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GENOMICS ARTICLE

Metabolic Profiling Allows Comprehensive Phenotyping of
Genetically or Environmentally Modified Plant Systems
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Metabolic profiling using gas chromatography-mass spectrometry technologies is a technique whose potential in the
field of functional genomics is largely untapped. To demonstrate the general usefulness of this technique, we applied
to diverse plant genotypes a recently developed profiling protocol that allows detection of a wide range of hydrophilic
metabolites within a single chromatographic run. For this purpose, we chose four independent potato genotypes char-
acterized by modifications in sucrose metabolism. Using data-mining tools, including hierarchical cluster analysis and
principle component analysis, we were able to assign clusters to the individual plant systems and to determine relative
distances between these clusters. Extraction analysis allowed identification of the most important components of
these clusters. Furthermore, correlation analysis revealed close linkages between a broad spectrum of metabolites. In
a second, complementary approach, we subjected wild-type potato tissue to environmental manipulations. The meta-
bolic profiles from these experiments were compared with the data sets obtained for the transgenic systems, thus il-
lustrating the potential of metabolic profiling in assessing how a genetic modification can be phenocopied by
environmental conditions. In summary, these data demonstrate the use of metabolic profiling in conjunction with data-

mining tools as a technique for the comprehensive characterization of a plant genotype.

INTRODUCTION

Enormous progress has been made over the last few years
in the development of tools to create and characterize ge-
netic diversity in plant systems. Transgenic knock-out pop-
ulations, transposon insertions, chemical gene machines,
and highly efficient ways to genotype single nucleotide poly-
morphisms within large populations have paved the way to
a much broader base of diversity than imagined a few years
ago (Aarts et al., 1993; Schaefer and Zryd, 1997; Strepp et
al.,, 1998; Cho et al., 1999; Zhu et al., 1999). Furthermore,
these developments have occurred in tandem with the elu-
cidation of complete genomes and the rapid development
of multiparallel technologies designed to access and de-
scribe the properties of biological systems (Celis et al.,
2000). Most prominent among these new technologies has
been the establishment of protocols for determining the ex-
pression levels of many thousands of genes in parallel,
mRNA profiling. This is achieved by a process of mass hy-
bridization reactions that use arrays of either expressed se-
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quence tag or oligonucleotide collections representing large
portions of the entire genome of the system in question
(Lockhart et al., 1996; Ruan et al., 1998; Terryn et al., 1999;
Aharoni et al., 2000; Richmond and Somerville, 2000). A
second, albeit currently less advanced technology concerns
the detection and quantification of the protein complement,
or proteome, of a system (Shevchenko et al., 1996; Santoni
et al., 1998; Chang et al., 2000).

Much attention has been focused on developing mRNA
profiling and proteomic approaches, whereas the develop-
ment of multiparallel techniques allowing analysis of the lev-
els of low molecular weight compounds has been largely
overlooked. This is true not only in plant sciences but across
all biological disciplines, and thus this field is still in its in-
fancy (Trethewey et al., 1999a). There are a few examples of
this approach being applied to medical analyses (e.g., Duez
et al.,, 1996; Matsumoto and Kuhara, 1996; Ning et al.,
1996); however, only a handful of reports detail its applica-
tion to plant systems (e.g., Adams et al., 1999; Katona et al.,
1999).

We recently developed a method allowing the nonbiased,
simultaneous, and rapid determination of metabolites in plants,
using potato tubers or Arabidopsis as the experimental
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system. This technology, which combines gas chromato-
graphic separation of compounds with a subsequent mass
spectrometric identification, allows the simultaneous detec-
tion of >100 compounds within a single analysis (Fiehn et
al., 2000; Roessner et al., 2000). In this article, the applica-
tion of metabolic profiling to a variety of different genetically
manipulated systems is described. We used various trans-
genic potato lines variously modified in sucrose metabolism
as a first example for two main reasons. First, these lines
have been extensively characterized previously by the use
of classical biochemical approaches—a prerequisite that
was important to authenticate data obtained from meta-
bolic-profiling studies. Second, we specifically chose these
examples because the applied genetic modifications tar-
geted the same metabolic locus, that of sucrose degrada-
tion. This approach was taken to gain insight into the
resolving power of metabolic profiling and to test its capac-
ity to distinguish very similar situations.

In addition to presenting the results of our analyses and
interpreting their physiological implications, we also de-
scribe the application of data-mining tools to the data set
obtained. These tools include hierarchical clustering and
principal component analysis, detection of the metabolites
determining the clustering behavior of the grouped plants,
and a comprehensive analysis of the correlations between
all metabolites of the various plants studied. Finally, we ex-
tended this analysis to include environmental manipulations
of wild-type tissue in an attempt to produce phenocopies of
the applied genetic manipulations. The data shown demon-
strate that the application of data-mining tools to metabolic-
profiling analysis allows insight into the relatedness of cer-
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Figure 1. Substrates and Products of Endogenous and Introduced
Reactions of Sucrose Catabolism within the Transgenic Potato Lines
Studied.

The solid line (A) represents the plant’s endogenous sucrose syn-
thase, whereas the broken lines (B to D) represent the reactions cat-
alyzed by the expression of a bacterial sucrose phosphorlase (SP
lines), a yeast invertase (INV lines), and a bacterial glucokinase (ex-
pressed in combination with the yeast invertase; GK3 lines), respec-
tively. Additional cofactors required for the reactions are UDP for
sucrose synthase, Pi for sucrose phosphorylase, and ATP for glu-
cokinase.

tain genetic situations. Moreover, correlation analysis allows
the confirmation of established hypotheses concerning met-
abolic interactions within these systems. We believe these
data further illustrate the use of metabolic profiling as an ad-
ditional tool in multiparallel system analysis and as such
demonstrate its importance for functional genomics.

RESULTS

Confirmation of Transgene Expression and Primary
Metabolic Characterization

We grew transgenic potato plants that had been altered in
tuber sucrose catabolism, as explained in Figure 1, in parallel
under identical greenhouse conditions and then harvested
samples from developing tubers. We chose the following
transgenic lines for this study because the primary meta-
bolic changes in these lines are well documented: INV-30,
INV-33, and INV-42 (Sonnewald et al., 1997; Riedel, 1999);
GK3-41, GK3-29, and GK3-38 (Trethewey et al., 1998); and
SP-2, SP-11, and SP-29 (Trethewey et al., 2001). The intro-
duced enzyme activities observed in extracts from these
plants were similar to those we have previously reported
(data not shown). Having confirmed that the plants do in-
deed express heterologous enzymes, we decided to verify
that the primary changes within the potato tubers were in
accordance with those previously determined (Figures 2A to
2D; Sonnewald et al., 1997; Trethewey et al., 1998, 2001;
Riedel, 1999); notably, glucose levels were not increased in
lines INV-42 and GK3-38. We then determined the levels of
the other possible products of sucrose catabolism—UDP-
Glc, glucose-6-P, glucose-1-P, and fructose-6-P (Figures 2E
to 2H). The levels of all these compounds were in close
agreement to those determined previously (Trethewey et al.,
1998, 2001; Riedel, 1999), and as such they documented
the suitability of these lines for further study.

Comparison of Relative Metabolite Levels within the
Transgenic Tubers

Having confirmed that the transgenic lines were suitable for
further experimentation, we extracted replicate samples
from the same plants used for the preliminary characteriza-
tion and then separated and characterized the detectable
hydrophilic metabolite complement using a recently estab-
lished gas chromatography-mass spectrometry (GC-MS)
protocol (Roessner et al., 2000). Because of the large sam-
ple size of this experiment, we extracted a separate set of
wild-type samples per transgenic line, despite the fact that
all plants were grown in parallel under identical conditions.
This allowed us independent references for each individual
machine run. Results from this analysis are presented in
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Figure 2. Sugar, Starch, and Sugar Phosphate Content of Transgenic Tubers.

Potato plants were grown in the greenhouse in 3.5-liter pots. Developing tubers were taken from plants harvested in the spring after 10 weeks of
growth and while the plants were still fully green. Sucrose (A), glucose (B), fructose (C), and starch content (D) were determined in extracts from
six individual plants per line. UDP-Gilc (E), glucose-6-P (F), glucose-1-P (G), and fructose-6-P (H) were determined in extracts from four individ-
ual plants per line. All data are presented in umol g~ fresh weight and represent the mean *=Se. FW, fresh weight.

Table 1; the data set contains 88 metabolites (61 of which
were defined with respect to their chemical nature), includ-
ing sugars, sugar alcohols, amino acids, organic acids, and
several miscellaneous compounds.

The majority of the compounds detected were found to al-

ter within the transgenic lines, in agreement with the data
obtained using conventional spectrophotometric or HPLC
methods (Figure 2; Trethewey et al., 1998, 1999b, 2001; Riedel,
1999). When taking mean values into consideration, we found
that some interesting trends emerged (Table 1). In most



Table 1. Metabolite Levels in Wild-Type Developing Potato Tubers and in Tubers of Transgenic Potato Plants
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____metabolites WY SE% 130 SE% _!33 SE% 142 SE% WI__SE% GK38__ SE% _
alanine 100 + 032 170 £ 017 243 * 033 206 * 0.35 100 * 0.16 331 * 0.15
arginine 100 ¥ 020 166 * 0.38 104 * 024 199 = 028 100 * 020 243 t 039
asparagine 100 + 0.19 1.31 £ 014 106 £ 0.09 1.57 * 0.20 100 £ 0.05 121 * 007
aspartate 100 = 011 120 + 008 091 * 009 104 £ 007 1.00 * 003 118 * 0.11
b-alanine 100 + 0.16 084 * 005 117 * 013 111 * 016 1.00 * 0.09 135 * 0.12
cysteine 100 £ 0.16 217 * 022 233 £ 041 137 £ 027 100 % 020 113 * 008
GABA 100 * 0.10 120 * 008 122 * 011 140 t 0.13 100 * 0.13 079 + 0.05
glutamate 100 t 007 122 * 007 108 £ 007 116 * 0.09 100 £ 0.04 102 £ 012
glutamine 100 + 026 039 * 017 076 * 0.20 117 * 022 1.00 * 0.16 065 * 014
glycine 100 £ 0.19 0.87 * 007 093 * 013 o088 £ 0.10 1.00 £ 0.06 152 * 0.12
histidine nd. nd. nd nd. nd. 565.33 * 162.73
homocysteine nd nd nd nd. nd. nd.
homoglutamine nd. nd. nd. nd. nd. nd.
homoserine 1.00 £ 012 054 * 0.08 090 * 008 118 £ 0.16 1.00 * 006 0.46 * 0.02
isoleucine 1.00 £ 0.19 100 £ 0.14 098 * 0.14 107 * 005 100 * 023 093 * 019
feucine 100 + 032 122 * 023 1.11 £ o019 103 ¥ 006 1.00 * 044 127 022
lysine 100 £ 0.16 050 T 6.1 051 * 0.08 0.94 £ 006 100 * 025 070 £ 0.14
methionine 100 = 013 084 * 0.10 084 t 0.11 126 £ 011 100 * 0.14 089 * 0.13
norleucine 100 + 012 080 * 013 060 * 0.08 051 * 0.04 100 * 024 077 t 014
norvaline 100 = 014 066 £ 0.07 057 * 0.06 046 % 005 100 ¥ 0.12 062  0.08
ornithine 100 + 030 096 * 022 117 * 023 204 * 032 100 % 0.13 190 + 0.28
5-oxoproline 100 ¥ 018 078 * 0.1 084 * 019 x *+ 0.06 102 * 009
phenylalanine 100 * 020 1.73 £ 016 118 £ 0.16 * + 013 189 * 0.15
proline 100 + 0.18 069 B + + 008 153 * 0.18
sefine 100 + 020 284 % * * * 0.08 4.02 * 046
threonine 100 + 021 089 * % * * 0.09 126 * 0.16
tryptophan nd. 450,83 * + S * 426
tyrosine 100 £ 028 194 £ S * £ * 0.66

W vdine . 100 % t * £ * tow
ascorbate 100 1 * * * + 0.50
citrate 100 * £ B * + 007
fumarate 100 * ES * * t 0.05
glucuronate nd nd. nd nd. 100 % + 0.00
glutarate nd 7400 * 570 3883 £ 4.24 24.00 * 175 nd nd
glycerate 100 * 008 664 £ 0.44 569 * 0.59 354 T 074 100 * 0.08 6.33 + 052
isocitrate 100 £ 010 073 * 008 104 £ 019 146 £ 013 1.00 £ 007 0.42 t 0.07
malate 100 £ 019 192 * 021 198 * 0.30 064 * 0.12 100 T 0.06 185 £ 017
oxalate nd. nd nd. nd 100 + 027 11.26 + 1.37
quinate 100 £ 012 1.35 * 0,09 127 ¥ 012 151 * 012 1.00 ¥ 0.10 0.78 + 0.03
shikimate 100 t 017 270 * 024 232 * 058 1.50 * 0.28 100 * 008 064 t 017
succinate 100 * 021 234 t 0.9 214 * 058 163 £ 025 1.00 * 018 253 + 0.39
threonate 100 % 0.13 138 * 0.08 118011 081 * o010 1.00 * 0.05 124 + 0.14
fructose 100 * 044 182 * 052 567 * 380 081 * 013 1.00 £ 013 601 * 255
galactose 100 * 035 060 = 017 063 £ 0.16 025 * 0.09 100 * 0.16 0.17 * 0.03
glucose 100 = 041 423 * 057 356 * 0.62 075 £ 047 100 * 017 220 * 133
glycerol nd. nd nd. nd 100 £ 012 0.02 * 0.00
inositol 100 * 011 0.18 * 0.01 028 * 0.04 043 * 0.06 100 * 020 0.40 : 0.06
isomaltose nd 17.00 * 2,05 nd. nd nd.
maltitol nd. 71033 % 105.64 384.00 * 37.95 nd. 134.00 + 40.13
maftose nd. 9256.83 T 1107.27 383400 * 62148 nd. 1979.00 * 1053.58
mannitol 100 * 006 322 £ 023 275 +
mannose 100 * 038  0.88 424 *
sucrose 100 * 025 * + *

_____ frehalose ________._____._.nd____ . 233 Eoers a1zl :
fructose-6-P 100 £ 008 * :
glucose-6-P 100 * 021 + +
phosphoethanolamine 100 £ 016 x +
3-PGA nd. + +
6-P-gluconate nd * £

+ +

spermidine + + 014 1.00 + 0.08 133 * 0.06
1 UNKNOWN SP nd nd nd. nd. nd. nd.
2 PTO1 100 * 005 074 * 0,05 085 * 004 061 * 0.04 1.00 £ 005 073 * 0.10
3 PTO2 100 * 010 1.33 £ 014 111+ 012 125 * 013 100 * 022 554 * 059
4 PTO4 100 £ 007 088 * 0.09 121 + 012 0.70 * 0.04 100 * 0.10 082 t 011
5 PTOS 100 ¥ 014 114 £ 008 092 * 007 077 * 004 1.00 * 0.05 116 £ 0.14
8 PT08 100 = 013 113 o1 105 008 148 * 018 100 * 0.09 123 = 0.12
7 PTO7 100 + 035 054 * 0.18 093 * 026 174 £ 042 1.00 * 0.19 212 * 057
8 PTO08 100 * 005 0.76 * 0.03 0.76 £ 0.05 095 * 0.06 100 * 0.10 073 t 0.14
9 PTO9 100 * 014 173 £ 0.10 126 * 012 1.18 * 0.06 1.00 * 0.19 194 * o1
10 PT10 100 £ 023 054 * 007 083 * 0.14 1.00 * 019 1.00 * 0.14 113 £ 021
1 PTN 100 * o012 182 £ 008 155 + 0.20 115 * 013 100 * 004 147 £ 0.05
12 PT12 100 t 024 123 * 025 1.56 * 0.30 073 * 009 100 * 0.19 087 * 0.15
13 PT14 100 * 005 1.67 * 0.10 180 * 011 1.38 * 0.07 100 * 0.09 132 * 012
14 PT15 100 * 018 148 * 016 166 * 0.20 290 * 043 1.00 * 010 2.02 * 022
15 PT16 100 * 0.19 8.35 * 0.61 6.65 * 0.68 205 * 104 100 * 0.33 290 * 136
16 PT17 100 * 022 141 £ 017 226 * 060 265 * 0.87 1.00 014 265 * 038
17 PT18 100 * o1 080 t 006 090 * 0.09 064 * 0.09 1.00 * 013 077 * 0.16
18 PT19 100 * 041 951 * 117 692 * 1.43 089 * 057 1.00 T 027 247 * 154
19 PT20 1.00 * 002 139 * 0.13 1.34 £ 0.13 094 * 008 100 * 007 1.03 * 0.04
20 PT21 1.00 * 020 282 * 033 217 * 032 090 * 0.2 100 * 005 262 * 032
21 PT23 100 * 019 194 t 0.19 135 £ 0.15 152 * 012 100 + 032 332 * 031
22 PT24 100 * 017 215 * 024 221 * 018 298 * 054 1.00 * 005 178 * 0.09
23 PT25 100 * 004 150 * 008 1.22 £ 0.06 105 * 006 100 * 007 1.40 % 0.05
24 PT26 1.00 * 008 0.64 * 005 0.7t  0.06 0.54 * 0.05 1.00 * 0.06 0.66 * 0.09
25 PT27 1.00 £ 006 168 * 006 1.37 £ 0.09 097 * 008 100 * 003 109 * 003
26 PT32 100 £ 0.09 112 £ 008 138 * 0.15 1.01 £ 005 1.00 * 0.06 104 t 012
27 PT33 1.00 * 0.15 0.35 * 0.04 0.47 * 0.02 0.53 * 0.05 100 * 012 0.20 * 0.03

Continued



Table 1. (continued).

GK29  SE% GK41 __SE% WT _SE% SP2  SE% SP12_ SE% SP29  SE%
1 alanine 300 * 017 370 * 043 100 £ 018 204 * 014 173 t 019 213 £ 0.06
2 aginine 3.04 + 038 202 * 0.26 100 * 016 271 * 029 264 * 044 273 * 044
3 asparagine 1.05 £ 005 101 * 0.09 1.00 * 0.33 128 * 051 112 * 028 114 £ 043
4 aspartate 080 * 008 089 * 013 100 £ 0.05 0.76 * 0.04 089 * 003 081 * 0.04
5 bealanine 126 £ 0.15 118 ¥ 0.07 1.00 * 0.15 089 * 0.10 103 £ 021 087 * 0.08
6 cysteine 179 + 0.33 221 % 051 1.00 £ 0.15 233 * 042 262 t 031 161 t 013
7 GABA 110 + 013 104 * 014 1.00 £ 0.04 104 £ 012 093 ¥ 012 102 * 008
8  glutamate 0.69 * 0.05 057 * 0.12 1.00 * 0,03 080 £ 007 096 * 0.06 0.84 * 0.04
9 gutamine 108 016 103 + 014 1.00 £ 0.28 082 * 027 076 * 0.18 085 * 0.19
10 glycine 136 * 012 1.88 * 0.12 100 * 012 1.00 £ 0.1 1.00 £ 0.16 108 * 0.06
11 histidine 751.83 + 266.69 nd 100 £ 0.32 141 £ 035 201 * 032 152 £ 0.32
12 homocysteine nd nd nd n.d 10.00 = 1.70 5.00 * 0.88
13 homoglutamine nd nd nd nd 17.50 * 5.03 150 * 334
14 homoserine 037 * 002 001 * 000 1.00 £ 0.24 0.01 * 0.00 0.01 £ 0.00 0.34 * 0.03
15 isoleucine 082 * 009 209 * 0.19 100 ¥ 0.20 115 * 031 144 * 023 158 £ 029
16 leucine 127 + 0.14 335 * 034 100 £ 037 162 * 055 194 £ 0.44 245 * 068
17 lysine 064 + 0.05 083 * 0.10 100 * 026 131 * 032 175 * 027 204 * 035
18 methionine 091 * 0.08 1.14 * 006 100 * 0.15 109 £ 015 121 * 009 118 * on
19 norleucine 083 * 0.16 164 £ 0.24 100 £ 0.14 105 * 033 144 £ 026 149 * 027
20 norvaline 064 * 0.13 075 * 011 1.00 £ 0.07 080 * 0.11 092 * 007 091 * 0.08
21 omithine 222 * 029 315 * 024 100 * 036 152 £ 035 279 t 083 3.53 * 082
24 5-oxoproline 097 + 0.07 203 * 0.26 1.00 £ 0.04 483 * 030 527 * 0.30 465 * 087
22 phenylalanine 167 + 0.25 288 * 0.08 1.00 * 0.16 146 £ 021 156 * 0.22 157 * 017
23 proline 091 * 007 0.98 * 0.14 1.00 * 013 083 £ 005 0.63 * 0.05 0.66 £ 0.07
25 serine 281 % 0.20 3.04 018 100 t 013 233 * 015 198 * 014 213 * 0.39
26 threonine 114 £ 0.09 145 * 0.07 100 + 011 098 * 0.10 112 £ 013 123 £ 013
27 tryptophan 1279 * 2.24 1456 * 525 1.00 £ 0.39 360.03 * 103.64 28821 * 13651 38082 * 113.52
28 tyrosine 3.60 + 0.56 555 * 052 100 * 026 236 * 0.24 250 * 0.28 256 * 022
29__valine 0.80 * 0.06 129 * 010 100 * 007 0.96_* 0.08 0.95 * 006 097 % 008
1 ascorbate 242 + 048 091 * 0.26 1.00 * 033 253 * 038 291 * 0.28 207 * 035
2 ocitate 100 + 003 0.69 * 0.08 1.00 * 003 062 * 0.13 107 £ 002 131 * 0.04
3 fumarate 0.37 + 0.07 052 * 0.07 100 * 015 027 * 0.02 032 * 0.03 022 * 0.01
4 glucuronate 160 * 0.11 0.03 * 0.00 nd. n.g, nd n.d.
5 glutarate nd nd nd nd nd nd
& glycerate 727 * 069 * 156 nd. 128517 * 1087.50 * 167.15 77233 * 129.86
7 isocitrate 030 + 008 £ 0.03 100 £ 0.08 084 * 093 * 0.10 0.70 * 0.05
8 malate 151 + 0.10 £ 028 1.00 £ 0.08 097 * 071 ¥ 013 076 * 0.11
9 oxalate 1356 + 1.87 + 046 * 3981 % 0.37 263 * 043
10 quinate 065 * 007 * 098 * 104 £ 0.08 119 * 015
11 shikimate 121 + 017 + 071 * 080 * 011 067 * 043
12 succinate 3.94 + 056 : 172 095 * 008 105 * 007
threcnate * 050 * 070 * 0.74 £ 0.07
1 fructose 972 + 2.01 *
galactose 043 + 009 *
3 glcose 1170 + 1.88 *
4 glycerol 0.02 + 0.00 +
6 inositol 0.18 + 0.01 B
6 isomaltose nd. nd. n nd
7 matitol + 43.33 * nd
8 maltose + * nd
9 mannitol + * 2.29 3.64
mannose + + 0.26 0.03
+ + 0.13 0.06
+ +
1 fructose-6-P + B *
2 glucose-6-P * + +
3 phosphoethanolamine * * B
4 3PGA + +
5  6-P-gluconate * *
.6 _.phosphate Eo : - * *
spermidine + 0.04 077 + 0.08 1.00 + 001 107 * 006 + +
1 UNKNOWN SuPho nd. nd nd 8405.83 * 662.91 611450 * *
2 PTO1 * 0.02 0.68 * 0,05 1.00 * 0.07 071 £ 003 043 * *
3 PTO2 6.65 * 0.85 6.00 * 0.54 1.00 * 011 338 * 044 416 * B
4 PTo4 0.74 * 0.04 147 * 0.19 1.00 * 0.06 082  0.04 0.55 * +
5 PTo5 070 * 0.06 081 * 0.16 1.00 £ 014 0.34 £ 0.04 053 * *
6 PT08 105 * 0.07 235 * 027 100 * 009 0.0 % 0.08 122 * +
7 PTo7 239 * 050 492 * 032 1.00 * 0.22 117 £ 048 286 *
8 PT08 0.54 * 0.03 035 * 0,03 100 * 006 0.01 t 0.00 0.01 *
9 PTog 183 * 022 392 * 032 100 * 0.12 169 £ 026 186 * * 0.
10 PT10 100 * 014 194 * 017 1.00 * 0.08 0.54 * 0,06 055 * 1 007
11 PTH 1.89 * 0.08 162 * 014 1.00 £ 0.06 159 t 0.07 156 % * 0.09
12 PT12 139 £ o1 077 % 012 100 * 015 051 * 0.08 056 * £ 0.03
13 PT14 143 * 008 220 £ 022 100 * 009 1.30 * 0.06 123 %010
14 PT15 239 £ 0.25 7.21 * 086 1.00 * 012 168 * 017 507 178
15 PT16 2010 * 256 1059 £ 441 1.00 £ 0.28 053 * 016 0,01 * * 0.00
16 PT17 545 * 110 9.24 * 192 100 £ 024 052 * 010 099 * * 0.06
17 PT18 0.58 * 0.04 0.44 * 0,02 1.00 * 0.06 065  0.04 042 * + 0.04
18 PT19 1354 * 294 2579 * 493 1.00 £ 0.14 0.29 * 0.02 014 * £ 0.03
19 PT20 1.32 * 0.09 1.16 * 008 100 * 0.03 114 £ 006 114 £ + o011
20 PT21 2147 t 042 274 * 021 100 * 009 249 * 024 148 * * 010
21 PT23 245 * 031 7.29 * 080 100 * 0.2% 3.26 * 0.46 342 * * 0.40
22 PT24 232 * 024 245 * 053 100 * 008 174 * 014 558 * 045
23 PT25 1.74 £ 024 1.18 * 0.08 100 * 0.06 133 £ 0.05 134 * * 005
24 PT26 053 * 004 0.42 * 0.02 100 £ 005 0.91 * 004 066 * * 004
25 PT27 1.38 * 0.08 092 * 0.09 100 * 004 092 * 003 079 * + 0.04
26 PT32 089 * 0.07 095 * 0.06 1.00 * 0.05 098 * 007 107 £ * 003
27 PT33 0.32 * 0,04 0.23 ¥ 0.04 100 ¥ 0.07 0.35 * 0.03 0.29 * * 0.01

Metabolites were determined using the same samples from developing tubers as those used to measure starch, sugars, and sugar phosphates,
as presented in Figure 2. Data are normalized to the mean response calculated for the wild type (WT) of each measured batch. (So that mea-
sured batches could be compared, individual wild-type values were normalized in the same way.) Values presented are the mean *SE of six in-
dependent determinants. Those that are significantly different from the wild type are identified in boldface. n.d. indicates compounds that were
not determined in a particular set of chromatograms.
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instances, metabolite levels in the transgenics increased,
which was consistent with the increased respiratory flux
observed in these transgenics (Trethewey et al., 1998,
2001). Strikingly, but perhaps not surprisingly, the metabo-
lite levels within several pathways tended to increase in tan-
dem. Such concerted increases were exemplified by the
amino acids, that is, the aromatic amino acids (phenylala-
nine, tryptophan, and tyrosine), all of which derive from
shikimate, and also those deriving from 3-PGA (cysteine
and serine). A further example was the coupled increase be-
tween arginine and ornithine; however, in this instance, the
trend was not absolute. In contrast, when the data set for in-
termediates of the tricarboxylic acid cycle was considered,
the novel finding that changes in the individual metabolites
do not correlate became apparent. Succinate and malate
levels generally increased, whereas the levels of citrate,
isocitrate, and fumerate generally decreased. Because
these trends are observable in the mean values, it is clear
that a nonbiased correlation analysis that takes into account
every single value within an independent sample may prove
more revealing.

Appearance of Novel Metabolites in Chromatograms
from Transgenic Tubers

On first glance at the chromatograms, it became clear that
several compounds were present in the transgenic lines that
had not been detected in the chromatograms of wild-type
tissue (data not shown). On inspection of the calibrated
data, this observation was confirmed: nine of the 88 metab-
olites presented in Table 1 were below the level of detection
in wild-type tubers. Some of these metabolites were ob-
served in all of the transgenic types studied, whereas others
were only present for a certain transgenic manipulation or
even for a single transgenic line. In the first category are glu-
terate and 6-phosphogluconate. In contrast, maltose, treha-
lose, and maltitol become detectable in only INV and GK
lines, whereas homoglutamine and homocysteine become
detectable exclusively within SP lines. Isomaltose was only
detected in line INV-30. In addition, an unknown peak,
PTOO0, which is bigger in magnitude than that of sucrose, ap-
pears in the SP lines. It is conceivable that this peak is the
result of a side reaction catalyzed by sucrose phosphory-
lase, and the mass spectrum suggests that it contains a
glucosyl residue. This observation is consistent with the find-
ings of Kitao and co-workers, who performed detailed char-
acterization of the side reactions of sucrose phosphorylase
from Leuconostoc mesenteroides (Kitao and Sekine, 1994a,
1994b) and found that this enzyme was also capable of
transferring glycosyl residues to a wide range of acceptors.
Unfortunately, when we analyzed the following commer-
cially available compounds (found to be products or constit-
uents of products of the sucrose phosphorylase in L.
mesenteroides)—arbutin, catechin-glucosides, kojic acid,
kojibiose, and nigerose—none of them co-eluted with the

unknown peak. The final elucidation of the exact chemical
structure therefore requires further study.

Hierarchical Cluster Analysis and Principle Component
Analysis of Steady State Metabolite Concentrations in
the Transgenic Tubers

It is clear from the preceding paragraphs that analysis of
such a large data set is a daunting task. It is even more so
when the genetic diversity in question is centered around
primary carbohydrate metabolism and the number of
changes in steady state metabolite pool size is as large as
that observed here (Figure 2 and Table 1). For this reason,
we decided to apply bioinformatic tools to our data set.
Given that there is a fair degree of natural variation be-
tween samples for many of the metabolites in question, we
chose to plot all individual chromatograms rather than the
mean values presented in Table 1 to assess whether indi-
vidual transformants and/or transgenics exhibited similar
behavior with respect to their total metabolic profile. When
we applied hierarchical cluster analysis (HCA) to our data
set, as shown in Figure 3, we found that all 18 wild-type
samples clustered as a single distinct group; likewise, all
the GK3 and SP lines clustered by both the nature of the
transformation and the magnitude of the introduced activ-
ity. In contrast, the INV lines did not cluster in the same
manner; rather, INV-30 and INV-33 formed a single cluster
that was closer to the GK3 lines than to the wild type,
whereas INV-42 was closest to the wild type. The fact that
INV-42 is the line closest to the wild type is interesting in
that it is also the line that exhibits the lowest invertase ac-
tivity.

We then took a second, complementary approach of ap-
plying principle component analysis (PCA) to our data set.
PCA uses an n-dimensional vector approach to separate
samples on the basis of the cumulative correlation of all me-
tabolite data and then identifies the vector that yields the
greatest separation between samples. The results from the
chosen vector were then displayed in two dimensions (Fig-
ure 4A). Once again, wild-type tubers constituted a single
cluster, and INV-42 samples clustered independently of all
other lines. Furthermore, the SP lines formed a distinct clus-
ter, and differences between individual samples of the SP
lines appeared to be related to the activity of the introduced
enzyme. However, contrary to the observations made using
HCA, the GK lines and INV-33 and INV-30 were not too dis-
tinct, and considerable overlap between INV-30 and all the
GK8 lines (to which it served as a parental line) exists. That
said, within each cluster of transgenics, subclusters that
represent individual transgenic plants can be easily recog-
nized. When taken together, the results from both types of
cluster analysis are in close agreement, with the exception
of the resolution of INV-30, INV-33, and GKS lines, and indi-
cate that despite the fact that sucrose phosphorylase acts
on the same target molecule as does invertase, plants ex-
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Figure 3. Dendogram Obtained after HCA of the Metabolic Profiles of the Analyzed Transgenic Systems.

The distances between these populations were calculated as described in Methods, using the normalized data of the single measurements from
which the means presented in Table 1 are derived. In addition, data from a further line, SP-26, are included that were not presented previously.
Wherever possible, individual branches are grouped in brackets for ease of reading. WT, wild type.

pressing sucrose phosphorylase have a clearly distinct met-
abolic profile.

Assessment of the Metabolites Exerting the Largest
Influence on Cluster Formation

Using the vector-based approach of PCA, it is possible to
distinguish the compounds that exhibit the greatest vari-
ance within a population and thereby distinguish the contri-
bution of these compounds to the formation of distinct
clusters. When the steady state levels of metabolites within
these four genotypes were compared, the main contributors
to the cluster formation were determined to be sugars or
closely related compounds, including the aforementioned
PT00, maltose, maltitol, trehalose, glucose and mannose,
glycerate, both glucose-6-P and fructose-6-P, and un-
knowns PT08 and PT16 (Figure 4B). Given that the novel un-
known PT0O0, which was detectable only in the SP lines, is a

major contributor to PCA, we also calculated a vector in
which this component was omitted from the PCA. This
omission resulted in no changes in the clusters formed by
either HCA or PCA. Further studies performed that removed
all novel components of the metabolite profiles also did not
result in gross changes in the clustering patterns produced
by either method of component analysis (data not shown).
These data demonstrate that our approach indeed takes
into account the entire spectrum of metabolites detailed; it
does not merely compare the behavior of a single, or a few,
metabolite(s) within these lines, and thus, it provides valida-
tion of these analyses.

Correlation of Metabolite Levels and Analysis
of Dependencies

These methods exemplify how interpretations can be made
on the basis of the entire metabolic complement of a system.
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Specifically, they show how genetically distinct systems can
be identified and how the most important component(s) of
this phenotype can be determined. Although this technique
is clearly very powerful, we decided also to look at the
trends within the individual metabolites by plotting the level
of every metabolite in individual samples of the wild type
and various transgenic lines against every other metabolite
within that sample. We analyzed a total of 3872 such plots.
The observed dependencies could be classified into three
major groups: those exhibiting no dependency (i.e., scatter),
those exhibiting linear correlation, and those exhibiting a
more complex correlation. As would perhaps be expected,
most plots were of metabolite levels that were independent
of each other; however, several interesting results came to
light during this analysis. (A complete list of metabolites ex-
hibiting correlations with a coefficient >0.7 is presented on
our web page at http://www.mpimp-golm.mpg.de/willmitzer/
metabolic-profiling-e.html.) For discussion of these data, we
have presented a few examples of some of the trends (Fig-
ure 5). An obvious example of a linear correlation between
metabolites is that observed for fructose-6-P and glucose-
6-P (Figure 5A), which are separated by only a single en-
zyme, phosphoglucose isomerase, which catalyzes a near-
equilibrium reaction. This correlation holds for all lines, con-
firming that the potato tuber has a very high capacity for
equilibrating these two metabolites. However, this relation-
ship was also observed in situations in which metabolites
are not consecutive within a pathway, for example, between
leucine and isoleucine (Figure 5B). When we consider that
the pathways for the biosynthesis of these amino acids
share the same terminal enzyme activity, branched chain
amino acid transaminase, and the same cofactor, glu-
tamate, the reason for the close relationship between the
metabolites becomes apparent. Methionine and lysine (Fig-
ure 5C) display a nonlinear correlation, which is most pro-
nounced in GK3 and SP lines; this correlation seems to be in
agreement with the relationship that one would predict from
proposed models of feedback regulation (Bartlem et al.,
2000; see Discussion for detailed explanation). Perhaps
even more exciting are cases in which the relationship be-
tween metabolites a and b is different in different geno-
types. One example of this is shown in Figure 5D, in which
the glycine level is plotted against sucrose. However, this

Metabolic Profiling and Phenotyping 19

example is trivial because in each case, the genetic modifi-
cation introduced is targeted at sucrose, and therefore a
different linear regression would be expected between
transgenic lines and the wild type. A more informative ex-
ample is provided in Figure 5E, in which PTO7 is plotted
against PT15; here, it can be clearly seen that in GK3 and
SP lines, the metabolites show a different dependency than
they do in wild-type and INV lines. This type of analysis may
also prove crucial in identifying unknown compounds, be-
cause in several instances (e.g., as shown in Figure 5F, in
which unknown PT19 is plotted against mannose), the ob-
servation that the level of an unknown exhibits strong posi-
tive correlation with the increase in level of a known
metabolite provides hints about the biosynthesis or subse-
quent metabolism of that compound.

Effect of Environmental Perturbation on the Steady
State Metabolite Levels in Wild-Type Tuber Discs

As a further example of the use of metabolic profiling, we in-
vestigated the metabolite levels of wild-type tuber discs in-
cubated for 2 hr in 0, 20, 50, 100, 200, or 500 mM glucose,
corresponding to cellular glucose levels of 1.7, 8.0, 9.4,
18.1, 30.2, and 68.2 uM g fresh weight~', respectively
(mean, n = 4), as measured by GC-MS. The levels of more
than half of the 86 compounds we measured were found to
decrease on incubation in comparison with the nonincu-
bated controls, irrespective of the presence or absence of
glucose (experimental data are available at http://www.
mpimp-golm.mpg.de/willmitzer/metabolic-profiling-e.html).
Despite the large changes caused by incubation, when the
levels of compounds in discs incubated in glucose were
contrasted with the levels of those found in samples incu-
bated in buffer (10 mM Mes-KOH, pH 6.5) alone, a different
picture emerged. Only samples that were incubated in 200
and 500 mM glucose exhibited significant differences. The
exceptions to this include malate and glucose-6-P, whose
levels significantly increased on incubation in 100, 200, or
500 mM glucose and mannitol, and of course glucose,
whose levels increased after incubation in glucose at all
concentrations tested. Again, several of the unknown com-
pounds displayed patterns of change similar to those for

Figure 4. (continued).

(A) The distances between these populations were calculated as described in Methods, using the log-transformed, normalized data of the single
measurements from which the means presented in Table 1 are derived. In addition, data from a further line, SP-26, are included that were not
presented previously. PCA vectors span a 10-dimensional space to give best sample separation, with each point representing a linear combina-
tion of all the metabolites from an individual sample. Vectors 1 and 2 were chosen for best visualization of differences between genotypes and
include 67.5% of the information derived from metabolic variances. WT, wild type.

(B) The contribution of individual metabolites to the PCA vector calculation by linear combination. The closer to the origin, the smaller the influence
a given metabolite has on the linear combination. The most important metabolites for separation of the differently treated samples are labeled.
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Figure 5. Correlation between Metabolite Levels of the Analyzed Transgenic Systems.

Correlations between the relative response ratios of each of the 88 metabolites with those of all other metabolites were assessed, and several in-
teresting trends were observed. Examples of these trends are shown. Symbols are as follows: green diamonds, wild type; red squares, INV; yel-
low circles, GK3; blue triangles, SP.

(A) Glucose-6-P (G6P) versus fructose-6-P (FEP).

(B) Leucine versus isoleucine.

(C) Lysine versus methionine.

(D) Glycine versus sucrose. The insert shows sucrose values plotted on a logarithmic scale.

(E) PTO7 versus PT15. The insert shows PTO7 values plotted on a logarithmic scale.

(F) Mannose versus PT19.



compounds for which we know the chemical nature. This is
in itself interesting, but it may also indicate chemical similar-
ity between the correlating metabolites and thus may help in
identifying the unknown metabolites.

HCA and PCA of the Metabolic Complement of
Glucose-Incubated Samples

Applying cluster analysis to the data from glucose incuba-
tion (i.e., using wild-type steady state metabolite concentra-
tions) revealed interesting results. HCA showed that the
wild-type tuber discs incubated in buffer alone had the most
similar metabolite complement to the steady state wild-type
levels (Figure 6). Furthermore, the glucose-fed samples
formed a distinct cluster that was more similar to the wild-
type steady state complement than to that of any of the
transgenics, and the metabolic profile of the discs fed with
500 mM glucose was distinct from the profile of the discs
fed with lower concentrations of glucose. The relationship
between the transgenic lines shown in Figure 6 is different
from that shown in Figure 4; however, this is an inherent fea-
ture of this type of component analysis, because a new hier-
archy is established.

PCA revealed very similar trends (Figure 7). Furthermore,
when we used this method of clustering, the buffer-incu-
bated samples were indistinct from the wild-type steady
state levels. In addition, the 20 to 200 mM glucose-fed sam-
ples form an independent cluster, as do the 500 mM glu-
cose-fed samples, and these clusters are closer to the wild-
type steady state cluster than to any of those of the trans-
genics. Moreover, when glucose-fed samples and their
respective controls were clustered independently of the
transgenic lines, the same clustering pattern was formed
(data not shown). Figure 8 reveals that the compounds that
exhibited the greatest variance when the metabolic profiles
of the glucose-fed samples were considered alone were as-
paragine, glucose, maltose, proline, tryptophan, PT10, PT14,
PT16, and PT19. In contrast, the most important compo-
nents for the clustering when both genetically and environ-
mentally modified systems were compared were mainly
sugars and sugar derivatives, including glucose, maltose,
mannose, maltitol, trehalose, 6-phosphogluconate, both of
the hexose-6-phosphates, and the unknown PTOO (Figure
9). For both analyses, we reevaluated the data sets, this
time omitting the novel compounds; however, the observed
clustering was remarkably similar in both instances (data not
shown).

When the glucose-feeding region of the PCA was ex-
panded (Figure 10A) and the individual incubations were
highlighted, a clear trend of increased distance from the wild
type (steady state) occurred with increased concentration of
glucose in the incubation medium. One of the primary aims
of this experiment was to attempt to phenocopy the meta-
bolic complement of the transgenics by using environmental
manipulation. This was clearly not possible in this instance
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because all situations formed distinct clusters. Thus, we
decided to broaden our analyses by comparing the meta-
bolic profile of transgenic potatoes expressing invertase at
an apoplastic location that we had previously measured
(Roessner et al., 2000) with that of the glucose-fed samples
by using both methods of cluster analysis. We were fasci-
nated to find that PCA showed that the apoplastic invertase
samples co-clustered with the glucose-fed samples (Figure
10B); furthermore, both HCA and an in-depth search of the
changes in the chromatograms confirmed this result (data
not shown). To our knowledge, this result in which a geneti-
cally modified system has been phenocopied by modifica-
tion of environmental conditions is novel. When the data
from the apoplastic invertase-expressing potatoes were
considered alongside the data from the other transgenics
and the wild-type and glucose-fed samples, the most im-
portant components for the clustering turned out to be iden-
tical to those when only the INV, GK3, and SP lines were
compared with the wild-type and glucose-fed samples, ex-
cept that fructose became marginally more important (see
Figure 9). Once again, we reevaluated the cluster analysis
by omitting novel compounds to determine whether the
clustering pattern observed was reflective of the entire met-
abolic complement or whether the control of cluster forma-
tion was vested in merely a few compounds. As in other
cases reported here, the clustering pattern that resulted
from this PCA was essentially the same as the one obtained
when all metabolites were considered.

DISCUSSION

This study investigated the potential of metabolic profiling,
using GC-MS for phenotyping and comprehensive charac-
terization of plant systems. We selected the particular trans-
genic lines because they have already been fairly well
characterized at the metabolite level, and they differ only
slightly in the biochemical activity that is always targeted at
enhancing sucrose cleavage. The similarity of the data
obtained using the GC-MS protocol compared with that
previously obtained using conventional HPLC and spectro-
photometric methods (Trethewey et al., 1998, 1999b, 2001;
Riedel, 1999) validates the authenticity of the measurements
obtained using this protocol, and therefore confirms the
protocol’s suitability for use in this study.

Although a major purpose of this study was to combine
multiparallel metabolite analysis with bioinformatic tools for
data analysis, the comprehensive analysis achieved by me-
tabolite profiling alone allowed some important conclusions
to be made. For example, the fact that so many amino acids
increased in the lines investigated in this study is in itself
fascinating. There are two possible mechanisms for these
increases: either an increased synthesis in source tissues
and an increased transport of amino acids to the tubers or
an elevated rate of amino acid biosynthesis within the
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Figure 6. Dendogram Obtained after HCA of the Metabolic Profiles of both Genetically and Environmentally Modified Systems.

The vector for the HCA described in Figure 3 was recalculated to include the metabolic profiles achieved after incubation of wild-type (WT) po-
tato tuber tissue in a range of glucose concentrations. Thus, the full data set used was the individual measurements of samples from all trans-
genic lines as well as individual measurements from glucose-fed wild-type tissue (from which the mean data, presented on our web page at
http://www.mpimp-golm.mpg.de/willmitzer/metabolic-profiling-e.html, were derived). Wherever possible, individual branches are grouped in
brackets for ease of reading. Note that the relationship between the various transgenic lines is different from that observed in Figure 4. This is an
inherent feature of this form of cluster analysis because a new hierarchy is established.

potato tuber. GC-MS analysis revealed that the amino acid
levels in the leaves of the transgenic plants did not change
(data not shown). These data are what would be expected
given the use of a tuber-specific promoter for transgene
expression, and they indicate that the later hypothesis is
the more likely. Amino acid biosynthesis in potato tubers in
particular and in storage tissues in general is poorly under-
stood. Although recently several genes for amino acid bio-
synthesis have been cloned from the potato tuber (Muday
and Herrmann, 1992; Riedel et al., 1999; Casazza et al.,
2000; Maimann et al., 2000), it is not known whether tubers
possess the necessary machinery to synthesize all amino
acids. The data presented in this study, although indirect,
provide the first evidence that the potato tuber is likely to
contain the required machinery to produce all amino acids
de novo. This example illustrates clearly the power of met-

abolic profiling in functional genomics in that compounds
are identified that imply the presence and influence of gene
products involved in their synthesis. A further example is
that of ascorbate because little is known about the location
of synthesis of this vitamin (Smirnoff and Wheeler, 2000).
The data presented here indicate that ascorbate can also
be synthesized de novo within the tuber: ascorbate is in-
creased in the tubers in several of the transgenic lines
studied but not in their leaves (data not shown). Ascorbate
also increased after incubation of wild-type tuber tissue in
glucose, so ascorbate synthesis is possible in the tuber, at
least under conditions in which glucose is plentiful. These
examples therefore return our attention to searching for
genes. Furthermore, we anticipate that once the chemical
nature of the unknowns is established, clear new targets
for gene discovery will be identified.



A further example of the type of conclusions that can be
drawn from such a broad-based profiling method involves
differences in metabolic profiles that can be assigned on the
basis of difference in the genetic manipulation imposed. In-
terestingly, several compounds, namely, maltose, trehalose,
isomaltose, maltitol, malate, PT16, PT19, and PT20, in-
crease starkly only in the INV and GK lines that also exhibit
elevated glucose. This observation fits with recent results
suggesting the operation of sugar-sensing mechanisms
within plants (Jang et al., 1997; Smeekens, 2000). However,
although these changes can be correlated directly to glu-
cose levels, they are limited to only a few metabolites; thus,
these data seem to argue against a major signaling role for
glucose within the tuber system. These findings are there-
fore in agreement with previous studies in which we directly
modified the levels of glucose and of glucose-using en-
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zymes by using a transgenic approach (Veramendi et al.,
1999; Fernie et al., 2000).

The above examples clearly illustrate the power of a non-
biased metabolic screen to help us draw conclusions from
our data that have both breadth and novelty. However, anal-
ysis at the level of single metabolites is an ominous task,
particularly when ~11,000 data points must be assessed.
We therefore applied bioinformatic tools for data mining to
our results. The four initial genotypes analyzed (wild type,
INV, GK3, and SP potato lines) had distinct metabolic pro-
files, despite the fact that the target of the genetic manipula-
tion was the same in each instance. Both methods of cluster
analysis independently led to the same interpretation and
gave a high level of resolution between the genotypes.
Moreover, reanalysis of the data sets when the most influen-
tial contributing metabolites of the individual clusters were
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Figure 7. PCA of the Metabolic Profiles of Both Genetically and Environmentally Modified Systems.

The distances between these populations were calculated as described in Methods by using the log-transformed, normalized data of the single
measurements from which the means presented on our web page (http://www.mpimp-golm.mpg.de/willmitzer/metabolic-profiling-e.html) were
derived. PCA vectors span a 10-dimensional space to give best sample separation, with each point representing a linear combination of all the
metabolites from an individual sample. Vectors 1 and 2 were chosen for best visualization of differences between genotypes and include 68.7%

of the information derived from metabolic variances. WT, wild type.
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Figure 8. Assessment of the Metabolites Exerting the Largest Cluster Formation When Only Glucose-Fed Samples Are Considered.

Shown is the contribution of individual metabolites to the PCA vector calculation by linear combination. The closer to the origin, the smaller the
influence a given metabolite has on the linear combination. The most important metabolites with respect to the separation of the differently

treated samples are labeled.

removed yielded very similar clusters in all instances. We
believe that this allows us to have a high level of confidence
in interpreting these clusters because it demonstrates that
the cluster formation is not dependent on merely a few me-
tabolites or even a single metabolite. That the combination
of metabolic profiling and cluster analysis allows resolution
of very similar situations suggests that it is of general use for
phenotyping diverse genetically or environmentally modified
plant systems.

A further advantage of using a multiparallel approach is
that because all metabolites are analyzed within a single
extract, relationships between the levels of the various
metabolites can be determined. By plotting all possible cor-
relations, we were able to assess which metabolite concen-
trations were strongly linked. Although some of these
linkages have been reported previously for plants (e.g.,
Hatzfeld and Stitt, 1990; Fernie et al., 2001a), and some are

probably trivial, these analyses also gave insight into regula-
tion of metabolism within the tuber. The hyperbolic nature of
the curve obtained when lysine was plotted against me-
thionine fits models of feedforward and feedback regulation
of the aspartate family biosynthetic pathway in Arabidopsis,
as outlined by Bartlem et al. (2000). These authors suggest
that under conditions of high flux, the methinine-threonine
branch point is tightly regulated such that when methionine
accumulates, its feedback inhibits expression of cystathione
v-synthase mRNA, but feedforward activitates the compet-
ing branch point catalyzed by threonine synthase. If such
control were operating in the potato tuber, it would follow
that methionine would only accumulate to a threshold level,
whereas lysine would continue to increase with increasing
flux through the pathway. Thus, a hyperbolic relationship
between these metabolites indicates that the biosynthetic
pathway of the potato tuber aspartate family is regulated in



a manner analogous to that of Arabidopsis. That these plots
can indicate metabolic regulation at a certain locus is very
exciting, because the screening of, for example, mutant
populations for individuals lines that do not fit these relation-
ships have the potential to allow identification of component
genes of regulatory factors at these loci. A further function
of these plots is that the high degree of correlation between
the unknown compounds and those for which the chemical
nature is established may aid in the identification of these
compounds and hence to improvements in the efficacy of
our protocol.

As a first example of the power of metabolic profiling, we
demonstrated its use in identifying phenocopies of certain
genetic modifications—an approach that obviously will be
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useful in functional genomics. For this purpose, we incu-
bated tuber discs in various concentrations of glucose and
determined their subsequent metabolic profile. This manip-
ulation led to metabolic profiles that formed distinct clusters
from the transgenic lines we initially chose for our study
(INV, GK8, and SP). However, when the metabolic profiles of
the glucose-incubated samples were compared with trans-
genics we had profiled previously (Roessner et al., 2000), we
were able to phenocopy one of them—potato plants ex-
pressing a yeast invertase within the tuber at an apoplastic
location. A possible explanation for the phenocopying of
these situations is the presence of a factor on the plasma
membrane that has been implicated to sense the carbohy-
drate status of the cell wall space and mediate effects on
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Figure 9. Assessment of the Metabolites Exerting the Largest Cluster Formation When Both Genetically and Environmentally Modified Systems

Are Considered.

Shown is the contribution of individual metabolites to the PCA vector calculation by linear combination. The closer to the origin, the smaller the
influence a given metabolite has on the linear combination. The most important metabolites with respect to the separation of the differently
treated samples are labeled. The metabolite that appears in brackets, fructose, only has this degree of influence when glucose feeding profiles

are considered.
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(A) Expansion of the glucose-feeding cluster region presented in Figure 7.

(B) Relationship between apoplastic invertase-expressing tubers and glucose-fed wild-type tubers.

The distances between these populations were calculated as described in Methods by using the log-transformed, normalized data from both
environmentally and genetically modified systems. PCA vectors span a 10-dimensional space to give best sample separation, with each point
representing a linear combination of all the metabolites from an individual sample. Vectors 1 and 2 were chosen for best visualization of differ-
ences between genotypes and/or different environmental conditions and include 67.5% of the information derived from metabolic variances.

WT, wild type.

cellular metabolism (Lalonde et al., 1999; Fernie et al.,
2001b, 2000). The fact that certain environmental conditions
can phenocopy genetic modifications, even when many pa-
rameters are considered, proves the general utility of this
approach.

Conclusion and Perspectives

The work presented in this article demonstrates that meta-
bolic profiling coupled with bioinformatic tools represent an
additional exciting approach to the analysis of complexity
within plant systems. We believe that the data herein illus-
trate that our protocol allows the phenotyping of diverse
plant systems and gives multiple insights into regulation and
relationships of metabolite levels within plant cells. The ex-
act number of chemical compounds present in the com-
bined plant kingdoms is unknown; however, estimates
range from 90,000 to 200,000 different molecules, with a
single species such as Arabidopsis having a complexity in
excess of 5000 compounds. However, a large proportion of
this enormous diversity results from compounds of second-

ary metabolism. It is therefore obvious that the approach
described here, in which we essentially limit ourselves to
~80 compounds, does not represent the end of this devel-
opment. Unpublished data from our group suggest that ap-
plying different data extraction algorithms (using peak
deconvolution software) to the original chromatograms in-
creases the number of distinct compounds detected by a
factor of three. A further extension of the metabolic-profiling
approach is in the development of similar, automated tech-
nologies for the nonvolatile or highly fragile compounds; lig-
uid chromatography coupled to MS represents one such
approach. The biggest hurdle is probably determination of
the exact chemical structure of the individual compounds
seen. Here, a multitude of approaches such as MS, nuclear
magnetic resonance, and other techniques will be useful. It
is our belief that only the combination of many analytical
techniques will allow a full description of the metabolome
status of an organism and thus create a third level of multi-
parallel approaches. When taken together with RNA and
protein analyses, the metabolic complement will allow a full
picture of the complexity of the biological entity under
study.



METHODS

Plant Materials

Solanum tuberosum cv Desiree was obtained from Saatzucht Lange
AG (Bad Schwartau, Germany). The generation and selection of
the transgenic lines used here have been described previously by
Sonnewald et al. (1997) and Trethewey et al. (1998, 2001). Plants
were maintained in tissue culture with a 16-hr-light/8-hr-dark regime
on Murashige and Skoog (1962) medium that contained 2% sucrose.
In the greenhouse, plants from all transgenic lines and wild-type con-
trols were grown in parallel under the same light regime with a mini-
mum of 250 umol photons m~—2sec~" at 22°C. In this article, the term
“developing tubers” is used for tubers (>10 g fresh weight) harvested
from healthy 10-week-old plants.

Chemicals

All chemicals and pure standard substances were purchased from
either Sigma-Aldrich Chemie GmbH (Deisenhofen, Germany) or Merck
KGaA (Darmstadt, Germany).

Confirmation of Preliminary Biochemical Characteristics of
Transgenic Lines

Extraction and assaying of invertase and glucokinase were per-
formed according to Trethewey et al. (1998), and those of sucrose
phosphorylase were performed following the protocol of Trethewey
et al. (2001). Carbohydrate levels were determined exactly as de-
scribed in Morrell and ap Rees (1986), whereas phosphorylated inter-
mediates were measured according to protocols described in Fernie
et al. (2001a). Recoveries of metabolites in the trichloroactetic acid
extracts have been documented previously (e.g., Trethewey et al.,
1998; Veramendi et al., 1999; Fernie et al., 2001a).

Extraction, Derivatization, and Analysis of Potato Tuber
Metabolites Using Gas Chromatography-Mass Spectrometry

Potato tuber tissue (100 mg) was extracted in 1400 pL of methanol,
as described by Roessner et al. (2000); 50 pL of internal standard (2
mg of ribitol in mL~" water) was added for quantification. The mixture
was extracted for 15 min at 70°C, mixed vigorously with 1 volume of
water, centrifuged at 2200g, and subsequently reduced to dryness in
vacuo. The residue was redissolved and derivatized for 90 min at
30°C (in 80 pL of 20 mg mL~' methoxyamine hydrochloride in pyri-
dine) followed by a 30-min treatment at 37°C (with 80 uL of
N-methyl-N-[trimethylsilyl]trifluoroacetamide). Forty microliters of a
retention time standard mixture (3.7% [w/v] hepatonic acid, 3.7%
[w/v] nonanoic acid, 3.7% [w/v] undecanoic acid, 3.7% [w/V] tri-
decanoic acid, 3.7% [w/v] pentadecanic acid, 7.4% [w/v] nonadeanoic
acid, 7.4% [w/v] tricosanoic acid, 22.2% [w/v] heptacosanoic acid,
and 55.5% [w/v] hentriacontanoic acid dissolved in 10 mg mL~" tet-
rahydrofuran) was added before trimethylsilylation. Sample volumes
of 1 L were then injected with a split ratio of 25:1, using a hot needle
technique.

The gas chromatography-mass spectrometry (GC-MS) system
was composed of an AS 2000 autosampler, a GC 8000 gas chro-
matograph, and a Voyager quadrole mass spectrometer (Thermo-
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Quest, Manchester, UK). The mass spectrometer was tuned
according to the manufacturer’s recommendations, using tris-(per-
fluorobutyl)-amine (CF43). GC was performed on a 30-m SPB-50
column with 0.25-pm film thickness (Superico, Bellfonte, CA). The in-
jection temperature was set at 230°C, the interface at 250°C, and the
ion source adjusted to 200°C. Helium was used as the carrier gas at
a flow rate of 1 mL min—'. The analysis was performed under the fol-
lowing temperature program: 5 min of isothermal heating at 70°C,
followed by a 5°C min—" oven temperature ramp to 310°C, and a final
1 min of heating at 310°C. The system was then temperature equili-
brated for 6 min at 70°C before injection of the next sample. Mass
spectra were recorded at 2 scan sec™! with a scanning range of 50 to
600 m/z. Both chromatograms and mass spectra were evaluated us-
ing the MASSLAB program (ThermoQuest). A retention time and
mass spectral library for automatic peak quantification of metabolite
derivatives were implemented within the MASSLAB method format.
Substances were identified by comparison with authentic standards,
as described in Roessner et al. (2000). The recovery of small rep-
resentative amounts of each metabolite through the extraction, de-
rivatization, storage, and quantification procedures has been
documented previously (Roessner et al., 2000). Data sets measured
at different times are not directly comparable because of varying tun-
ing parameters of the GC-MS machine over time; we therefore nor-
malized the data by using the wild-type control of each measured
batch as a reference. To include all the specific ions used for quanti-
fication of the metabolites (Roessner et al., 2000), we averaged all re-
sponse numbers for the wild-type control and divided all data from a
measured batch by the calculated factor.

Glucose Incubation of Potato Tuber Slices

Glucose incubations were performed essentially as described by
Geiger et al. (1998). Discs were cut directly from developing tubers
from nonsenescent wild-type plants and washed three times in 10
mM Mes-KOH. They were then placed in 100-mL flasks (eight discs
per flask) containing 5 mL of incubation medium (10 mM Mes-KOH,
pH 6.5), supplemented with 0, 20, 50, 100, 200, or 500 mM glucose,
and incubated with shaking (at 150 rpm) for 2 hr. An aliquot of the in-
cubation media then was immediately frozen in liquid N, for subse-
quent analysis. Samples were washed three times in 10 mM Mes-
KOH, pH 6.5, before they were dried and frozen in liquid N, for sub-
sequent analysis. Analysis of the tuber extracts was performed as
described above, except that the glucose level of the sample was
quantified by calibration, as described previously (Fernie et al.,
2001Db; Roessner et al., 2000).

Cluster Analysis

Hierarchical cluster anaylsis (HCA) and principle component analysis
(PCA) were performed with the S-Plus system, as detailed by Venables
and Ripley (1999). For an independent confirmation of the results ob-
tained by this method, we also used the informatic program Pirouette
2.6 (Infometrix, Woodinville, WA). HCA allows the presentation of
cluster results in a dendogram, where the similarity of two samples
can be determined from the value on the distance axis at which they
join in a single cluster (the smaller the distance, the more similar the
sample). All HCAs described in this article were transformed by log
10 to allow better comparison of large and small numbers. We used
the Euclidean distance to calculate the matrix of all samples. The
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complete linkage method was then used in the assignment of clus-
ters. For PCA, the n-dimensional data set was transformed into a
second n-dimensional data set in which what was designated as the
most important information of the original data set was stored in the
first few dimensions. These transformations allowed the reduction of
the original data set to only the most important dimensions, hence al-
lowing more distinct cluster formation. The results of these analyses
were then presented as a two-dimensional graphical display of the
data in which a single sample is represented by a point in three-dimen-
sional space.

Statistical Analysis

If two observations are described in the text as different, this means
that their difference was determined to be statistically significant by
the performance of t tests using the algorithm incorporated into Mi-
crosoft Excel 7.0. (Microsoft, Seattle, WA).
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