
case of a three-copy gain in a sample with 50% normal contami-
nation, the ‘‘apparent’’ CN is 2.5 (i.e., average of the two CNs since
they are present in equal proportions). The probe intensity value
would therefore not be normal, nor would it be high enough to
correspond to a CN of 3; it would be somewhere in the middle.
Similarly, the allelic ratio would not be normal (50%), nor would it
be at a level corresponding to three copies (33%). Since we cal-
culate CN as the inverse of the allelic ratio (in regions of gain; see
Equation 2), an intermediate allelic ratio of 40% would result in
a calculated CN of 2.5. Similarly, a region of loss present in only
50% of the tumor tissue will be scored as CN = 1.5, which conveys
more information than a simple determination of ‘‘loss.’’ De-
termining how widespread an aberration is in a tumor sample
can be used to infer how genomic aberrations are associated with
tumor progression.

Third, this is the first algorithm that we know of that uses
SNP array data to correct for aneuploidy. As seen in Figures 3 and 5,
the lack of correction produces erroneous results: diploid chro-
mosomes are scored as one copy, and triploid chromosomes are
scored as two copies. Methods optimized to detect rare variants in
otherwise normal constitutional DNA samples therefore do not
perform well against aneuploid tumor samples (Table 1; Macco-
naill et al. 2007; Wang et al. 2007). Correcting for aneuploidy
yields an accurate accounting of absolute chromosome CN as
opposed to CN relative to the DNA index. A region present in three
copies in a tetraploid sample will be scored as three copies. It
remains to be determined experimentally whether or not such
a region is functionally equivalent to a single copy loss in a diploid
genome. However, without correcting for aneuploidy, even large
aberrations can be missed: the threshold set to detect a 50% in-
tensity increase in a diploid sample (three copies vs. two copies)
can fail to detect a gain in a triploid sample where the intensity
increase is only 33% (four copies vs. three copies).

Finally, we characterize higher-order gains with the number
of minor alleles (NOMA) present. This distinguishes regions gained
because of the preferential duplication of one allele from regions
gained because of mitotic disjunction events. Determining the
mechanism of CN gain may facilitate discovery of oncogenes by
identifying samples with preferential amplification of a presumably
mutated allele (LaFramboise et al. 2005; Nannya et al. 2005).

The signal-to-noise ratio is a function of the SNP window size
selected. For high-quality samples with straightforward aberra-
tions, a small window size of 11 to 21 SNPs provides optimal res-
olution with minimal noise. For more complex cancer genomes,
the number of false-positive aberrations at smaller window sizes
quickly becomes unacceptable, and larger window sizes of 81 to
101 SNPs generate more useful data.

Correcting for aneuploidy and determining the absolute CN
allows a DNA index to be estimated from array data. When both
flow cytometry and the SNP array detect aneuploidy, the DNA index
values are very similar over a wide range. The discordant data are
likely due to limitations in both methodologies. Since diploidy is
the state associated with an adverse outcome in neuroblastoma, the
clinical flow cytometry assay is biased toward reporting the DNA
index as 1.0 if it was detected on any of the replicates. Conversely,
the LRR normalization error that occurs in aneuploid samples
cannot be corrected by using SNP array data in certain cases, such as
if every chromosome in the sample is present in equal copies.

The quantitative genotyping derived from SNP arrays can be
leveraged to generate a whole-genome assessment of CN. Al-
though this algorithm was designed to account for the complex-
ities of analyzing tumor genomes, it applies equally well to
discovering CNVs in constitutional DNA samples. Our algorithm
should lead to a more precise definition of aberration in the cancer
genome, which is essential for translational efforts focused on
molecular target discovery. Furthermore, a precise estimate of ge-
nomic CN is also the starting point for integration with other
whole-genome expression and epigenetic data sets.
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Figure 6. The digital DNA index estimates the value determined by
flow cytometry in 488 neuroblastomas. DNA index was determined by
flow cytometry as part of the clinical evaluation of children with neuro-
blastoma. For 349 out of 488 (72%) samples, the digital DNA index
(average CN of all SNPs divided by two) matched the flow cytometry
value. Discordant samples are shown that are not detected to be signifi-
cantly aneuploid by either method.
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