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Abstract
Background: Large-scale genome-wide association studies are promising for unraveling the
genetic basis of complex diseases. Population structure is a potential problem, the effects of which
on genetic association studies are controversial. The first step to systematically quantify the effects
of population structure is to choose an appropriate measure of population structure for human
data. The commonly used measure is Wright's FST. For a set of subpopulations it is generally
assumed to be one value of FST. However, the estimates could be different for distinct loci. Since
population structure is a concept at the population level, a measure of population structure that
utilized the information across loci would be desirable.

Findings: In this study we propose an adjusted C parameter according to the sample size from each
sub-population. The new measure C is based on the c parameter proposed for SNP data, which was
assumed to be subpopulation-specific and common for all loci. In this study, we performed
extensive simulations of samples with varying levels of population structure to investigate the
properties and relationships of both measures. It is found that the two measures generally agree
well.

Conclusion: The new measure simultaneously uses the marker information across the genome.
It has the advantage of easy interpretation as one measure of population structure and yet can also
assess population differentiation.

Background
Large scale genome-wide association studies are promis-
ing in unraveling the genetic basis of complex diseases in
humans. There are many such studies currently being car-
ried out. However, the size of the data produces several
issues and challenges in analysis and interpretation. One
of the potential problems is hidden population structure
in the samples. It can cause spurious associations when
cases and controls differ in ancestry and is thus a con-
founding factor. However, the effects of population struc-
ture in real large-scale association studies are very

controversial. Therefore, a systematic study is needed to
quantify the levels of population structure and its effects
on genetic association studies.

The first step to quantify the effects of population struc-
ture is to choose an appropriate measure of population
structure for human data. The commonly used measure is
Wright's FST [1]. For a set of subpopulations it is generally
assumed to be one value of FST. However, the estimates
could be different for distinct loci. It could be a problem
if population structure is adjusted with local estimates in
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genome-wide association studies because it could mask
real association and lead to loss of power. With the avail-
able of genomic data, we would like a measure utilizing
the information across markers. Therefore, we proposed a
new measure C for SNP data. The new measure is same for
all loci and utilizes information across loci. It is based on
the c parameters for the subpopulation that measures the
divergence of the subpopulation from the common ances-
tor [2]. We then performed extensive simulations to inves-
tigate the performance the new measure and compared it
to the traditional FST statistic.

Methods
Simulation model
We simulated samples with population structure using
the Balding-Nichols model [2,3]. Specifically, let xij be the
number of copies of the chosen SNP variant at locus i in
population j, αij be the corresponding allele frequency at
locus i in population j, then the model specifies that

where L is the number of loci, P is the number of popula-
tions, nij is the number of chromosomes genotyped at the
ith SNP in the jth population, πi is the ancestral allele fre-
quency for the ith SNP and the variance parameter cj spec-
ifies how far the jth subpopulation's allele frequencies
tend to be away from the ancestral allele frequency. In our
simulations, we sample cj and πi from a uniform distribu-
tion on (0, 1). The simulations were performed using the
simMD program in the Popgen package [4].

Estimating cj parameter
For each sample in the simulated data sets, we estimate
the c parameter for each subpopulation using a Bayesian
approach. We assume uniform priors on both c and π
parameters and use Markov Chain Monte Carlo (MCMC)
methods (a Gibbs sampler) to sample from the posterior
distribution. The Markov Chain was run for 20,000 itera-
tions and the first 10,000 iterations were discarded as
burn-in. We estimated the c parameter by using the poste-
rior mean values from the posterior samples.

New measure
When summarizing the level of population structure
across subpopulations, it is desirable to have a single sta-
tistic, instead of one for each subpopulation. We propose
to use the weighted mean of the c parameters as the new
measure of population structure. Specifically, suppose we
have P subpopulations, and let cj be the variance parame-

ter for the jth subpopulation as defined above, then the
new measure C is defined as

where wj is the weight for the jth subpopulation. There are

many possible weighting schemes. Here we propose to
use sample size from each subpopulation as a weight.

That is, , where nj is the number of indi-

viduals from subpopulation j in our sample. In our imple-
mentation, we used the posterior estimate of cj and took

the weighted mean as an estimate of C.

From the simulated samples, FST was estimated using the
unbiased estimator at bi-allelic SNP described by [5].

Results
Equal sample size
In the first set of simulations, we sampled equal number
of chromosomes from each of the 3 sub-populations. We
generated genotypes of 100 SNPs according to our simu-
lation model. The posterior estimates of the variance
parameter cj were obtained using MCMC method. We
then estimate C by taking simple average of the estimates
of the cj parameters. FST was also estimated from the same
simulated sample. A total of 100 samples were simulated.
The correlation coefficient between the estimates of C and
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Linear regression of FST on the estimates of the C parame-ters with sample size 60 from each of the 3 populationsFigure 1
Linear regression of FST on the estimates of the C 
parameters with sample size 60 from each of the 3 
populations.
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FST was calculated from a linear regression of FST by C. Fig-
ure 1 shows the regression of FST by C when the sample
size is 60 in each of the 3 sub-populations. As seen in Fig-
ure 1, the correlation between the estimates of FST and C is
very high (R2 = 0.92). The standard error of the intercept
is 0.06.

We then conducted further sets of simulations with vary-
ing sample sizes for each set, but equal sample size from
each sub-population within each set of simulations. Sim-
ilar analysis was performed to estimate FST, C, and their
correlations. Table 1 gives the correlation coefficient
between the estimates of FST and C with varying sample
size for several simulations. The number in the sample
size column is the number of individuals simulated from
each sub-population. Clearly, the correlation between FST
and the new measure C increases as the sample size
increases. The correlation is high at all the sample sizes we
have tried. Even when the sample size is as small as 30
individuals from each sub-population, we still have R2 =
0.89.

To investigate the correlation of C and FST when there are
deviations of the Balding-Nichols model, we simulated
samples with αij from a mixture of two Beta distributions,
with probability (1-a) and a respectively from the two dis-
tributions. Table 2 gives the result with a series of values
of a. The correlation remains high with 20% mixture.

Unequal sample size
Next we simulated samples with unequal number of indi-
viduals from each sub-population. We simulated two sce-
narios. Specifically, in scenario 1, the number of
individuals from the 3 populations are 30, 40, 90, respec-
tively and 30, 60, 70, respectively in scenario 2. The total
sample sizes in the two scenarios are the same. For each
scenario, we simulated 100 samples, each with informa-
tion from 100 SNPs. Here because we have unequal sam-
ple sizes, we compared 3 weighting schemes for the new
measure C. In scheme 1, we estimated C by taking simple
average of the cj parameters. In scheme 2, we calculated
weighted average of cj using number of individuals from
each sub-population as the weight. In scheme 3, we calcu-
lated weighted average of cj using the square root of the
number of individuals from each sub-population as the
weight. Table 3 gives the correlation coefficients from the

regression. It can be seen from Table 3 that when sample
size is unequal from each sub-population, the simple
average in scheme 1 gives the lowest correlation between
the estimates of FST and C, while the sample size weighted
average in scheme 2 gives the highest correlation. The
square root of sample size weighted average in scheme 3
gives a slightly lower correlation than weighting scheme 2.
Based on these results, we proposed to use sample size
from each sup-population as a weight to estimate the new
measure C as detailed in the methods section.

Varying number of SNPs
Next we consider the effects of the number of SNPs on the
correlation between the estimates of FST and the new
measure C. In the simulations of previous sections, we
simulated samples with 100 SNPs. In this section, we
increased the number of SNPs to 1000. We simulated 30,
60, 90 individuals from the three subpopulations respec-
tively. A total of 100 samples were simulated. Figure 2
shows the regression of FST by C with 1000 SNPs. The R2

in this case reaches 0.96. Compared with the case of 100
SNPs and the same sample size configuration (30, 60, 70
from the 3 sub-populations) shown in Table 3, the corre-
lation increases as the number of SNPs increases (R2 =
0.91 in the case of 100 SNPs).

Varying number of sub-populations
In this section, we studied the effects of varying number of
sub-populations on the correlations of the new measure C
with FST. We performed further simulations in 3 scenarios
with equal sample size from each subpopulation. In sce-
nario 1, we simulated 2 sub-populations with 90 individ-
uals from each sub-population. In scenario 2, 45
individuals were simulated from each of 4 sub-popula-
tions. In scenario 3, 36 individuals were simulated from
each of 5 sub-populations. Thus, in these simulations, we
changed the number of sub-populations but keep the
total sample size constant at 180. For each individual,
genotypes at 100 SNPs were simulated. We simulated 100
samples. Table 4 gives the correlation coefficient in the 3
scenarios and the simulation with 60 individuals from
each of the 3 sub-populations. It can be seen that the cor-
relation increases with more sub-populations even

Table 1: Correlation coefficient of estimates of FST and C from 
simulations with varying sample sizes

Sample size Correlation coefficient

30 0.944
60 0.959
90 0.973

Table 2: Correlation coefficient of estimates of FST and C from 
simulations with ij from a mixture distribution

Sample size Correlation coefficient

a = 0.05 A = 0.10 a = 0.20 a = 0.30

30 0.942 0.925 0.882 0.792
60 0.951 0.939 0.894 0.862
90 0.963 0.946 0.903 0.881
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though the total sample size is constant. However, the cor-
relation levels off with 3 or more sub-populations.

Discussion
Natural populations of the same species from different
geographic regions tend to differ genetically. Human pop-
ulation is no exception. Previous research has shown that
ignoring the genetic differences among sub-populations is
a potential problem for genetic association studies of
human diseases, especially for genome-wide association
studies [6]. The problem could be severe for large multi-
centered studies and/or studies in admixed populations,
such as African Americans.

The explosion of SNP data in human populations pro-
vides an unprecedented opportunity to further character-
ize population structure and relationships. In this paper,
we proposed a new measure of population structure spe-
cifically for SNPs. It is based on the c parameter which is
population specific and measures the differentiation of

the population from the common ancestor population. In
contrast, the new measure C is an index of the overall lev-
els of population structure across populations. Through
extensive simulations, we showed that the new measure C
has very high correlations with the traditional Wright's
FST. The correlation increases as we have more informa-
tion (more SNPs and/or more sub-populations in the
samples).

While the new measure is different from the c parameter,
it has some inherited advantages from the c parameters.
First, it is specific for SNPs and takes account of the ascer-
tainment bias in the process of SNP discovery. Since SNP
discovery is generally conducted in small samples, SNPs
with high minor allele frequencies are more likely to be
discovered than SNPs with low minor allele frequencies,
thus creating the possible ascertainment bias. It has been
shown that the ascertainment bias could affect the estima-
tion of population parameters in genetic analysis [7]. This
ascertainment bias has been explicitly accounted for in the
model for estimating the individual c parameter for each
sub-population. It is assumed that a large number of
potential loci are examined in small samples from each of
the sub-populations, and a locus is chosen if it is not fixed
for the same allele in all sub-populations.

Second, the new measure is based on inferences from a
Bayesian framework. Therefore, it is very flexible in mod-
eling and can incorporate prior information on the
parameters. In our simulation studies, we used unin-

Table 3: Correlation of the estimates of FST and C from several weighing schemes

Weighting scheme Correlation coefficient

Sample size (30, 40, 90) Sample size (30, 60, 70)

Scheme 1 0.866 0.875

Scheme 2 0.940 0.947

Scheme 3 0.931 0.937

Linear regression of FST on the estimates of the C parame-ters with 1000 SNPsFigure 2
Linear regression of FST on the estimates of the C 
parameters with 1000 SNPs.
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Table 4: Correlation of the estimates of FST and C with varying 
number of sub-populations

Sample size Correlation coefficient

(90, 90) 0.874

(60, 60, 60) 0.959

(45, 45, 45, 45) 0.965

(36, 36, 36, 36, 36) 0.971
Page 4 of 5
(page number not for citation purposes)



BMC Research Notes 2009, 2:21 http://www.biomedcentral.com/1756-0500/2/21
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

formative prior distributions for the c and π parameters. If
we have any prior knowledge regarding the distribution,
we could easily incorporate it in the estimations, which
can lead to more accurate estimates than the moment-
based estimates of FST [2].

In summary, we proposed a new measure of population
structure based on a Bayesian hierarchical model for
SNPs. It uses the information at multiple markers and has
high correlations with the traditional measure FST. We rec-
ommend reporting the new measure along with the indi-
vidual c parameters for sub-populations so that we could
get an idea of the level of population structure and the
divergence of each sub-population as well.
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