
FtsH and Lon families.3-6 These proteases are members of the 
AAA+ protein superfamily (ATPases associated with diverse cellular 
activities).7,8

Arabidopsis has four genes encoding for Lon proteases that 
contain a Serine (S)-Lysine (K) catalytic dyad4 and, like their 
bacterial and eukaryotic homologs, may combine proteolytic and 
chaperone-like activities.5,6 Presumably oxidative stress induces 
Lon-like proteolysis.9,10 Nevertheless, the only designated function 
of Lon proteases to date is the control of cytoplasmic male sterility 
in common bean plants.11 We recently characterized two mutant 
alleles of Arabidopsis Lon1 gene, lon1-1 caused by EMS mutagenesis 
resulting in a premature termination codon and lon1-2 mutant allele 
caused by T-DNA insertion.12 Both mutations occur at the 18th exon 
of AtLon1 gene, which consists of 19 exons. The main phenotypic 
feature of lon1 mutants is the post-embryonic growth retardation 
resulting in delayed seedling establishment. This growth retardation 
remains throughout the entire life cycle of the plant. Biometrics 
revealed that lon1-2 allele corresponded to a weak mutant allele in 
comparison to the strong lon1-1 mutant phenotype (Fig. 1).

[Plant Signaling & Behavior 4:3, 221-224; March 2009]; ©2009 Landes Bioscience

Quality control of proteins in eukaryotic organelles is predomi-
nantly maintained by members of the ATP-dependent proteases. 
Even though numerous biological analyses have shed light on 
the functional implications of such proteases, their involvement 
in developmental processes of multicellular organisms has not 
been determined. We recently identified two lon1 mutant alleles, 
both missing the carboxy terminal proteolytic domain, that show 
post-embryonic growth retardation resulting in delayed seedling 
establishment. In this addendum, we enlighten the role of Lon1 
selective proteolysis in plant mitochondria biogenesis, a prereq-
uisite for post-embryonic development and growth. In contrast 
to the weak lon1-2 allele, the polypeptide encoded by the strong 
lon1-1 allele carries the sensor- and substrate-discrimination 
domain allowing substrate recognition and binding. This type of 
molecular recognition hinders further degradation by the comple-
mentary Lon-independent proteolytic machineries resulting in an 
extra deleterious accumulation of protein aggregates into lon1-1 
mitochondria. The most challenging and informative task will be 
to identify the recognition motifs on the Lon protein substrates 
and elucidate the molecular events that control plant mitochondrial 
differentiation.

Maintenance of biological functions requires the constant cycling 
between protein synthesis and degradation. Selective proteolysis 
occurs in various cellular compartments to remove short-lived regu-
latory proteins and to prevent the potentially harmful accumulation 
of non-native polypeptides. The ubiquitin/26S proteasome pathway 
has evolved as the main highly selective proteolytic mechanism 
in the cytoplasm and nucleus modulating several aspects of plant 
development.1,2 In plant organelles however, protein quality control 
is performed by ATP-dependent proteases that belong to the Clp, 
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Figure 1. The growth phenotype of lon1 mutants. Growth retardation of lon1-
2 plants is milder than the lon1-1 mutant allele. Bar: 1 cm.
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domain, while the weak lon1-2 allele carries only a minor segment 
(Fig. 2A and B). The truncated polypeptide encoded by lon1-1 
mutant allele potentially participates in protein substrate recognition 
and binding due to the activity of the SSD domain. Consequently, 
while it recognizes the substrate proteins, no further degradation is 
accomplished due to the absence of the proteolytic (P) domain (resi-
dues 811–985). This type of protein recognition most likely leads to 
delayed degradation of the misfolded or non-native polypeptides by 
the complementary Lon-independent proteolytic machineries, which 
are also abundant in the mitochondria matrix. This may result in 
the formation of high-molecular weight aggregates deleterious for 
mitochondria organization and function, causing the severe lon1-1 
growth phenotype. Experimental observations in yeast revealed the 
overlapping substrate specificity between the m-AAA high-molecular 
weight complex of mitochondrial FtsH proteases and the yeast Lon 
protease homolog PIM1.22,23 Furthermore, the SSD domains of the 
bacterial Clp ATPases and Lon protease that interact with substrates 
have similar predicted structures.21 The lon1-2 allele lacks the SSD 
domain being unable to recognize target polypeptides and, plausibly 
does not lead to the formation of high-molecular weight aggregates. 
Nevertheless, the non-native polypeptides still accumulate resulting 
in the aberrant but rather weak lon1-2 phenotype.

Elevated temperatures increase the fraction of high-molecular 
weight aggregates within cellular compartments. Under these condi-
tions lon1-1 germination efficiency was dramatically diminished, 
whereas lon1-2 seeds exhibited relatively better germination.12 
Thus, loss of Lon1 proteolysis sustains the conditional formation of 
supramolecular protein structures with prolonged deleterious effects 
on seed germination indicating that mitochondria differentiation 
substantiates seedling establishment and development. The marginal 
nevertheless noticeable difference in germination rate between the 
lon1 alleles further confirms that the Lon1-1 polypeptide forms 
auxiliary aggregates, due to the activity of the SSD domain.

In conclusion, our study has revealed the critical role for AtLon1 
protease in organelle biogenesis and seedling establishment. The 
hypothesis we propose here should provide novel insights into the 
developmental mechanisms of selective proteolysis in plant mito-
chondria. Further analysis using a combinatorial approach, mutant 
analysis and proteomics, is required to decipher the molecular recog-
nition of protein substrates by Lon1 protease and the events that 
control plant mitochondrial differentiation.
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