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Abstract
Protein folding is considered here by studying the dynamics of the folding of the triple β-strand WW
domain from the Formin binding protein 28 (FBP). Starting from the unfolded state and ending either
in the native or nonnative conformational states, trajectories are generated with the coarse-grained
united residue (UNRES) force field. The effectiveness of principal component analysis (PCA), an
already-established mathematical technique for finding global, correlated motions in atomic
simulations of proteins, is evaluated here for coarse-grained trajectories. The problems related to
PCA and their solutions are discussed. The folding and non-folding of proteins are examined with
free energy landscapes. Detailed analyses of many folding and non-folding trajectories at different
temperatures show that PCA is very efficient for characterizing the general folding and non-folding
features of proteins. It is shown that the first principal component captures and describes in detail
the dynamics of a system. Anomalous diffusion in the folding/non-folding dynamics is examined by
the mean-square displacement, (MSD), and the fractional diffusion and fractional kinetic equations.
The collision-less (or ballistic) behavior of a polypeptide undergoing Brownian motion along the
first few principal components is accounted for.
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INTRODUCTION
The dynamics of protein folding can be discussed in terms of the diffusive properties of the
polypeptide chain. Principal component analysis (PCA), a covariance-matrix-based
mathematical technique, is a procedure to reduce a multidimensional complex set of variables
to a lower dimension along which the diffusive properties at all stages of protein folding can
be identified. Folding does not refer to a progressive pathway of unique single conformations,
but rather to interconversions among ensembles of conformations in a back-and-forth
progression from the unfolded to the folded state. In this paper, we treat the protein-folding
problem by presenting information about the folding and non-folding events of a small 37-
residue protein, the triple β-strand WW domain from the Formin-binding protein 28 (FBP)
(1E0L in PDB notation1).

The formation of intermolecular β-sheets is thought to be a crucial event in the initiation and
propagation of amyloid diseases such as Alzheimer’s disease2 and spongiform
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encephalopathy,3 and to be involved in a number of disease pathologies,4 trafficking,5 and
cellular signaling.6 Yet, the dynamics of formation of β-sheets is still not fully understood.
Consequently, much experimental7 and theoretical8–10 research is being carried out with the
WW domain families of proteins, the smallest natural β-sheet structures, to gain insight into
the dynamics of formation of β-sheets.

Folding of proteins involves motion in a large range of length and time scales. Thus far, there
are no experimental techniques to describe protein dynamics, in which fluctuations range from
bond-distance variations of tenths of Angstroms on the femtosecond time scale to folding of
the whole protein on a time scale of seconds. All-atom molecular dynamics (MD) simulation
is the only computational method with which to study these motions. However, there are two
major obstacles limiting its usefulness: (i) the shortness of the achievable simulation times,
and (ii) the multidimensionality of the system (>104 degrees of freedom with explicit solvent).

i. In all-atom MD simulations, the time scales of current computers (hundreds of
nanoseconds) are at least one order of magnitude smaller than the folding time of
proteins.11 During the past decades, many approximate methods have been developed
to attack the folding problem. These approaches are either physics or knowledge-
based methods.12–14 One of them makes use of a physics-based united-residue
(UNRES) force field developed in our group over the past several years.15–19 Each
amino acid residue is represented by only two interaction sites, which makes the model
simple enough with which to carry out large-scale simulations. In formulating
UNRES, averages are evaluated over the fast degrees of freedom, facilitating its
application to MD simulations. The advantage of UNRES compared to other
mesoscopic protein force fields is that it has been derived carefully as a potential of
mean force of polypeptide chains17 and ultimately parameterized18,19 based on the
concept of a hierarchical protein energy landscape.20,21 Together with the efficient
conformational space annealing (CSA) method22 of global optimization and, more
recently with MD simulations,23,24 UNRES is able to predict the structures of real-
size proteins without ancillary information from structural databases.19,25 Therefore,
UNRES appears to be a good mesoscopic force field for studying the folding pathways
of proteins in real time.

ii. Out of thousands of modes in proteins, only a few modes contain more than half of
the total fluctuations of the system; therefore, a strategy is needed to identify the most
important (slow) modes. For this purpose, principal component analysis (PCA),26–
34 also called quasi-harmonic analysis,35 molecule optimal dynamic coordinates,
36,37 and essential dynamics method,38 is one of the most efficient methods.

Although PCA can separate the modes of motion based on amplitude, one should be careful
in interpreting the results of this analysis. First, the set of modes capturing the major fluctuations
of a system depend on the width of the sampling window. In other words, with increasing width
of the sampling window, more and more slower modes can acquire larger amplitudes and
appear as the dominant mode.28 Second, random (normal) diffusion can produce cosine-
shaped principal components (PCs),30 which can mistakenly be interpreted as a transition of
the system from one state to another. This problem exists in only short MD trajectories30 and
should not be confused with PCs of long trajectories, which also may have the shape of a cosine-
like function identifying the real transition. Third, it is important to eliminate overall rotation
for large-amplitude motion, on which the PCA results ultimately depend, especially for
peptides and small proteins. This problem has been solved recently by introducing a novel
PCA, based on the replacement of Cartesian coordinates in PCA by internal coordinates
(dihedral angles), called dihedral principal component analysis (dPCA).39
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The cause of the first two problems in PCA is the insufficiency of the simulation time for
sampling. Thus, determination of a minimum MD simulation length, which is required for the
convergence of sampling, is still an actively-studied topic. Thus far, there is no unique solution
of this problem. The length of a minimum MD simulation can change from system to system,
and depends on the size of the system. For small peptides, 1 ns simulation is enough time to
achieve convergence of sampling;40 proteins require much longer simulation times, but how
much longer is still not clear. Several years ago, Hess introduced the cosine content of PCs,
31 which is a good indicator of bad sampling; however, accurate study of the convergence
behavior in proteins is impossible because current computers are not fast enough to probe all
available conformations.31 One example is the recent unsuccessful attempt to solve the
convergence problem, in which the authors performed 26 independent 100ns MD simulations
for the membrane protein rhodopsin.34 The results showed that the sampling was not fully
converged even for individual loops.34 Thus, because all-atom MD simulations, that must
achieve convergence, are insufficiently long when treating large proteins, it is not easy to satisfy
the basic motivation for using PCA in the analysis of all-atom MD trajectories, which is the
identification of slow modes and their use for prediction of long-time dynamics.

Besides the development of new theoretical approaches, in recent years many experiments
have been carried out to study protein folding. The energy landscape language has emerged
for experimentalists and theorists to describe how proteins fold and function.41–43 The picture
of the free energy landscape of proteins has benefited from a variety of experimental
studies44–46 of fast-folding events, and computational studies47–49 of small fast-folding
proteins and peptides. The difficulties to compute the free energy landscapes for medium- and
large-size proteins are related, again, to the time limitations in all-atom MD simulations. In
order to study larger proteins and overcome the problems mentioned above, coarse-grained
MD trajectories are required.

A theoretical investigation of the folding dynamics of β-sheet motifs is always challenging and
not always achievable at the atomic level of simulation because of the longer folding time
compared to that of the α-helix. This challenge makes it more interesting to study this basic
structural motif of proteins because UNRES easily simulates the folding dynamics of a protein
such as 1E0L. Many MD simulations, starting from the extended state and ending either in the
native or nonnative conformational states, are carried out here at different temperatures with
the coarse-grained UNRES force field, and then analyzed by PCA. By analysis of full folding/
non-folding trajectories, we show that PCA is a very powerful technique to extract reliable
information about the dominant behavior over the folding landscape. We demonstrate the
evolution of the lowest-indexed PC from the randomly diffusive regime to the unfolded state
and then to the native state. The free energy landscapes in the space of the two largest principal
components for 1E0L illustrate mainly a three-state folding pathway although, for some
trajectories at higher temperature, we observe extremely fast direct folding with the
disappearance of an intermediate basin (two-state folding).

We also study the diffusive behavior along the low-indexed PCs for both a full trajectory
starting from the unfolded state and ending either in the native or nonnative conformational
states, and in unfolded, folded, and transition states separately by using the mean-square
displacement (MSD) and the fractional-diffusion and fractional-kinetic equations.50,51 We
show that the diffusive behavior of the system analyzed by MSD depends strongly on the length
of the MD simulation. Slow diffusion (subdiffusion) is revealed for the native state, the first
half of the unfolded state, and the full trajectory; however, we observed an enhanced diffusion
(superdiffusion) in the transition state and in the second half of the unfolded state. Moreover,
we show that the behavior of a system along cosine-shaped PCs cannot be normal diffusive,
and confirmed the correctness of an earlier finding of collision-less (or ballistic) behavior30
of a polypeptide undergoing Brownian motion.
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RESULTS AND DISCUSSION
Principal components

Since coarse-grained models enable us to carry out MD simulations starting from the unfolded
state and ending in the native state, and consume a fairly short CPU time, we have employed
the UNRES force field to generate many trajectories at different temperatures for 1E0L,1 Fig.
1. In this work, we present the results of fast-, slow-, and non-folding trajectories at different
temperatures analyzed by PCA. All trajectories start with the same initial (extended) structure
but with different velocities. The terms fast- and slow-folding are arbitrary. The total time of
all MD simulations is the same, ~ 600 ns. If the protein folds before 300 ns (half of the entire
simulation time), then the trajectory is called fast-folding; if the protein spends half (or more)
of the entire trajectory time to fold, then the trajectory is called slow-folding. If the system
never folds during the entire 600 ns MD simulation, then the trajectory is called non-folding.

Figure 2 illustrates the first three PCs and the root-mean-square deviation (rmsd) from the
native structure of fast- (panel a), slow- (panel b), and non-folding (panel c) MD trajectories
for 1E0L at 330K. These three trajectories are representative of many MD trajectories that we
have obtained at 330K. The calculated and experimental7 folding temperatures of 1E0L are
339 K and 337 K, respectively. Since the time scale of the dynamics with the coarse-grained
UNRES model does not correspond to that of the all-atom dynamics because of averaging over
the secondary degrees of freedom in UNRES, the time given in the Figures and in the text
below is regarded as an UNRES time. There is a clear correlation between PC1 and the rmsd
for the fast- and slow-folding MD trajectories. The PC1 in these trajectories not only nicely
captures the motion of the protein during the entire trajectory, but also contains the large part,
56.4% and 48.1%, of the overall fluctuations for the fast- and slow-folding MD trajectories,
respectively. Although some correlation between PC2 and higher-indexed PCs and rmsd is
noticeable in some parts of the trajectory, these PCs mainly identify the transition from the
unfolded state to the native state. Such a behavior and the relatively small contributions to the
total fluctuations (for example, in the fast-folding trajectory, the contributions of PC2 and PC3
to the total fluctuation are seven and eleven times less, respectively, than the contribution of
PC1) make the higher-indexed PCs less important. Thus, the main features of the energy
landscape of the system for fast- and slow-folding trajectories can be represented by the first
PC.

In contrast to the fast- and slow-folding trajectories, in which the first PC captures most of the
behavior of the rmsd, the correlation between PC’s and rmsd is observed in the first three PCs
in the non-folding MD trajectory (panel c); also, the amplitudes of fluctuation along PC1 and
PC2 (in panel c) are relatively similar to each other. Hence, the distribution of the captured
parts of the overall fluctuations by the first few PCs is different for the non-folding MD
trajectory: PC1 ~ 18.4%, PC2 ~ 12.9%, PC3 ~ 10.2%. Thus, for the non-folding trajectory, the
first PC is not enough to depict the main features of the energy landscape.

The principal components can be classified into three categories: multiply-hierarchical, singly-
hierarchical, and harmonic.29

The free energy profile, μi(qi) = − kBT ln Pi(qi), along multiply-hierarchical PC(qi)’s, where
Pi(qi), T and kB are the pdf, the absolute temperature, and the Boltzmann constant, respectively,
is highly-rugged, i.e., anharmonic, and many local minima appear in a multiple number of
coarse-grained minima. The multiply-hierarchical PCs are a main contributor to the total
fluctuations, and associated with global collective motions.27,29 The collective motion in a
protein is any motion that involves a number of atoms moving in a concerted fashion.27 The
protein moving along a multiply-hierarchical PC significantly changes its intra-molecular
packing topology.52 The probability distribution along a second category of PC, viz., singly-
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hierarchical, is Gaussian-like with a single peak, and the free energy profile along a singly-
hierarchical PC is characterized by a number of local minima arranged within a single coarse-
grained minimum.29 The last category of PC, viz., harmonic, does not contribute significantly
to the total fluctuation since it involves low-amplitude local minima and corresponds to local
motions.29 Such local motions have largely been averaged out in formulating UNRES.

Figure 3 illustrates the free energy profiles of the first three PCs of all three MD trajectories
(in panels a, b, and c) described in Fig. 2. In order to avoid overlapping, the free energy profiles
in Fig. 3 are shifted by 4×(i − 1) units (i is the index of the PC) along the ordinate axis. Unlike
all-atom MD trajectories, in which the free energy profiles of the first few tens of PCs usually
exhibit a multiply-hierarchical shape,29 in the UNRES trajectories the free energy profiles
along only PC1 for the fast- and slow-folding trajectories, and the free energy profiles along
the first two PCs for the non-folding trajectory can be characterized as multiply-hierarchical
(i.e., they contain more than one major basin of minima). This feature of the coarse-grained
UNRES model, in which fast motions are averaged out, is advantageous and important for the
reason discussed below.

The point is that the subspace spanned by the multiply-hierarchical PCs, which corresponds to
the largest fluctuations, contains the most important molecular conformations. However, the
identification of all conformational states is difficult if the subspace is formed by more than
two PCs, thereby requiring a high-dimensional energy landscape. This is mainly due to the fact
the principal components of the same category are not independent of each other,29 and the
visualization of conformational states in these higher dimensions is unfeasible. The free energy
profiles illustrated in Fig. 3, in which a multiply-hierarchical shape is revealed mainly along
the first PC (or the first two PCs for the non-folding trajectory), show that the problem related
to the visualization of states in the subspaces does not exist for UNRES trajectories. Based on
the fact that the subspace formed by multiply-hierarchical PCs contains the most important
molecular conformations, Hegger et al.53 defined the dimension of the free energy landscape
by the number of multiply-hierarchical PCs. Based on this definition, the dimension of the free
energy landscape for UNRES folding and non-folding trajectories decreases to one and two,
respectively. One of the proofs of the Hegger et al.53 definition is the correlation between PC1
and rmsd in Fig. 2. It is an important feature of the UNRES model, since the dimension of the
free energy landscape of the much smaller system, the alanine peptide (Ala10), constructed
from all-atom MD trajectories, is 8 and the dimension increases with the size of the system.53

Convergence of sampling
One of the main problems pointed out by many authors,28,31,33,34,40 which appears when
analyzing trajectories by PCA, is the convergence of sampling. As mentioned in the
Introduction, for short MD simulations, insufficient for convergence of sampling, the first
several PCs can have the shape of a cosine function caused by random motion of the polypeptide
chain without potential barriers, as characteristic of Brownian motion.30,31 Therefore, the
cosine content (defined in the Methods section) was introduced31 as a measure of the closeness
of the PC to a cosine shape, which appeared to be a good indicator for predicting whether or
not a trajectory has sampled a free energy landscape sufficiently for convergence.31,33,40 The
value of the cosine content varies between 0 (no cosine shape) and 1 (perfect cosine shape).
When the cosine content of the first few PCs is close to 1 (an indication of bad sampling), the
largest-scale motions in the protein dynamics cannot be distinguished from that for particles,
i.e. polypeptide chains, executing random diffusion, and so cannot be interpreted in terms of
specific features of the energy landscape.30,31,33,40

It should be noted that there is no conventional threshold separating the times of insufficient
and sufficient sampling as determined by the value of the cosine content; however, our previous
studies33,40 show that such a crossover might lie somewhere around a cosine content of 0.2

Maisuradze et al. Page 5

J Mol Biol. Author manuscript; available in PMC 2010 January 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for small peptides, and increases up to 0.5 for proteins. Coarse-grained MD simulations allow
us to obtain the projections of the entire MD trajectories from the unfolded state to the native
state. Therefore, we can illustrate the evolution (change) of the PCs with MD simulation time,
starting from cosine-shaped projections for the unfolded state, emerging from simple Brownian
motion30 encountered in short-time simulations, proceeding to projections obtained from
trajectories that are long enough to overcome random diffusion, in which the results depend
only on sampling because of lack of potential barriers, and reach potential barriers on the free
energy landscape, in which the values of the cosine content lie below a threshold value and the
free energy landscape is independent of the starting structure on any segment of a folding
trajectory.

To show such a time-evolution of a PC, we divided one of the folding trajectories into segments
of increasing length and carried out a principal component analysis for each segment. The
results are shown in Fig. 4(a). In order to avoid overlapping, and to plot several projections at
different time scales (differing by a few orders of magnitude), we first shifted the projections
along the ordinate axis, and then used a logarithmic scale for the abscissa. Since the logarithmic
scale distorts the cosine-shaped projection, additionally we plotted the cosine contents of these
projections in Fig. 4(b) to show the closeness of the shapes of the projections to the cosine
function.

Based on the results shown on these panels, the projections can be classified into three
categories: (i) projections of Brownian motion (lines 1 and 2), showing high cosine content;
(ii) projection identifying the end of random diffusion and the beginning of the region in the
free energy landscape where a potential barrier is encountered (line 3), showing lower cosine
content; (iii) projections of trajectories that have already overcome random diffusion and have
reached the region of the potential barriers (lines 4–9). Because of the high value of the cosine
content (non-converged trajectories) and the qualitatively different behavior of the first two
shortest projections (~ 1 and 2 ns), lines 1 and 2, they cannot be considered as a reliable source
for the free energy landscape over which the dynamics occurs. Therefore, these projections
belong to the first category (Brownian motion). The cosine contents of the next two shortest
projections (third and fourth lines) are below the threshold value (0.5); however, based on the
change in shape between lines 3 and 4, they can be interpreted as follows. The third shortest
projection (~ 3 ns), line 3, neither exhibits a half-cosine shape nor mimics the projections of
longer trajectories, which indicates that 3 ns can be considered as a transition time when the
system stops behaving as one with Brownian motion and reaches barriers on the free energy
landscape. This projection belongs to category (ii) (end of random diffusion). Based on the
behavior of the fourth shortest projection (~ 4 ns), line 4, which exhibits the shapes of the
longer-time projections, we can conclude that the trajectory is already past the region of random
diffusion and is caused by the potential barriers. This and all other longer-time projections
illustrated in Fig. 4(a) are representatives of category (iii). In order to strengthen our arguments
about sufficient sampling, we have analyzed ten 4 ns time interval segments obtained from the
MD trajectory shown in Fig. 4(a). Eight of them illustrated qualitatively similar free energy
profiles with two prominent minima, which is consistent with the free energy profile of the full
trajectory. Also, the high value of the cosine content at the last point in Fig. 4(b) has nothing
to do with random diffusion, but corresponds to the transition of the system from one state to
another, as shown in PC1 of Fig. 2(a).

Thus, based on the results illustrated in Fig. 4, we can conclude that the threshold, separating
the times of insufficient and sufficient sampling, determined by the value of the cosine content
lies around 0.5, as was obtained in our previous study.40 Also, for 1E0L, the 4 ns MD
simulation [line 4 of Fig. 4(a)] appears to be enough time to achieve convergence of sampling.
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Free energy landscapes of folding/non-folding MD simulations
The folding kinetics of the FBP28 WW domain was studied by different groups at different
levels of modeling.8–10 Using a sequence-dependent Cα-based Gô-like model, Karanicolas
and Brooks found that the FBP28 WW domain folds with biphasic kinetics because the
formation of loop 2 contacts is independent of the folding of the remainder of the protein.8
The same authors revisited the FBP28 WW domain using a biased-sampling method with an
all-atom model and with implicit representation of the solvent. After analyzing the free-energy
landscapes from MD simulations, they concluded that the FBP28 WW domain may adopt two
slightly different forms of packing in its hydrophobic core.9 Recent studies by Mu and co-
workers,10 using replica exchange MD simulations in explicit water, showed that the FBP28
WW domain adopts different hydrophobic packing forms due to the misfolding of turn 2.
Further discussion of a possible folding mechanism of this domain is provided below.

To illustrate folding/unfolding events obtained by the UNRES MD simulations for 1E0L, we
constructed free energy landscapes along the first two PCs, μ(q1, q2) = − kBT ln P(q1, q2).
Figure 5 shows the free energy landscapes for the MD trajectories discussed in Fig. 2 and for
extremely fast-folding MD trajectory at 335K. The first two panels (a, b) correspond to the
fast- and slow-folding trajectories, respectively. Two global basins with local minima and the
transition state can be identified in both free energy landscapes.

In panel (a), the A1, A2, and A3 minima with representative structures belong to the unfolded
state, in which the system spends ~ 30% [Fig. 2(a)] of the entire MD simulation time. The
minima A4 and A5, with representative structures and ~ 5% and 65% occupation times,
correspond to the “collapse” and native state, respectively. In particular, in the unfolded state
the system mainly jumps back and forth between minima A1 and A2, and between minima A2
and A3; however, the final jump from the unfolded state takes place from minimum A3. The
protein overcomes the barrier between the non-native and native states by undergoing a
“collapse” to minimum A4, and then proceeding to the native state (minimum A5). The
representative structures in the local minima of the unfolded state do not show any sign of
formation of strands or loops; however, at minimum A4, it can be seen that loop 2, strand 3
and partially strand 2 are formed. Loop 1 and strand 1 are formed in the transition state.

The non-native state of the free energy landscape in panel (b) can be characterized by five
distinct minima, B1 – B5; however, B1 and B5 appear as a sub-basin, in which the system
stays at the beginning and at the end of the non-native state and spends ~ 35% of the entire
trajectory time there. As in the fast-folding trajectory (panel a), the system overcomes the
barrier of the transition state between the unfolded and native state (B7) through the
“collapse” (the shallow minimum B6). Unlike the fast-folding trajectory, loop 1, strand 1 and
partially strand 2 are formed in the second local minimum (B2) of the non-native state.
However, the system starts to lose the β-sheet structure step by step from minimum to minimum
(B3–B5). At minimum B6, as in the fast-folding trajectory, loop 2, strand 3 and partially strand
2 are formed, and loop 1 and strand 1 are formed in the transition state.

Panel (c) illustrates the free energy landscape of the non-folding trajectory. It can be seen that
the system contains quite a large sub-basin characterized by the major, deep minimum C1 and
shallow minimum C4, in which the system remains for the longest period of time [~ ¾ of the
entire trajectory, Fig. 2(c)] with periodic jumps to minima C2 and C3. By jumping between
these four minima, the protein tries to form loops and strands, although none of them is
completely formed. In this non-folding trajectory, the protein does not “collapse”, as occurred
in previous trajectories but, instead, the system jumps to minimum C5, with quite a small rmsd
(~ 3.8 Ǻ) [Fig. 2(c)]; however, the structures found in minimum C5 are misfolded, since strand
3 has lost part of the β-structure. The protein does not spend a long time in the misfolded state
[~ 2% of the entire trajectory time, Fig. 2(c)] and jumps back to minimum C4. After that, the
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system jumps from minimum C4 to minimum C6, in which it spends ~ 7% of the entire
trajectory time, Fig. 2(c), and then jumps back to the sub-basin. Thus, in this case, the protein
does not fold.

All the minima, and the time (in %) spent in the minima, can be identified on the first PC in
Fig. 2. It should be noted that the collapsing property of the version of the UNRES force
field62 used in the present MD simulations is caused by a largely exaggerated SC-SC
interaction component (This undesirable feature of the force field is now being circumvented
by imposing an increase of the radius of gyration at temperatures larger than the folding-
transition temperature; A. Liwo, S. Ołdziej, C. Czaplewski, U. Kozłowska, H. A. Scheraga,
unpublished work). However, the “collapse” is instantaneous and is then followed by folding
to the native state.

If the “collapse” can be considered as a state, then most of the landscapes of the MD trajectories
studied here illustrate mainly a three-state folding pathway although, for some trajectories at
higher temperature (335K), illustrated in Fig. 5(d), we observed extremely fast direct folding
without the appearance of an intermediate (“collapse”) basin (two-state folding). These
findings are consistent with the experimental results obtained by Nguyen et al.7

In particular, in an extremely fast-folding trajectory, the system spends a very short time in the
infolded state (minimum D1) and jumps directly to the native state (D2). After that, during the
entire trajectory the protein jumps several times to the non-native state (minima D3, D4) but,
as during the first time, it returns every time to the native state very quickly. Thus, we observe
a few folding/unfolding events in this trajectory. Unlike the trajectories at 330K, in this
trajectory we do not see the steps in which strands and loops are formed during the first fold
(D1–D2). However, when the system makes short-time jumps from the native state to the non-
native state (D2–D3, D2–D4), only strand 3 loses part of the β-structure.

Although not shown here, the PC1 – PC3 free energy landscapes are similar to the PC1 – PC2
landscapes illustrated in Fig. 5.

Finally, we note that we have combined the above-discussed fast-, slow-, and non-folding MD
trajectories at 330K, calculated the first few PCs, and constructed the free energy profiles and
landscape (not shown). The free energy profiles and landscape for the combined trajectory
visually look like the ones for the fast- and slow-folding trajectories illustrated in Fig. 5(a, b).
In other words, two global basins with local minima and the transition state can be identified.
This is not surprising since the whole trajectory consists of two folding trajectories and one
non-folding one. The folding pathway in the combined trajectory contains the folding pathways
of all three trajectories, and depends on the order of the trajectories. In other words, the folding
pathway of the combined MD trajectory repeats the folding pathways of all three trajectories
in the order in which they are placed.

Diffusion in folding dynamics
Diffusion-mediated searching for a specific target is frequently used in biology ranging from
the macroscopic prey-predator level in zoology to the binding of ligands to macromolecules
in living cells and folding/unfolding in proteins. The searching of events is governed mainly
by normal diffusion characteristic of Brownian motion or its qualitatively slower companion
subdiffusion; however, it has been shown,54 that another type of diffusion, called enhanced
diffusion or superdiffusion, is a very efficient way to search for targets, and outperforms
Brownian normal diffusion as a statistical strategy for finding randomly located objects. Using
the language of proteins, subdiffusion indicates that a system is trapped in local minima in
conformational space, and superdiffusion emerges when the system makes long jumps in
conformational space.
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The mean-square displacement (MSD), a measure of the overall motion present in a protein,
is found to be proportional to t2HD, where the quantity HD is the Hölder exponent which, in
the case of simple Brownian motion, has the value ½ (normal diffusion). The values of HD >
½ and < ½ correspond to superdiffusion and subdiffusion, respectively.37 When the value
HD = 1, superdiffusive behavior is called collision-less (ballistic).30

Anomalous diffusion (i.e. sub- and superdiffusion) controls the cooperative motion
characterized by the MD trajectories which, in turn, are projected onto a set of collective
variables defined by PCA. However, it is not a trivial task to interpret the cooperativity
exhibited along the low-indexed PCs.30,55 For example, MSD analysis showed that cosine-
shaped projections of a Brownian particle along the first few PCs exhibit ballistic motion, even
though the whole system behaves diffusively.30 For a protein (OMPf), it has been shown that
the MSD of the first two PCs, the dynamics of which along these low-indexed PCs resembles
that for Brownian motion, illustrates subdiffusive behavior on time scales below 100ps, and
ballistic behavior on longer time scales.30 This behavior was considered as an artifact of a
short simulation time because the PCA filters ballistic motions out of a diffusive system.30,
55 We address this problem at the end of this section

Using MSD analysis, we have scrutinized the diffusive behavior along the low-indexed PCs
for several different UNRES MD trajectories of the FBP28 WW domain. We have selected
the folding/non-folding trajectories below, very close to, and above the folding temperature
(Tf = 337 K), respectively.

Since the global motions along PC1 contain a major part of the total fluctuation in 1E0L, our
interest was focused on the diffusive behavior of the system along this PC. The MSDs along
PC1 of the different folding/non-folding trajectories below the folding temperature (namely
320K, 330K, 335K) show that all trajectories are subdiffusive (HD < ½). These findings are
consistent with earlier results obtained by Yang et al. from single molecule experiments,56
which also showed subdiffusive behavior. However, in order to observe a conformational
transition, i.e., superdiffusive behavior, it is necessary to carry out an MSD analysis of the PC
of parts of the fast-folding MD trajectory.

For this purpose, we have split the fast-folding trajectory [Fig. 2(a)] into the unfolded region
(from 0 to 186 ns), the transition region (from 187 to 210 ns), and the native region (from 211
to 600 ns), and carried out a PCA for each region. Figure 6 illustrates the MSD as a function
of time for PC1 of these regions.

The native region of the trajectory (red solid line in Fig. 6) exhibits very strong subdiffusive
behavior (HD = 0.07). This is not surprising because the system spends the longest time in the
native state in this trajectory, i.e., it falls into, and is trapped in, a deep well on the free energy
landscape [Figs. 3(a) and 5(a)], which gives rise to subdiffusion.

Since it is of great interest to characterize the diffusive behavior in the unfolded region of a
trajectory, we studied the first half (from 0 to 93 ns) and the entire unfolded region (from 0 to
186 ns) in the MD simulation. Both the first half of the unfolded region (red dashed curve in
Fig. 6) and the entire unfolded region (blue solid curve in Fig. 6) are less subdiffusive (HD =
0.25) than the native region (red solid curve in Fig. 6) of the trajectory. The MSD of the entire
unfolded region (blue solid line in Fig. 6) in its first half repeats the behavior of half of the
unfolded state (red dashed line in Fig. 6). The steeper slope at the end of the MSD curve of the
entire unfolded region of the trajectory, corresponding to strong superdiffusive behavior (HD
= 0.73), is an indication of long jumps that the system makes to proceed over the transition
state barrier to the native state.
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Most of the MSD curve of the transition region of the trajectory (blue dashed line in Fig. 6)
illustrates superdiffusive behavior (HD = 0.56), as expected.

Although we observed superdiffusion in the unfolded and in the transition state, the full
trajectory does not exhibit superdiffusive behavior, for the following reasons. The MSD
analysis depends on the time interval over which the system travels. Since the protein spends
~ 65% of the total MD simulation time in the native state with strong subdiffusive behavior,
for the trajectory considered, it is normal that superdiffusion of the MSD of the full trajectory
is not observed. The above findings for the trajectory below the folding temperature, in general,
coincide with the results obtained by Matsunaga et al.55

Another interesting finding in the work of Matsunaga et al.55 is that the system exhibits
superdiffusive behavior for the trajectories above the folding temperature. Depending on the
temperature (below or above the folding temperature), the behavior of UNRES MD trajectories
is noticeably different. The folding trajectories for 1E0L at 320K and 330K exhibit quite a
stable native state and, once the system folds, it remains in the native state until the end of the
simulation [Fig. 2(a,b)]. At 335K, the native state is still stable, although we observe a few
folding/unfolding events, Fig. 7(a), [the free energy landscape of this trajectory was illustrated
in Fig. 5 (d)]. At 350K, we still observe folding/unfolding events; however, the unfolded state
is more stable than the native state, Fig. 7(b), and no folding is observed in trajectories at 360K,
Fig. 7(c). All these trajectories are representative of many MD trajectories that we have
obtained at 335K, 350K and 360K. Similar behavior of the system was observed by the authors
of the work reported in ref. 55 (private communication with Drs. Matsunaga and Komatsuzaki).
Because the folding time decreases as T approaches the folding temperature from below,
superdiffusion can be observed in a full trajectory even below the folding temperature. A good
illustration of this behavior is shown in Fig. 8, in which we plotted the MSD along PC1 for the
very fast-folding trajectory for 1E0L at 335K, which folds a few times during the entire
trajectory [the rmsd as a function of time for this trajectory is illustrated in Fig. 7(a)]. The red
dashed line corresponds to the MSD of the system in the time interval of first folding [~ 27.5
ns, in Fig. 7(a)], whereas the red solid line exhibits diffusive behavior of the system during the
entire trajectory with few folding/unfolding events. The results reveal different diffusive
behavior: for the trajectory up to first folding, we observe superdiffusive behavior (red dashed
curve in Fig. 8), and for the entire trajectory the behavior is subdiffusive (red solid curve in
Fig. 8). Thus, superdiffusion can be observed for a folding trajectory even at T < Tf, but again,
the type of diffusion depends very much on the duration of the trajectory. Superdiffusion can
easily be observed at T > Tf [Fig. 7 (b) and 7(c)] because, at these temperatures, the native state
is not as stable as it is at T < Tf, and hence, it is not difficult to find folding events at short time
intervals due to the large fluctuations at these temperatures.

In order to strengthen these arguments about the observed superdiffusion, we have extended
our studies of anomalous diffusion by analyzing the shapes of the pdf for unfolded, native,
transition states, and the full trajectory. For this analysis, we selected the same fast-folding
trajectory illustrated in Fig. 6. The fractional diffusion and fractional kinetic equations are
useful approaches for the description of anomalous types of relaxation and diffusion processes.
50,51 Particularly, the fractional diffusion equation is considered as an especially suitable tool
for the description of subdiffusive processes (0 < HD < ½); whereas the diffusion processes in
the domain of sub-ballistic superdiffusion (1/2 < HD < 1) can be described by a fractional
kinetic equation.50 Based on an interpretation in terms of these fractional equations [see Eqs.
8(a) and 8(b) in Methods], the computed single-cusp shape (red dashed and solid lines) of the
probability distribution function of the native state and the full trajectory, respectively,
illustrated in Fig. 9(a), corresponds to subdiffusive behavior [0 < α < 1 in Eq. 8(a)]; the multiple-
hump shape [blue dashed and solid lines in Fig. 9(a)] corresponds to the transition and unfolded
state, respectively, and indicate the presence of superdiffusion in these states [0 < α < 1 in Eq.
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8(b)]. Moreover, according to the fractional kinetic equation,50 when more pronounced
multiple humps appear in the pdf, stronger superdiffusion is indicated. Although the end of the
unfolded state exhibits much stronger superdiffusion (HD = 0.73) than the transition state
(HD = 0.56), latter [blue dashed line in Fig. 9(a)] illustrates more pronounced multiple humps
than the unfolded state [blue solid line in Fig. 9(a)]. The reason that the second hump in the
unfolded state is less pronounced is the following: ~ 82% of the MSD curve for the transition
state showed superdiffusive behavior whereas superdiffusion was exhibited only in the last
quarter of the unfolded state. In order to illustrate the shapes of the pdf of the transition,
unfolded, native states and the full trajectory clearly in one Figure, we made the heights of the
plots of Fig. 9(a) arbitrary, because they have very different time scales.

Finally, in order to explain why Brownian motion along cosine-shaped PCs shows ballistic

behavior, we employed a recently derived33 pdf of a cosine function, , where
q corresponds to a PC, A is an amplitude of the cosine function, and |q| < A. It is clear that P
(q) differs from the Gaussian function, which is characteristic of Brownian motion, and has
the shape illustrated in Fig. 9(b). The same shape for the pdf was observed for the ballistically
dominated regime by Sokolov et al.,57 studying the ballistic nature of the Richardson
dispersion,58 which pertains to a mean square relative separation between two particles,
initially to each other, that evolves in time according to t3.

CONCLUSIONS
We have examined the dynamics of the folding of the triple β-strand WW domain from the
Formin binding protein 28 (FBP), using PCA to analyze the MD trajectories generated with
the coarse-grained UNRES force field. Since the UNRES model easily simulates the folding
dynamics of small- and medium-size proteins, we have analyzed many fast-, slow-, and non-
folding MD trajectories at different temperatures. Detailed analyses of these trajectories
showed that PCA, an already-proven mathematical technique for studying MD trajectories of
protein fluctuations, is a very efficient method for characterizing the general folding and non-
folding features of proteins. In addition, because UNRES trajectories can encompass longer
time scales, than all-atom trajectories, the coarse-grained MD trajectories enabled us to
illustrate the solutions of well-known problems related to PCA, e.g., the evolution from
Brownian motion to motion in the unfolded state and then in the native state, which was very
difficult and sometimes impossible to describe in all-atom MD simulations. Trajectories that
lead to folded structures, and those that do not, were analyzed by constructing free energy
landscapes along the first two PCs. Our findings are in agreement with results obtained in
earlier theoretical10 and experimental7 studies. We have shown that, in the coarse-grained
trajectories examined, the first PC (sometimes the first two PCs) may contain the largest part
of the total fluctuations of the system, and the dimensions of the free energy landscape can be
reduced to one or two.

Anomalous diffusion in folding dynamics has been studied with the mean-square displacement.
Superdiffusion was observed along the first PC in the unfolded and transition states at T =
330K. Also, superdiffusive behavior was revealed in a very fast-folding trajectory below the
folding temperature of 335K, which implies that the protein is capable of folding. The validity
of these findings has been checked by a fractional kinetic equation. Moreover, by analyzing
the pdf of the cosine function, we explained why Brownian motion along cosine-shaped PCs
cannot be normal diffusive, but is ballistic, in confirmation of the correctness of earlier findings.
30

Maisuradze et al. Page 11

J Mol Biol. Author manuscript; available in PMC 2010 January 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



METHODS
UNRES model and simulation details

The UNRES model of polypeptide chains14,16 is illustrated in Fig. 10. A polypeptide chain
is represented as a sequence of α-carbon (Cα) atoms linked by virtual Cα …Cα bonds with
united peptide groups halfway between the neighboring Cα’s, and united side chains, whose
sizes depend on the nature of the amino acid residues, attached to the respective Cα’s by virtual
Cα …SC bonds. The effective energy is expressed by Eq. 1,59

(1)

with59

(2)

where the successive terms represent side chain-side chain, side chain-peptide, peptide-peptide,
torsional, double-torsional, bond-angle bending, side-chain local (dependent on the angles α
and β of Fig. 10), distortion of virtual bonds, multi-body (correlation) interactions, and
formation of disulfide bridges, respectively. The w’s are the relative weights of each term. The
correlation terms arise from a cumulant expansion60,61 of the restricted free energy function
of the simplified chain obtained from the all-atom energy surface by integrating out the
secondary degrees of freedom. The temperature-dependent factors defined by Eq. 2 and
introduced in our recent work59 reflect the fact that the UNRES effective energy is an
approximate cumulant expansion of the restricted free energy. The virtual-bond vectors are the
variables used in molecular dynamics.

The version of the UNRES force field implemented in this work was parameterized62 using
1E0L and the engrailed homeodomain (1ENH) as the training proteins, to reproduce the
experimental temperature-dependent folding free energy of these two proteins.7,63 The
folding-transition temperature [calculated in ref. 62 from the results of multiplexed replica-
exchange molecular dynamics (MREMD)64,65 simulations with 64 trajectories run at
temperatures ranging from T = 250 to T = 480 K and processing the results of the simulations
with the weighthed-histogram-analysis method (WHAM)66] was 339 K (compared to the
experimental7 value of 337 K). The theory and procedure for running mesoscopic molecular
dynamics with UNRES is described in our earlier work.23,24 Here, we carried out canonical
molecular dynamics runs24 with the Berendsen thermostat at T = 330 K, 335 K, and 340 K,
i.e., around the folding-transition temperature. The time step in molecular dynamics
simulations was δt = 0.1 mtu (1 mtu = 48.9 fs is the “natural” time unit of molecular
dynamics23) and the coupling parameter of the Berendsen thermostat was τ = 1 mtu.

Principal component analysis
The PCA method is based on the covariance matrix with elements Cij for coordinates i and j
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(3)

where x1,···, x3N are the mass-weighted Cartesian coordinates of an N-particle system and 〈 〉
is the average over all instantaneous structures sampled during the simulations. The symmetric
3N × 3N matrix C can be diagonalized with an orthonormal transformation matrix R:

(4)

where λ1 ≥ λ2 ≥ ··· ≥ λ3N are the eigenvalues, and RT is the transpose of R. The columns of
R are the eigenvectors, or the principal modes; the trajectory can be projected onto the
eigenvectors to give the principal components qi(t), i = 1, …, 3N:

(5)

The eigenvalue λi is the mean-square fluctuation in the direction of the principal mode. The
first few PCs typically describe collective, global motions of the system, with the first PC
containing the largest mean-square fluctuation.

Since we study the coarse-grained MD trajectories, in PCA we replaced the Cartesian
coordinates by UNRES backbone coordinates(θi, γj),

(6)

where i = 1, …, N and j = 1, …, N−1, are the numbers of θ and γ angles, respectively. As shown
by Mu et al.39 and Altis et al.,67 such a transformation from the space of backbone angles to
a linear metric coordinate space allows us to avoid potential problems due to the periodicity
of the angles.

The cosine content for principal component i is defined as30,31,33,40

(7)

where T is the length of the simulation, and the number of periods of the cosine function is
equal to half of the principal component index.31

Fractional diffusion and fractional kinetic equations
The fractional diffusion and fractional kinetic equations, which are very useful for describing
sub- and superdiffusive processes, respectively, have the following forms50,51

(8a)
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(8b)

where P(x,t) is the pdf of being at a certain position x at time t, Ka and K2−a are diffusion
constants, and  and  are the Reimann-Liouville operators defined through the
following relations:50,51

(9a)

(9b)

(9c)

The MSD, 〈x2(t)〉, associated with Eqs. 8a and 8b, has the following forms:50,51

(10a)

(10b)

where Γ is the gamma function. The MSD associated with the fractional kinetic equation shows
ballistic and Browniam motion when α → 0 and α → 1, respectively. The solutions for the
propagators of Eq. 8a and 8b in computable form are obtained by the series:50,51

(11a)

(11b)

The P(x,t) in Eq. 11a shows a cusp shape, which corresponds to subdiffusion; however, when
α → 1, the pdf has a Gaussian shape (normal diffusion). The P(x,t) in Eq. 11b exhibits the
shapes of multiple humps, which corresponds to superdiffusion but, for α → 1, it shows a
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Gaussian shape. The larger that 2 − α becomes, the more pronounced and sharper are the humps.
50
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Figure 1.
Experimental NMR structure1 of the triple β-strand WW domain from the Formin binding
protein 28 (FBP) (1E0L).
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Figure 2.
The first three principal components and rmsd from the native structure of fast- (a), slow- (b),
and non-folding (c) MD trajectories at 330K for 1E0L.
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Figure 3.
Free energy profiles of the first three principal components (qi) for fast- (a), slow- (b), and non-
folding (c) MD trajectories at 330K for 1E0L. The numbers 1, 2, 3 within each panel refer to
PC1, PC2 and PC3.
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Figure 4.
The first principal component (a) and the cosine contents of PC1 (b) of a fast folding trajectory
for 1E0L at 330K for different time scales, starting from random diffusion (lines 1 and 2) and
ending with a full trajectory (ninth line).
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Figure 5.
Free energy landscapes (in kcal/mol) for 1E0L with representative structures at the minima of
fast- (a), slow- (b), and non-folding (c) MD trajectories at 330K, and an extremely fast-folding
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MD trajectory at 335K (d). A1–A5, B1–B7, C1–C6, D1–D4 are the minima on the free energy
landscapes. The structures are colored from blue to red from the N- to the C-terminus.
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Figure 6.
The mean square displacement of PC1 for the fast-folding MD trajectory for 1E0L at 330K,
i.e., below the folding temperature. The black solid line corresponds to the full trajectory, the
red solid and dashed lines correspond to the native and the first half of the unfolded states,
respectively; the blue solid and dashed lines correspond to the entire unfolded and transition
states, respectively; the black dashed and dash-dot lines correspond to t0.5 and t1, respectively.
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Figure 7.
The rmsd as a function of time for MD trajectories for 1E0L at 335 K (a), at 350 K (b), and at
360 K (c).
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Figure 8.
The mean square displacement of PC1 of the very fast-folding MD trajectory for 1E0L at 335K.
The red dashed line illustrates the MSD of PC1 calculated for the time interval of first folding
[~ 27.5 ns in Fig. 7(a)]; the red solid line is the MSD of PC1 for the full trajectory [Fig. 7(a)];
the black dashed and dash-dot lines correspond to t0.5 and t1, respectively.
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Figure 9.
(a) The probability distribution function of PC1, computed from the fast-folding MD trajectory
at 330K [Fig. 2(a)]. The red solid and dashed lines correspond to the pdf of the full trajectory
and the native state, respectively; the blue solid and dashed lines correspond to the pdf of the
unfolded and transition state, respectively. (b) The pdf as a function of the dimensionless q
(with A =1) of the analytical cosine function of Brownian motion.
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Figure 10.
The UNRES model of polypeptide chains. The interaction sites are red side-chain centroids of
different sizes (SC) and the peptide-bond centers (p) are indicated by green circles, whereas
the α-carbon atoms (small empty circles) are introduced only to assist in defining the geometry.
The virtual Cα···Cα bonds have a fixed length of 3.8 Ǻ, corresponding to a trans peptide group;
the virtual-bond (θ) and virtual-dihedral (γ) angles are variable. Each side chain is attached to
the corresponding α-carbon with a fixed “bond length”, bSCi, variable “bond angle”, αi, formed
by SCi and the bisector of the angle defined by , and , and with a variable “dihedral
angle”, βi, of counter-clockwise rotation about the  frame.

Maisuradze et al. Page 31

J Mol Biol. Author manuscript; available in PMC 2010 January 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


