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Acquisition and loss of genetic material are essential forces in bacterial microevolution. They have been repeatedly linked
with adaptation of lineages to new lifestyles, and in particular, pathogenicity. Comparative genomics has the potential to
elucidate this genetic flux, but there are many methodological challenges involved in inferring evolutionary events from
collections of genome sequences. Here we describe a model-based method for using whole-genome sequences to infer the
patterns of genome content evolution. A fundamental property of our model is that it allows the rates at which genetic
elements are gained or lost to vary in time and from one lineage to another. Our approach is purely sequence based, and
does not rely on gene identification. We show how inference can be performed under our model and illustrate its use on
three datasets from Francisella tularensis, Streptococcus pyogenes, and Escherichia coli. In all three examples, we found interesting
variations in the rates of genetic material gain and loss, which strongly correlate with their lifestyle. The algorithms we
describe are implemented in a computer software named GenoPlast.

[Supplemental material is available online at www.genome.org. The GenoPlast software is freely available from http://
go.warwick.ac.uk/genoplast/.]

Bacteria adapt to new environmental niches by remodeling their

genomes. Genome sequencing has revealed a prominent role for

gene gain and loss in the processes of niche adaptation, speciali-

zation, host-switching, and other lifestyle changes. Diverse bac-

terial species exhibit such genetic flux, which plays a crucial role in

bacterial evolution (Ochman et al. 2000; Wren 2000; Dobrindt

and Hacker 2001).

Previous studies of genomic flux have used annotated genes as

the units of gain and loss. In the standard inference protocol, genes

annotated in sequenced genomes are first assigned to orthologous

groups on the basis of sequence homology. Paralogs in multicopy

gene families are either disambiguated or discarded, and genes

exhibiting only partial homology are usually subjected to a con-

servation threshold to be considered orthologous (e.g., 70% of the

amino acid length must be conserved). The resulting one-to-one

mapping of orthologous genes is then subjected to a gene flux

analysis. Gene gains and losses are typically presumed to be equally

likely to occur in all lineages, which enables parsimonious map-

ping of gene gains/losses to branches of a phylogenetic tree relating

the organisms under study. Finally such studies usually investigate

the relationship between gain, loss, and ecological niche.

However, some molecular processes underlying genomic flux

operate without regard to gene boundaries. Short segments within

genes, such as protein domains, are often gained or lost (Spratt

1988; Riley and Labedan 1997), and intergenic regulatory regions

may also be subject to such pressures. Clusters of neighboring

genes and operons may be gained or lost in a single event (Law-

rence and Roth 1996). A complete evolutionary account would

annotate individual events while also detecting variations in rate

over time in particular lineages. The discovery of reductive ge-

nome evolution (Silva et al. 2001; Hershberg et al. 2007) has

clearly demonstrated that in many cases, the process of genomic

gain and loss is asymmetric in some lineages. Parsimony criteria

are known to be unreliable when branch lengths are unequal

(Felsenstein 1978; Pol and Siddall 2001; Swofford et al. 2001),

meaning that statistical modeling of unequal rates is necessary for

accurate evolutionary inference.

In the present work, we introduce a new method to re-

construct genomic flux based on raw genomic sequence (without

annotated coding sequences) that can also infer lineage-specific

changes in the rates of gain and loss. Our method takes whole-

genome multiple alignments as input, and outputs a mapping of

changes in genomic content to branches of a phylogenetic tree,

along with confidence estimates. The method utilizes a stochastic

model of genomic evolution by gain and loss, incorporating

a compound Poisson process model (Huelsenbeck et al. 2000) to

allow the rates of gain and loss to vary in time and between line-

ages. Therefore, our model does not assume that evolution pro-

ceeds according to a constant molecular clock (Linz et al. 2007).

The importance of modeling the changes in the rate of gene flux

has been recognized before (Hao and Golding 2004, 2008; Marri

et al. 2006), but our method is the first to be able to infer from the

data where such changes may have happened instead of relying

on the user’s prior knowledge.

Our method processes a whole-genome multiple alignment

to identify the parts that are present in all genomes (the core ge-

nome) and the parts present in some, but not all of them (the

dispensable genome). The core genome is used to robustly infer

a phylogenetic tree. Since the parts in the dispensable genome are

not found in all genomes, they must have been gained or lost at

least once along the branches of the phylogeny. In order to model

the overall rate of genetic material being gained and lost, the

dispensable genome is broken up into small ‘‘features’’ of constant

size. We encode the presence or absence of these features in

a particular genome as a binary character, and model the evolution

of these binary characters along the phylogenetic tree. Thus, the

rates of gain r+ and loss r� incorporated in our model reflect the

total number of nucleotides gained and lost during the evolution
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of a population among sequences found in at least one of the

genomes. Figure 1 gives an illustration of our model.

Inference is performed under this model using a reversible-

jump Markov chain Monte Carlo (MCMC) (Green 1995, 2003).

Our prior model favors simple explanations for the observed pat-

terns of feature presence and absence (i.e., low rates for gain and

loss, and few changes in the rates). Thus, a change in the rate of

gain and loss in a particular lineage must be supported by the data

to be inferred by our method.

We assess the power of our method using a simulation study

and illustrate its use for two groups of g-Proteobacteria and one

group of Firmicutes. In doing so, we demonstrate the ability of our

approach to infer genomic flux that involves regulatory regions

and fragments of genes. We further demonstrate that, using ge-

nome sequence alone, we are able to identify changes in the rate of

genomic flux. The rate changes identified by our method are as-

sociated with microbial lifestyle changes such as transitions from

generalist to host-restricted pathogen lifestyles. We have made

a software implementation of the algorithm with a graphical in-

terface freely available from http://go.warwick.ac.uk/genoplast/.

Results

Simulation study

We simulated a genealogy from the coalescent model (Kingman

1982a,b) for a sample of 15 individuals. Feature gain and loss was

simulated on this genealogy under the assumption that r is con-

stant throughout, and that r+ contained a single changepoint, as

shown in Figure 2A. Several such datasets were simulated with

different values for the number of features f and for the magnitude

m of the change in r+ at the unique changepoint (i.e., the ratio of

values of r+ after and before the changepoint).

Inference was performed for each of these simulated datasets

by running our MCMC algorithm for 20,000 iterations. Figure 2B

shows the results for a grid of values of f from 0 to 500, and of m

from 0.25 to 4.0. Each datapoint in Figure 2B is the average over 20

different simulations and inferences, of the posterior probability

that there is exactly one changepoint in r+ on the correct branch.

For m = 1, the changepoint has no effect in the simulation, and the

results are as expected given the Poisson prior with parameter 1

that we used for the number of changepoints in r+ on the whole

tree. Our power to detect the changepoint increases with the

number of features f that we use, and also as the magnitude m

increases above or decreases under 1.

The conditions shown on Figure 2A are in many ways opti-

mal for the detection of the changepoint in r+, with no other

changepoint on the whole tree confounding its effect, and its lo-

cation implying an effect on a large subtree. Figure 2B should

therefore be interpreted as the maximum that our method can

offer in terms of changepoint detection. Yet, it shows that even

with a small amount of data (the number of features in actual

datasets is much larger), our method is able to detect even subtle

changes in the rates.

Application to Francisella turalensis

The g-proteobacterium Francisella tularensis is composed of

several phenotypically diverse subspecies. The most virulent one

is ssp. tularensis, which causes lethal pulmonary infections in

humans and animals (Ellis et al. 2002). A first strain from

subspecies tularensis was sequenced by Larsson et al. (2005),

Figure 1. Illustration of the model. The branches of the phylogeny T are
in black. The width of the light gray line on the left of the branches is
proportional to the value of r+ (frequency of feature gain). Similarly, the
dark gray line on the right of each branch represents r� (frequency of
feature loss). Individual feature gain events are represented by light gray
arrows, and individual feature loss events are represented by black arrows.

Figure 2. Simulation study. (A) Coalescent genealogy on which the
power study is based, with no changepoint in r� and a single changepoint
in r+ on the branch above the last four isolates. (B) Intensity plot of the
posterior probability of having exactly one changepoint in r+ on the
correct branch, as a function of the number of independent features and
the changepoint magnitude.
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and two subsequent sequencing proj-

ects showed that it exhibits little genomic

diversity (Beckstrom-Sternberg et al. 2007;

Chaudhuri et al. 2007). Subspecies

holarctica is a highly infectious but rarely

fatal lineage (Ellis et al. 2002), of which

three strains have been sequenced

(Petrosino et al. 2006; P. Chain, F. Larimer,

M. Land, S. Stilwagen, P. Larsson, S.

Bearden, M. Chu, P. Oyston, M. Forsman,

S. Andersson, et al., unpubl.; S. Godbole,

L. Zhou, D. Bruce, R. Crawford, C. Detter,

M. Dempsey, C. Lion, C. Munk, J. Noronha,

R. Scheuermann, et al., unpubl.). A se-

quence from subspecies novicida, which

is rarely associated with human disease,

has also been determined (Rohmer et al.

2007).

Table 1 summarizes the seven F. turalensis genomes. We

aligned the genomes and determined their phylogeny based on

the core genome as described in the Methods section. The average

length of each genome is around 1.9 Mbp, of which 1.6 Mbp is

found in all genomes (cf. Fig. 3A). The remaining genetic material

(i.e., the dispensable genome) is made up of 7216 features of 100

bp present in one to six of the seven genomes.

We reconstructed the history of gain and loss of these features

using the algorithm described in the Methods section. Figure 4A

shows the inferred flux for the Francisella data set, Figure 4B shows

the inferred reconstruction of the genome content for the nodes of

the phylogeny, and Figure 4C shows the inferred probabilities of

gain or loss for each branch and each feature. The genome content

of the root node is ambiguous (last row of Fig. 4C), and, therefore,

much uncertainty exists regarding the events that occurred on the

two branches directly under the root (fifth and last rows of Fig. 4B).

The inclusion of the outgroup novicida is, however, useful to reduce

the uncertainty on the remainder of the branches, in particular the

reconstruction of the genome content of the most recent common

ancestor of tularensis and holarctica (cf. penultimate row of Fig. 4C).

We found that a large amount of genetic material was lost on

the branch above the ancestor of tularensis and holarctica with an

average of 172 kbp lost (last row on Fig. 4C). This is consistent with

the observation that a high proportion (;10%) of their genes have

degraded into pseudogenes (Larsson et al. 2005; Petrosino et al.

2006; Beckstrom-Sternberg et al. 2007) in contrast to the non-

pathogenic novicida (Rohmer et al. 2007). Genome degradation

and reduction both result in the disruption of pathways that may

be redundant or even detrimental to the pathogenic lifestyle.

Furthermore, a large amount of lateral gene transfer has taken

place since the divergence of holarctica and tularensis, with an

average of 144 and 70 kbp gained by each lineage, respectively.

However, this flux seems to have stopped after the common an-

cestor of holartica, with only 12 kbp gained since then by the three

genomes of holarctica combined. This scenario is compatible with

the observation of substantial chromosomal rearrangement

within tularensis (Beckstrom-Sternberg et al. 2007) as well as be-

tween holarctica and tularensis (Petrosino et al. 2006), but little

within holarctica (Petrosino et al. 2006).

Application to Streptococcus pyogenes

Streptococcus pyogenes is a Gram-positive bacterium responsible for

a wide range of human diseases such as bacteremia, tonsillitis,

scarlet fever, or acute rheumatic fever (Cunningham 2000). The

species is traditionally subdivided according to serologic differ-

ences in the M protein, which are strongly correlated with the

frequency and type of infection caused. A total of 12 S. pyogenes

genomes have been sequenced, spanning nine different M types,

and we included all of them in this study (cf. Table 2). Previous

genome comparisons revealed that the most noticeable differ-

ence between those genomes lies in the presence or absence of

integrated prophages (Ferretti et al. 2001; Beres et al. 2002;

Nakagawa et al. 2003; Banks et al. 2004; Holden et al. 2007). Those

prophages contain a number of genes associated with virulence, so

that the history of prophage gain and loss is likely to be pivotal to

Table 1. Genomes in the Francisella tularensis data set

Subspecies Strain Size ORFs Reference

novicida U112 1910 kb 1719 Rohmer et al. 2007
holarctica LVS 1895 kb

1754

P. Chain, F. Larimer, M. Land,
S. Stilwagen, P. Larsson, S. Bearden, M. Chu,
P. Oyston, M. Forsman, S. Andersson,
et al., unpubl.

holarctica OSU18 1895 kb 1555 Petrosino et al. 2006
holarctica FTA 1890 kb

2079

S. Godbole, L. Zhou, D. Bruce, R. Crawford,
C. Detter, M. Dempsey, C. Lion,
C. Munk, J. Noronha, R. Scheuermann,
et al., unpubl.

tularensis SCHUS4 1892 kb 1603 Larsson et al. 2005
tularensis WY96-3418 1898 kb 1634 Beckstrom Sternberg et al. 2007
tularensis FSC198 1892 kb 1804 Chaudhuri et al. 2007

Figure 3. Extent of the genomic regions found in all genomes (dark gray), or at least one genome
(light gray), as a function of the number of genomes under study.
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explaining the different types of infection caused by different

lineages.

The average length of the S. pyogenes genomes is around 1.9

Mbp, of which 1.6 Mbp is found in all 12 genomes (cf. Fig. 3B).

There are 15,794 features of length 100 bp found in a strict subset

of the genomes. The phylogeny estimated on the S. pyogenes core

genome is highly star-like, in agreement with previous studies

(Beres et al. 2006; Holden et al. 2007). The nine different M types

are approximately equidistant, and the three pairs of genomes

sharing the same M types are very closely related (MGAS5005 and

SF370 sharing M type 1, SSI-1 and MGAS315 sharing M type 3,

MGAS2096 and MGAS9429 sharing M type 12).

Our method avoids a common

problem arising with analysis of pro-

phage. The difficulty is that they almost

all display some homology (Banks et al.

2004; Holden et al. 2007). Since pro-

phage usually deteriorate faster than the

core genome, it is difficult to definitely

say whether homologous prophage were

both vertically inherited or inherited via

lateral transfer. The ambiguous orthology

relationship in turn creates ambiguity for

inference of prophage gain and loss.

Furthermore, intragenomic recombi-

nation amongst resident prophages has

been described (Nakagawa et al. 2003),

which makes the reconstruction of flux

even more tedious. Here we used Mauve as

described in the Methods section to de-

termine the orthologous regions of

prophages. As Mauve is a synteny-based

method, this results in a parsimonious

evaluation of the gain and loss of prophage

features, where all events can be safely as-

sumed to have occurred, but one cannot

exclude a more complex history obscured

by the homology of different phages.

Our reconstruction of the genetic

flux in S. pyogenes is shown in Figure 5. As

expected, it is dominated by prophage

gain and loss. The evolution of genome

content seems to follow an approximate

molecular clock with three clear excep-

tions. The first one is a clear increase in

the rate of loss on the branch above the

three genomes of type M5, M6, and M18,

with 168 kbp lost on this relatively short

branch. Furthermore, we found a clear

increase in the rate of lateral gene transfer

for the two genomes of type M1, and also

for the two genomes of type M12. 415

kbp, 452 kbp, 430 kbp, and 459 kbp have

been gained on the branches directly

above SF370, MGAS315, MGAS5005, and

SSI-1, respectively. The material gained

by these four genomes since they di-

verged from one another is found in

several locations around their genome

(Supplemental Fig. 2), which indicates

that several distinct insertion events

happened on each branch. An increase in

the rate of gain was inferred for two of the three M types where we

have two genomes. Such an increase would be impossible to infer

for theM types,wherewehave onlyone genome,because of the long

branches separating the different M types, which make it impossible

to infer how recently gain occurred. It is also possible that an increase

in the gain of M3 could not be spotted because of the very close

relatedness of genomes MGAS315 and SSI-1 within this M type,

which makes them virtually identical (Nakagawa et al. 2003).

These results therefore suggest that prophage integration has

accelerated in recent times for the genomes of type M1 and M12,

but also possibly for several other lineages of S. pyogenes. This is

consistent with a previous study which found that maximum

Figure 4. Results on the Francisella turalensis data set. (A) Phylogeny of the sample with the com-
pound level r+ of feature gain in red below, and the compound level r� of feature loss in blue above the
branches of the phylogeny. The average level of r+ and r� at each position on the tree is proportional to
the quantity of red and blue at that position, and a 95% credibility interval for each rate at each position
is shown by two lines of the corresponding color. (B) Probability of presence of each feature in the
genome of each node of the phylogeny shown in A. The x-axis represents the different features (ordered
according to their pattern of presence in the genomes), and the y-axis shows the different nodes,
labeled as in A. (C) Probability of feature gain and loss for the branches of the phylogeny shown in A. The
x-axis represents the different features (ordered as in B), and the y-axis shows the different branches,
labeled by the name in A of the node directly under the branch.
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likelihood estimates for the rate of genomic flux was higher on the

external branches than on the internal branches of a phylogeny

of Streptococcus (Marri et al. 2006). Another possibility is that

prophage integration occurred at a constant rate, but is balanced

by prophage excision or deletion. That is, most of the older phage

insertions are not visible, as they have been removed, and only

recent insertions are detected. A similar observation has been

noted in Salmonella enterica (Vernikos et al. 2007). The sequencing

of additional genomes sharing the same M types should shed more

light on these hypotheses, which could reflect a more recent ad-

aptation of lineages to specific niches than previously thought

(Marri et al. 2006).

Application to Escherichia coli and Shigella

E. coli has long been considered an organism of choice for the

study of bacterial pathogenicity due to the coexistence of various

pathogenic and commensal lineages. A total of 10 genomes have

so far been completely sequenced: three laboratory and com-

mensal strains (MG1655, W3110, and HS), one avian pathogenic

strain (APEC O1), two enterohemorrhagic strains (EHEC Sakai and

EDL933), one enterotoxigenic strain (ETEC 24377A), and three

uropathogenic strains (UPEC CFT073, 536, and UTI89).

We also included in our analysis the six sequenced genomes

of the closely related genus Shigella: three from species S. flexneri

(8401, 301, and 2457T) and one from each of the other three

species (197, 227, and 046). Table 3 contains the list of these 16

genomes, with references to their original publications. All six

strains of Shigella are causative agents of bacillary dysentery;

hence, they have historically been classified in a separate genus,

despite the fact that the Shigella phenotype has evolved multiple

times from different clones of E. coli (Pupo et al. 2000; Jin et al.

2002; Wei et al. 2003). In agreement with this, the phylogeny we

inferred for the 16 genomes shows the six strains of Shigella split

into different phylogenetic groups.

The mean of the lengths of those 16 genomes is approxi-

mately equal to 5 Mbp, of which ;3 Mbp are found in all 16

genomes (Fig. 3C). The dispensable genome is made of 99,335

features of length 100 bp. The results of our analysis of genomic

flux are shown in Figure 6. The branches on which the least gain

and loss occurred are the ones above the three commensal and

laboratory strains MG1655, W3110, and HS. These are therefore

the closest in genomic content to the genome of the most recent

common ancestor of all E. coli and Shigella.

All of the branches above the six Shigella genomes show im-

portant gains of genomic material (with an average of 977 kbp

gained by each genome), comparable with the ones observed for

pathogenic strains of E. coli such as 24377A or EDL933 and Sakai.

However, the Shigella genomes have lost many more features than

any of the E. coli genomes, with an average of 569 kbp lost by each

genome. This genomic reduction can be traced back to a higher

presence of insertion sequences (IS) in the Shigella genomes (Yang

et al. 2005). Furthermore, a larger number of pseudogenes is found

in the genomes of Shigella than in those of E. coli (Nie et al. 2006).

The fact that the pathogenic E. coli have not undergone such ge-

nome degradation and reduction (except for APEC O1, cf. below)

may be a reflection of their larger host range (Cunningham 2000).

The APEC O1 genome is the only avian pathogenic (APEC)

strain in our data set (Johnson et al. 2007). The phylogeny we

inferred from the core genome indicates that it is a close relative of

the three strains of uropathogenic E. coli (UPEC) in our data set,

and especially of UTI89. This close relationship, as well as a com-

parison of the genome sequences and annotation for these four

strains, suggest that E. coli strains from animals might be the

source of uropathogenic E. coli infections (Johnson et al. 2007).

However, our analysis has found a clear increase in the rate of gain

and loss on the branch directly above strain APEC O1, resulting in

a gain of 691 kbp on this branch. The increase in the rate of gain is

comparable to that found for other branches of pathogenic E. coli,

but the increased loss is unique to APEC O1 amongst all studied

genomes of E. coli, and similar to the high rates described above for

Shigella. This result hints that in spite of the close relationship of

APEC O1 with the three UPEC strains, it may have already started

to adapt to the avian host. This hypothesis may imply that the

natural reservoir of human urinary tract pathogenic E. coli is not

animals, and will require validation through the sequencing of

additional APEC and UPEC strains.

The analysis above uses features of constant size 100 bp, as

the unit of genomic flux as described in the Methods section. Our

model and algorithm can, however, be applied for any other unit

such as the gene, which has been the unit traditionally used in

studies of genomic flux (Hao and Golding 2004, 2008; Marri et al.

2006). We therefore reanalyzed the E. coli and Shigella data set

using gene presence/absence data in order to compare the two

approaches.

We founda totalof 14,752 genes to be present inone, butnot all

of the 16 genomes. Supplemental Figure 3 shows the result of our

analysis of genomic flux based on gene data. The overall inferred

history of gene flux is the same as the one described above based on

these features: The commensals and laboratory strains have endured

little flux, pathogenic strains of E. coli have gained some material,

and Shigella lineages have gained and lost a large amount of genes.

Table 4 contrasts the number of features and genes found to

be gained and lost, on average, by both analyses on all the

branches of the phylogeny. The gene-based and feature-based

analyses are in good agreement, which is not surprising, since the

regions of the genomes identified as having been gained and lost

are roughly the same in both analyses. For this reason, features and

genes are gained and lost in approximately the same proportion

on the branches as illustrated in Table 4. Small differences between

the two analysis could be caused, for example, by variation in the

density of coding genes from one region of the dispensable ge-

nome to another, or genome degradation causing a loss of genes

(turned into pseudogenes), but not features. The largest difference

between the two analyses is found for the amount of loss on the

branch above APEC and UPEC, but being directly under the root of

the tree, the uncertainty is strong for that branch, with a 95%

credibility interval of [1.8;12.1] for the feature-based analysis and

[1.1;6.8] for the gene-based analysis (cf. Supplemental Table 1). All

Table 2. Genomes in the Streptococcus pyogenes data set

Strain M type Size ORFs Reference

MGAS5005 1 1838 kb 1865 Sumby et al. 2005
SF370 1 1852 kb 1697 Ferretti et al. 2001
MGAS10270 2 1928 kb 1987 Beres et al. 2006
SSI-1 3 1894 kb 1861 Nakagawa et al. 2003
MGAS315 3 1900 kb 1865 Beres et al. 2002
MGAS10750 4 1937 kb 1979 Beres et al. 2006
Manfredo 5 1840 kb 1745 Holden et al. 2007
MGAS10394 6 1899 kb 1886 Banks et al. 2004
MGAS2096 12 1860 kb 1898 Beres et al. 2006
MGAS9429 12 1836 kb 1877 Beres et al. 2006
MGAS8232 18 1895 kb 1845 Smoot et al. 2002
MGAS6180 28 1897 kb 1894 Green et al. 2005
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the credibility intervals for the amount gainedor lost on the different

branches are in good agreement when using features and genes.

Discussion
We have presented a novel method to reconstruct genome content

evolution based on whole-genome alignments. Our method is

based on a model of genomic evolution that has the essential

property of allowing deviations from a molecular clock in acqui-

sition and loss of genetic material. Our use of a relaxed clock is

important for two reasons. First, when a lot of material is gained or

lost in a single event (e.g., during phage

integration), then we expect high vari-

ance in the amount of material flux on

branches of the phylogeny, even if the

events themselves follow a molecular

clock. Second, accumulating evidence

suggests that adaptation of an organism to

a new niche is accompanied by increased

rates of lateral gene transfer (Reid et al.

2000; Marri et al. 2006; Didelot et al.

2007) and/or gene loss (Maurelli et al.

1998; Cole et al. 2001; Welch et al. 2002;

Cummings et al. 2004), so that the events

themselves do not necessarily occur

according to a molecular clock. As such,

inferred changes in the rate of gene flux

can provide a general means to capture

changes in population dynamics or mi-

crobial lifestyle.

The methodology we described in

order to perform inference under this

model of genomic evolution makes use of

Bayesian statistics, allowing for a com-

plete quantification of the uncertainty in

the reconstruction of material flux. This

uncertainty is often large, especially on

the branches directly under the geneal-

ogy root for which the data at the leaves

is not very informative (e.g., Supple-

mental Table 1). The results can be

graphically summarized as illustrated in

Figures 4, 5, and 6 with datasets from F.

turalensis, S. pyogenes, and E. coli. Our

method gives a complete overview of the

genomic flux, subsequently fixed in dif-

ferent parts of the phylogeny. As expec-

ted, we observed in all three examples

a shifting distribution of this flux, which

justifies our effort to model a relaxed

clock for genomic flux. It is also clear in

all three examples that genomic flux is

strongly correlated with adaptation to

a new lifestyle.

One innovation in the approach

taken here is that we do not rely on gene

identification. For this reason, the basic

unit of our method is the feature (i.e.,

a sequence fragment of small size) rather

than the gene. Clearly, this presents

a number of advantages: Gene identifi-

cation is a laborious process, the quality

of existing annotations varies between genomes, and genes are

not an indivisible unit of flux. Furthermore, it is always possible,

after having found the list of features gained by a genome, to look

into its annotation to find the genes (or gene fragments) affected,

so that we do not lose the ability to identify gene gains or losses.

However, our method can also be applied to gene presence/ab-

sence data. The choice of whether to use features or genes depends

ultimately on which question is being asked: A gene-based view

makes sense if one is interested in differences in functionality,

whereas a feature-based view should be favored if one wants to

study the mechanism of genomic flux.

Figure 5. Results on the Streptococcus pyogenes data set. (A) Phylogeny of the sample with the
compound level r+ of feature gain in red below, and the compound level r� of feature loss in blue above
the branches of the phylogeny. The average level of r+ and r� at each position on the tree is proportional
to the quantity of red and blue at that position, and a 95% credibility interval for each rate at each
position is shown by two lines of the corresponding color. (B) Probability of presence of each feature in
the genome of each node of the phylogeny shown in A. The x-axis represents the different features
(ordered according to their pattern of presence in the genomes), and the y-axis shows the different
nodes, labeled as in A. (C) Probability of feature gain and loss for the branches of the phylogeny shown
in A. The x-axis represents the different features (ordered as in B), and the y-axis shows the different
branches, labeled by the name in A of the node directly under the branch.
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Breaking down alignment blocks into features or genes as we

do in the present work is useful in order to deal with rates of gain

and loss in absolute terms (i.e., proportionally with the number of

sites being gained or lost). However, we still fall short of a fully

event-based reconstruction of history. Since each alignment block

is found either in a contiguous region or not at all in each of the

genomes, it is likely that each one was gained or lost in a single

evolutionary event. By using alignment blocks as the unit of gain

and loss instead of genes or features, one might therefore hope to

reconstruct events. Unfortunately, alignment blocks often do not

correspond to evolutionary units because of events occurring in

different parts of the tree. For example, a region that was gained as

a single unit in one or more branches of the phylogeny, but is

broken up elsewhere, will appear to be two blocks throughout the

phylogeny, wherever it is gained. The division into alignment blocks

is highly dependent on exactly which genomes are in the sample,

with poorly sampled lineages having larger blocks, which can, in

turn, mislead inferences based on the rate of gain or loss of blocks.

Reconstructing the full history of evolutionary events that

gave rise to the patterns of mosaicity in an observed sample of

genome would therefore require a model of genome evolution

that includes the possibility for a genome to gain a sequence of an

arbitrary size at any position, to lose any subset of its sequence,

and to move any subset to a different point (with the possibility of

inversion and/or duplication). The inherent complexity of such

a model would pose a serious challenge in trying to use it in an

inferential setup. The approach we took in the present work avoids

those difficulties, at the cost of being less evolutionary oriented.

Methods

Alignment
We start with a sample of n genome sequences from a single bac-
terial species or a few closely related species. We first produce
a multiple alignment of those genomes using the Progressive

Mauve algorithm (Darling et al. 2004; http://gel.ahabs.wisc.edu/
mauve/index.php). The Progressive Mauve alignment algorithm
identifies and aligns all conserved orthologous segments and all
positionally conserved repeat elements. The resulting alignments
represent a mosaic of rearranged segments conserved among all
genomes, segments conserved among subsets of genomes, and
segments unique to a particular genome.

The gaps in a multiple genome alignment can be removed to
define the ‘‘core genome’’ of a group of organisms. Gaps in the
alignment occur when one or more genomes contain a sub-
sequence not present in remaining genomes. Small alignment
gaps are typically caused by mutational processes such as slipped-
strand mispairing, whereas large gaps typically result from re-
combination processes involving gene gain and loss. By excluding
alignment columns that participate in gaps larger than some fixed
size threshold, for example 20 nt, we can precisely define a set of
alignment columns participating in the ‘‘core genome.’’ The core
genome can then be used to robustly infer the phylogeny T of the
sample. Here, we used the UPGMA algorithm to do so, but Sup-
plemental Figure 1 shows that neighbor joining, maximum par-
simony, and minimum evolution all agree with the UPGMA
algorithm, except for one branching order in the E. coli data set.
Using the other branching order does not affect the results of our
genetic flux analysis though.

The remainder of the alignment represents the blocks that
have been lost or gained at least once during the evolution of the
sample from a common ancestor (also known as the dispensable
genome). We consider that each such block is made of small ge-
netic regions of fixed length (i.e., 100 bp) called features. Let f
denote the number of the features thus defined. The dispensable
genome can thus be summarized by the binary matrix
D=fdi; jgi 2 ½1::n�; j 2 ½1::f �; where di; j = 1 if, and only if, individual
i has the feature j in its genome.

The reason for choosing a feature size of 100 bp is as follows.
Choosing a very small value (e.g., 10 bp) would increase the risk
that some of the features do not represent real homologous
material in all genomes. On the other hand, choosing a very

Table 3. Genomes in the E. coli and Shigella data set

Species Strain Pathogenicity Size ORFs Reference

E. coli MG1655 None 4639 kb 4243 Blattner et al. 1997
E. coli W3110 None 4646 kb 4227 Riley et al. 2006
E. coli HS None 4643 kb

4384

D. Rasko, M. Rosovitz,
C. Brinkley, G. Myers,
R. Seshadri, R. Cer, L. Jiang,
and J. Ravel, unpubl.

E. coli O1 APEC 5082 kb 4467 Johnson et al. 2007
E. coli Sakai EHEC 5598 kb 5253 Hayashi et al. 2001
E. coli EDL933 EHEC 5528 kb 5324 Perna et al. 2001
E. coli E24377A ETEC 4979 kb

4755

D. Rasko, M. Rosovitz,
C. Brinkley, G. Myers,
R. Seshadri,
R. Cer, L. Jiang, and
J. Ravel, unpubl.

E. coli CFT073 UPEC 5231 kb 5379 Welch et al. 2002
E. coli 536 UPEC 4938 kb 4629 Brzuszkiewicz et al. 2006
E. coli UTI89 UPEC 5065 kb 5044 Chen et al. 2006
S. flexneri 8401 Dysentery 4574 kb 4116 Nie et al. 2006
S. flexneri 301 Dysentery 4607 kb 4182 Jin et al. 2002
S. flexneri 2457T Dysentery 4599 kb 4068 Wei et al. 2003
S. dysenteriae 197 Dysentery 4369 kb 4274 Yang et al. 2005
S. boydii 227 Dysentery 4519 kb 4353 Yang et al. 2005
S. sonnei 046 Dysentery 5039 kb 4461 Yang et al. 2005

(APEC) Avian pathogenic E. coli; (EHEC) enterohemorrhagic E. coli; (ETEC) enterotoxigenic E. coli; (EPEC) enteropathogenic E. coli; (UPEC) uropathogenic
E. coli.
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high value (e.g., 10,000 bp) reduces our power to infer rate changes,
since smaller elements are not taken into account, and, under the
influence of rearrangements, even a large import can often be split
into small subfragments. We consider that a value of 100 bp rep-
resents a good middle ground between these two potential issues,
but our results are robust to slightly different choices.

Model of genome evolution

Our model assumes that feature gain follows a compound Poisson
process (Huelsenbeck et al. 2000). This means that acquisition of

features follows a Poisson process, whose
rate r+ can vary along the branches of the
phylogeny T. A number c+ of changes in
r+ are uniformly distributed on T, and the
different values taken by r+ are in-
dependent from one another. The loss of
genetic features follows a similar (but
fully independent) compound Poisson
process with compound rate r� contain-
ing c� changes. All symbolic notations
are summarized in Table 5 and an illus-
tration of the model is given in Figure 1.

The likelihood of the compound
rates r+ and r� of our model can be de-
composed feature-by-feature:

L
�
r + ;r�

�
=P
�
Djr + ;r�

�
=
Y

j2
�

1::f
�Lj

�
r + ;r�

�
;

where Lj

�
r + ;r�

�
=P
�
d�;jjr + ;r�

�
ð1Þ

To calculate this likelihood, let us
first consider the probability g ujv; r+;ð
r�; lÞ of observing state u 2 0;1½ � at the
bottom of a branch of length l when state
v 2 0;1½ � is at the top, and r+ and r� are
constant throughout the branch (i.e.,
there is no changepoint on the branch).
This can be calculated by considering
a two-state continuous time Markov
chain with the transition matrix
A = 1� r+; r+; r�;1� r�½ �. Solving the
Chapman-Kolmogorov equations for this
process (Dynkin 1989) yields:

g
�
ujv; r + ; r�; l

�
=

r +

r + + r�

��r�

r +

�1�u
�
�
�1
�du;v

3
�r�

r +

�v
exp

�
�l
�
r + + r�

��	
ð2Þ

Let us now consider the probability
h ujv; r+; r�; ið Þ that a feature is in state u
at node i in T, given that it is in state v at
the parent node, and the values of r+ and
r�. If there is no changepoint on the
branch above the node i, then
h ujv; r+; r�; ið Þ=g ujv; r+; r�; lð Þ, where l
is the length of the branch above node
i. Otherwise, let c+

i and c�i denote the
number of changepoints on that branch
for r+ and r� respectively. This branch
can then be decomposed into 1 + c+

i + c�i
successive segments of lengths lkf gk2
½1::1+c+

i +c�i �, on each of which both r+

and r� are constant. h ujv; r+; r�; ið Þ can therefore be calculated us-
ing the following dynamic programming procedure:

1. Start with h(v): = 1 and h(1 � v): = 0;
2. For each consecutive segment k 2 ½1::1 + c+

i + c�i � of length lk on
which both r+ and r� are constant, repeat the following re-
cursion:

h 0ð Þ:= g 0j0;r + ; r�; lkð Þh 0ð Þ+ g 0j1;r + ; r�; lkð Þh 1ð Þ
h 1ð Þ:= g 1j0;r + ; r�; lkð Þh 0ð Þ+ g 1j1;r + ; r�; lkð Þh 1ð Þ



ð3Þ

Figure 6. Results on the Escherichia coli and Shigella data set. (A) Phylogeny of the sample with the
compound level r+ of feature gain in red below, and the compound level r� of feature loss in blue above
the branches of the phylogeny. The average level of r+ and r� at each position on the tree is proportional
to the quantity of red and blue at that position, and a 95% credibility interval for each rate at each
position is shown by two lines of the corresponding color. (B) Probability of presence of each feature in
the genome of each node of the phylogeny shown in A. The x-axis represents the different features
(ordered according to their pattern of presence in the genomes), and the y-axis shows the different
nodes, labeled as in A. (C) Probability of feature gain and loss for the branches of the phylogeny shown
in A. The x-axis represents the different features (ordered as in B), and the y-axis shows the different
branches, labeled by the name in A of the node directly under the branch.
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3. h 0jv; r+; r�; ið Þ is equal to h(0) and h 1jv; r+; r�; ið Þ is equal to h(1).

Given this method to calculate h ujv; r+; r�; ið Þ, it is now possible to
apply Felsenstein’s pruning (Felsenstein 1973, 1981) to calculate
the likelihood component Lj:

1. For all leaves i 2 1::n½ �, set f0(x): = 1�d and f1(x): = d where d = 1
if the isolate represented by the leaf i has feature j and d = 0
otherwise;

2. For each internal node x with children y and z taken in in-
creasing order of age, calculate:

f 0ðxÞ := f 0ðyÞh 0j0;r + ; r�; yð Þ + f 1ðyÞh 1j0;r + ; r�; yð Þ
� �

x:::
ðf 0ðzÞh 0j0;r + ; r�; zð Þ + f 1ðzÞh 1j0;r + ; r�; zð Þ

�
f 1ðxÞ := f 0ðyÞh 0j1;r + ; r�; yð Þ + f 1ðyÞh 1j1;r + ; r�; yð Þ

� �
x:::

f 0ðzÞh 0j1;r + ; r�; zð Þ + f 1ðzÞh 1j1;r + ; r�; zð Þ
� �

8>><
>>: ð4Þ

3. The likelihood component Lj is equal to:

Lj =P d�;jjr + ;r�
� �

= f 0 MRCAð Þ 1� sð Þ+ f 1 MRCAð Þs ð5Þ

where s represents the prior probability that a feature belongs to
the genome of the most recent common ancestor of the sample.
We estimate s as the average length of a genome minus the length
of the core genome and divided by the total length of the dis-
pensable genome. In doing so, we encode a prior expectation that
the ancestral genome size can be approximated as the average of
modern genome sizes. The full likelihood follows from Equation 5
using Equation 1. Note that the calculation can be greatly sim-

plified by noticing that any two features with the same pattern of
occurrence in the n genomes contribute equal likelihood compo-
nents to the overall likelihood, so that each pattern needs to be
calculated only once.

Bayesian inference

We perform Bayesian inference under the model of genome evo-
lution described above. This requires introduction of a prior pr for
each of the different values taken by either r+ and r�, and a prior pc

for the numbers c+ and c� of changepoints in r+ and r�. Using Bayes
theorem, the posterior distribution P r+;r�jDð Þ can then be
decomposed as follows:

P r + ;r�jDð Þ= pc c +ð Þpc c�ð Þ
Y

j2 1::f½ �
Lj

Y
i2 1::c + + 1½ �

pr r +
i

� � Y
i2 1::c� + 1½ �

pr r�i
� �
ð6Þ

where r+
i and r�i represent the different values taken by r+ and r�.

We use a MCMC in order to sample from the posterior dis-
tribution (Metropolis et al. 1953; Hastings 1970). However, be-
cause the dimensionality of r+ and r� depend on the number of
changepoints, the dimensionality of the parameter space is not
constant. We therefore use a reversible-jump MCMC (Green 1995,
2003). Our updating scheme uses two transdimensional jumps
that propose to add and remove a changepoint to either r+ or r�.
We also use a move to update the location of a changepoint on
a branch, and a move to update the value associated with
a changepoint in either r+ or r�. These moves are described in
further detail in the Appendix.

Different uninformative priors for pr and pc were tested and
found to have little effect on the posterior distributions for all
three datasets. The results shown used pr = Exp(1) and pc = Pois-
son(1). For each data set, five occurrences of the MCMC were
started at different points on the parameter space, chosen
according to the prior distribution. Each MCMC was run for

Table 4. Comparison of a feature-based and a gene-based
analyses of the Escherichia coli and Shigella data set

Branch
Features
gained

Features
lost

Gene
gained

Gene
lost

Ec_24377A 9.92 0.34 9.12 0.65
Ec_536 3.18 0.33 4.37 0.57
Ec_APEC_O1 6.95 1.32 5.49 2.83
Ec_CFT073 6.24 0.59 8.11 0.86
Ec_HS 3.90 0.95 4.79 0.88
Ec_MG1655 0.06 0.05 0.64 0.08
Ec_EDL933 1.81 0.05 3.69 0.04
Ec_Sakai 1.54 0.07 3.79 0.13
Ec_UTI89 2.64 0.08 4.37 0.22
Ec_W3110 0.12 0.04 0.91 0.10
Sb_227 8.83 5.29 8.27 3.72
Sd_197 10.90 7.76 11.44 6.12
Sf_2457T 0.64 0.40 1.62 1.07
Sf_301 2.82 0.28 3.69 0.60
Sf_8401 1.63 0.83 3.17 1.12
Ss_046 11.04 3.43 8.37 2.58
COM_2 3.53 0.62 3.05 0.33
EHEC 12.71 0.80 8.83 0.83
Sf_2 1.43 0.60 2.12 0.91
APEC + 1UPEC 3.30 0.74 2.61 0.49
Sf 6.93 4.64 4.22 3.91
APEC + 2UPEC 0.38 0.24 0.60 0.19
APEC+UPEC 1.05 4.69 1.52 1.83
COM 1.12 0.38 0.63 0.27
Sb+Ss 1.09 0.92 0.15 0.89
ETEC + Sb + Ss 0.25 0.20 0.04 0.21
COM + ETEC + Sb + Ss 0.30 0.23 0.09 0.16
COM + ETEC + Sb + Ss + Sf 0.32 0.34 0.08 0.28
EHEC + Sd 0.42 0.52 0.08 0.56
ALL_BUT_APEC/UPEC 0.50 4.05 0.12 2.67

Each row represents a branch of the phylogeny as labeled on Figure 6, and
shows the percentage of features and genes gained and lost on that
branch according to the two analyses.

Table 5. Table of symbols

Symbol Description

Data variables
n No. of isolates
f No. of features
D = di;j

� �
i 2 1::n½ �; j 2 1::f½ � Binary feature data

T Phylogeny of the n isolates
Tj j Sum of branch lengths of T

s Probability of presence of a
feature in the MRCA genome

Parameters of the model
r+ Compound rate of feature gain on T
r� Compound rate of feature loss on T
c+ No. of change points in r+

c� No. of change points in r�

Other variables
pr Prior of the values in r+ and r�

pc Prior on the number of change
points in r+ and r�

h
�

ujv ; r+; r�; i
�

Probability that a feature goes from
state v to state u

g
�

ujv; r+; r�; l
�

On the branch above the i-th node; cf.
Equation 2 probability that a feature
goes from state v to state u on a
branch of length l without
changepoints; cf. Equation 3

cx,j Indicator of the presence of feature
j in the internal node x
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200,000 iterations, the first half of which was discarded to avoid
the influence of the starting point. Each iteration consists of an
attempt at each of the moves described in the Appendix. Con-
vergence of the MCMC was judged satisfactory in each case by
manual comparison for the five runs of the trajectories of the
likelihood, c+ and c�, as well as application of the Gelman-Rubin
test (Gelman and Rubin 1992) for c+, c�, and the values taken by r+

and r� at the top, middle, and bottom of each branch in the
phylogeny. The results presented below for each data set are based
on a concatenation of the five instances of the MCMC for maxi-
mum robustness.

Sampling internal states

The location at which features are gained or lost is not explicitly
included in our parametrization of the model in order to improve
convergence and mixing rates of the MCMC. It is, however, often
interesting to know which features have been gained or lost at
different points on the phylogeny, and with which posterior
probability. Here we show how this can be done by adding a few
steps to the dynamic programming algorithm described above for
the calculation of the likelihood. Note that this does not interfere
in any way with the likelihood calculation, and does not represent
a change of parametrization.

In summary, after using a pruning algorithm in a first pass
from bottom to top of T to calculate the likelihood as described
above, it is possible to pass again through T from top to bottom in
order to sample the state of each internal node (Hein 1989). This
procedure is similar to the forward–backward algorithm of hidden
Markov models (Rabiner 1989).

For each node x of T, let cx,j be equal to one if node x has
feature j and to zero otherwise. The following steps 4 and 5 are
added in order to sample cx,j for all nodes:

4. Draw u ; Unif([0, 1]), and set:

cMRCA;j := u <
f 1ðMRCAÞ

f 0ðMRCAÞ+ f 1ðMRCAÞ


 �
ð7Þ

5. For each internal node x taken in decreasing order of age, let y
denote the father node of x in T, draw u ; Unif([0, 1]), and set:

cx;j := u <
f 1ðxÞh 1jcy;j;r

+ ; r�; x
� �

f 0ðxÞh 0jcy;j;r + ; r�; x
� �

+ f 1ðxÞh 1jcy;j;r + ; r�; x
� �

" #
ð8Þ
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Appendix

Markov chain Monte Carlo moves

The moves presented below are accepted according to the Me-
tropolis-Hastings-Green ratio:

a = min
�
1;
�
prior ratio PR

�
3
�
proposal ratio QR

�
3
�
likelihood ratio LRÞ 3 Jacobian Jð Þ� ð9Þ

LR is equal to the ratio of likelihoods after and before the
proposed move and can be calculated using Equation 1. The values
of PR, QR, and J are given in each of the move descriptions below.

Move an existing changepoint in r+ along
a branch of T

In this move, one of the c+ changepoints of r+ is uniformly chosen.
We propose to update the age t of the changepoint to t9, which is
drawn uniformly on the branch to which the changepoint
belongs. This proposal distribution ensures that proposing to
move the age of the changepoint from t to t9 is equally likely to
propose a move from t9 to t, so that QR = 1. Furthermore, the
model assumes a uniform distribution of the changepoints on T,
so that PR = 1. Finally, since this jump does not change the di-
mensionality of the parameter, we have J = 1.

Update a value in r+

In this move, one of the (c+ + 1) values taken by r+ is uniformly
chosen and proposed to be updated by adding u to it, where u ;

Unif([�2 Z;2]). If the new value is out of the domain of definition
of r+, the move is automatically rejected. Proposing to move from
the old to the new value is equally likely than proposing to move
from new to the old value, so that QR = 1. Furthermore, PR = pr(r +

u)/pr(r) and J = 1.

Add/remove a changepoint in r+

This move first decides to add or remove a changepoint, each with
probability a half. To add a changepoint, a point x is chosen uni-
formly on the branches of T, and the value t of r+ associated with
the new changepoint is drawn from pr. To remove a changepoint,
one of the c+ existing changepoints is chosen uniformly and re-
moved. If no changepoint exists, the removing update is always
rejected. Since the age of a new changepoint and its associated
value are drawn from a proposal distribution, the Jacobian J is
equal to one, even though this move is transdimensional
(Troughton and Godsill 1998; Dellaportas et al. 2002; Lopes and
West 2004).

If the move proposes to add a new changepoint at x with
associated value t, we have:

PR =
pc c + + 1ð Þ c + + 1ð ÞprðtÞ

pc c +ð Þ Tj j and QR =
Tj j

c + + 1ð ÞprðtÞ
ð10Þ

If the move proposes to remove an existing changepoint x,
we have:

PR =
pc c + � 1ð Þ Tj j
pc c +ð Þc + prðtÞ

and QR =
c + prðtÞ

Tj j ð11Þ
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