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Abstract
Purpose of review—This article summarizes the current pathophysiologic basis for human T cell
lymphotropic virus-associated leukemia/lymphoma as well as past, present, and future therapeutic
options.

Recent findings—New studies have been published on allogeneic stem cell transplantation,
arsenic trioxide, and bortezomib for this condition.

Summary—Studies of the molecular biology of human T cell lymphotropic virus-1-induced T cell
leukemia/lymphoma have defined a critical role for oncoprotein, Tax, and activation of nuclear factor
κB transcription pathways, which have provided rational approaches to improved therapy for T cell
leukemia/lymphoma as well as a model for other hematopoietic malignancies characterized by
nuclear factor κB activation.
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Introduction
Several reviews of human T cell leukemia/lymphoma (HTLV)-1)-associated leukemia/
lymphoma (ATLL) have been published in the past year [1•,2,3]. Therefore, the emphasis of
this review will be new developments in its pathogenesis, diagnosis, prognostication, and
treatment, emphasizing findings from manuscripts published in the past year.

Considerable data support the etiologic role of HTLV-1 in ATLL [4]. Patients with ATLL are
infected with HTLV-1, as evidenced by serologic and nucleic acid assays, and infection
precedes disease development. Moreover, HTLV-1 transforms CD4+ lymphocytes in culture,
resulting in a cell surface phenotype and gene expression profile similar to that of ATLL. In
addition, HTLV-1 is clonally integrated into CD4+ lymphocytes. Last, a related virus, bovine
leukemia virus, induces an analogous lymphoproliferative malignancy of B cells in cattle. A
distinct clinical syndrome, HTLV-1–associated myelopathy, is also a result of infection (Table
1).

In southern Japan, the Caribbean Basin, many parts of Central and South America, Africa, and
Middle Eastern Asia, HTLV-1 is endemic. It is transmitted by contaminated blood products,
by sexual means, or by breast feeding. Although HTLV-1–associated myelopathy can result
from any of these forms of transmission, ATLL seems to occur only after breast feeding, but
several decades later in life.

Correspondence to Lee Ratner, Washington University, 660 South Euclid Avenue, Saint Louis, MO 63110, USA, Tel: 314 362 8836;
fax 314 747 2120; e-mail: lratner@im.wusl.edu.

NIH Public Access
Author Manuscript
Curr Opin Oncol. Author manuscript; available in PMC 2009 March 9.

Published in final edited form as:
Curr Opin Oncol. 2005 September ; 17(5): 469–473.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Four subtypes of ATLL have been described: smoldering, chronic, leukemic and
lymphomatous ATLL (Table 1) [1•,2]. Smoldering ATLL is characterized by 1 to 5% abnormal
peripheral blood lymphocytes or limited skin lesions. Chronic ATLL may include
lymphocytosis, skin lesions, or liver, lung, or lymph node involvement. Leukemic ATLL is
characterized by lymphocytosis, hypercalcemia, lytic bone lesions, lymphadenopathy, visceral
or leptomeningeal involvement, and opportunistic infections. Lymphomatous ATLL is a post-
thymic T cell non-Hodgkin’s lymphoma with frequent blood, skin, and bone involvement.

Pathogenesis
There is strong evidence implicating the transcriptional transactivator protein, Tax, as the
critical oncoprotein of HTLV-1 [5•,6]. Proviral deletions in ATLL patients are common, but
the tax gene is generally conserved. Tax is capable of transforming Rat 1 fibroblasts. Tax
expression in a Herpesvirus samirii or retrovirus vector results in CD4+ cell immortalization.
Tax expression in transgenic mice results in various neoplasms, including lymphoma.

Tax is a pluripotent transcriptional activator that does not independently bind DNA but rather
enhances the activity of cellular transcription factors and chromatin modeling determinants
(Table 2) [7]. Tax activates the viral promoter though cAMP-response element binding proteins
(CREB), and CREB-binding protein and the related p300. Tax activates the nuclear factor κB
(NFκB) family of proteins by binding to the regulatory inhibitor kinase kinase γ subunit, and
by enhancing phosphorylation and activity of inhibitor kinase kinase α and β subunits through
interactions with mitogen activated protein kinase kinase. Activation of NFκB is critical for
HTLV-1 immortalization in culture, and for tumorigenesis in Tax transgenic mice [8–10].
NFκB enhances the expression of proteins that promote cell proliferation and angiogenesis,
and resistance to apoptosis.

Tax has multiple effects on the cell cycle progression through transcriptional or post-
transcriptional effects (Table 2). The effects on G1 progression result from the effects of Tax
on the tumor suppressor, p53, Rb, on inhibitors of cyclin-dependent kinases (INK proteins),
and on cyclins and cyclin-dependent kinases. Tax induces phosphorylation of p53 and represses
its transcriptional activity [11]. Tax affects INK proteins, through direct binding and
suppression of p16-INK4A, transcriptional repression of p18-INK4C, decreased transcription
of p19-INK4D, and increased expression of p21 [12,13]. In addition, Tax binds cyclin-
dependent kinase-4 and cyclin D2, resulting in activation, enhanced phosphorylation of cyclin
D3, and enhanced transcription of the cyclin D2 gene [5•,14–16]. Tax also modulates the G2
phase of the cell cycle by binding and inhibiting mitotic arrest defect 1 protein, the Cdc20
anaphase-promoting complex, and the checkpoint kinases, Chk1 and 2, disrupting the G2-M
checkpoint [17–19].

There is also evidence suggesting that secondary genetic or epigenetic events are required for
ATLL development, because the Tax protein is not usually evident in uncultured ATLL tissues.
Moreover, only approximately 10% of individuals infected by breast feeding, and few if any
individuals infected by other routes, experience ATLL, and only several decades later in life.
DNA methylation is an epigenetic determinant of gene expression that can modulate
oncogenesis. In an analysis of hypermethylated sequences in ATLL, 53 hypermethylated DNA
sequences were identified, of which 7 resulted in repressed gene expression in ATLL compared
with normal T cells [20]. The downregulated genes included the Kruppel-like factor 4 gene, a
cell cycle regulator, and early growth response 3 gene, a regulator of Fas ligand expression,
both of which resulted in resistance to induction of apoptosis. These studies may provide
insights into factors that determine which infected individuals remain asymptomatic compared
with those in whom ATLL develops.
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Prognostic markers
The diagnosis of ATLL requires evidence of HTLV-1 infection by serologic or nucleic acid
techniques, a CD4+ CD25+ lymphoid proliferation, and clinicopathologic characteristics of
leukemia or lymphoma. Clonality is a critical feature of ATLL and may be demonstrated by
clonal Tcell receptor gene rearrangements or a proviral integration pattern [21]. In a recent
study of 50 persons infected with HTLV-1 with clonal integration, 21 experienced ATLL, with
an incidence rate of 48 per 1000 person-years [22•]. Another 10 patients experienced
opportunistic infections or other malignancies, resulting in death. A leukocyte count higher
than 9000/μl was predictive of ATLL development. In established ATLL, the patient’s age,
serum level of LDH, hypercalcemia, and performance status have been reported as prognostic
determinants.

Provirus load may be a prognostic marker for ATLL as well as a measure of tumor burden in
established ATLL. This assay measures the number of integrated and unintegrated copies of
viral DNA in cells. Studies of viral RNA in cells or plasma have not been reported. A recent
study examined proviral load in individuals infected with HTLV-1 and HTLV-2 [23]. The
proviral load in HTLV-1–infected patients ranged from 3.1 to 1.8 × 105 copies per 106

peripheral blood mononuclear cells (PBMCs) and was detectable in 94% of asymptomatic
individuals. The HTLV-2 proviral load ranged from 1.1 to 1.0 × 106 copies per 106 peripheral
blood mononuclear cells (PBMCs) and was detectable in 91% of asymptomatic individuals.
In this study, however, there was no information on ATLL development.

Gene expression studies of ATLL may also provide information of prognostic importance. In
comparison of tumorigenic and non-tumorigenic ATLL cell lines, an adhesion protein OX40
and a regulator of G protein signaling, RGS1, were overexpressed in tumorigenic ATLL cells
[24]. Other studies of cells transformed by HTLV-1 infection, Tax-expressing cell lines, or
ATLL cells have identified overexpression or underexpression of genes associated with
apoptosis, cell cycle regulation, DNA repair, signaling, immune mediation, and cytokine or
growth factor production compared with activated uninfected lymphocytes [25–28].

Chemo-antiretroviral therapy
A variety of combination chemotherapy regimens have been used for leukemic or
lymphomatous ATLL, but median survival remains at approximately 1 year, with a 5-year
survival rate of less than 5% [29–35]. Promising results with the combination of interferon-α
and zidovudine have been reported from some but not all groups of investigators [36–42].
Relapses occur in most individuals when treatment is discontinued. An infusional regimen,
etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin, is currently being
evaluated in combination with interferon-α and combivir in the National Cancer Institute—
sponsored clinical study #AMC 033. The etoposide, prednisone, vincristine,
cyclophosphamide, and doxorubicin regimen was chosen on the basis of its activity in
refractory lymphomas and in HIV-associated lymphomas [43,44].

Stem cell transplantation
Autologous stem cell transplantation (SCT) is generally ineffective for leukemic or
lymphomatous ATLL [45]. The role of allogenic SCT for ATLL remains unclear [46–52]. In
a recent study of 16 patients over the age of 50 with ATLL who underwent allogeneic SCT, a
reduced-intensity conditioning regimen with fludarabine, busulfan, and rabbit antithymocyte
globulin was well tolerated [53]. Proviral load became undetectable in 8 patients, but remission
rates are not yet available. A graft-versus-ATLL effect was found with this procedure. In a
study of ATLL patients who obtained complete remission after non-myeloablative allogenic
SCT from HLA-identical siblings, CD8+ cytotoxic T lymphocytes directed against the HLA-
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A2 restricted dominant Tax epitope were found after, but not before, transplantation [54].
Cytotoxic T lymphocytes to HTLV-1 Env epitopes may also result in ATLL cytotoxicity
[55].

Antibodies
Anti-Tac antibody, which recognizes CD25, the α subunit of the interleukin-2 receptor, has
been shown to have therapeutic efficacy for ATLL cells in patients and in a murine xenograft
model [56]. A recent study showed that antitumor activity depended on Fc receptor-mediated
clearance [57]. Improved activity is seen with radioimmunoconjugates, such as Yttrium90-
labeled anti-Tac [58,59]. In one study of 18 ATLL patients given doses of 5 to 15 mCi, there
were 7 partial and 2 complete remissions. A monoclonal antibody to human transferrin
receptor, constitutively expressed at high levels on ATLL cells, blocked ATLL cell growth in
culture [60]. Similarly, anti-CD2 antibody has activity in the severe combined
immunodeficiency mouse model of ATLL. Anti-CD52 antibody (Alemtuzumab, Campath)
has also been reported to be active in one ATLL patient [61]. Denileukin difitox (Ontak), an
interleukin-2—diphtheria toxin fusion protein, has not been reported to be active in ATLL,
however. A recent manuscript describes Tax activation of CD40; thus, antibodies to CD40 that
are in current clinical trials could be of interest for ATLL [62].

Tax is a critical target for cytotoxic T lymphocyte—mediated killing [63]. Downregulation of
Tax with small interfering RNAs resulted in resistance to cytotoxicity in culture and in a rat
model system [64]. Studies of therapeutic Tax vaccines would therefore be of great interest.

Novel therapies
Arsenic trioxide has been shown to synergize with interferon-α in inducing growth arrest and
apoptosis of ATLL cells in culture [65–68]. A phase II trial in seven patients with relapsed or
refractory ATLL resulted in one complete remission and three partial remissions. [69].
Treatment was discontinued at a median of 3 weeks, however, because of toxicity or disease
progression.

The critical role of NFκB in the transforming function of Tax has led to several studies in ATLL
patients of inhibitors of this pathway. Bortezomib (PS341, Velcade), which blocks IκB
degradation, inhibits NFκB activity in HTLV-1 immortalized cells and Tax transgenic tumor
cell lines in culture in murine transplant models [70,71]. This blocked cell proliferation and
resulted in apoptosis. There have been several anecdotal reports of the successful use of
bortezomib in patients with refractory ATLL.

Retinoids and angiogenesis inhibitors have also been explored for anti-ATLL activity [72,
73].

Conclusion
No specific therapeutic recommendations can be made for smoldering ATLL or chronic ATLL
at this time, in light of their variable course and duration. The leukemic and lymphomatous
forms of ATLL are best treated with interferon-α and zidovudine with or without conditioning
with chemotherapy. Subsequent therapy with allogeneic SCTor radioimmunotherapy could be
useful for consolidative therapy. Monitoring proviral load seems to be helpful in assessing
therapeutic efficacy. Further clinical trials are warranted to define the mechanism of action of
these therapies and prognostic markers, and the optimal timing and doses or different agents.
The role of other agents such as bortezomib, arsenic trioxide, and alemtuzumab remains to be
further defined.
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Table 1
HTLV-1 disease associations

Nonmalignant conditions

 Asymptomatic infection

 HTLV-associated myleopathy (HAM), tropical spastic paraparesis
(TSP)

 HTLV-associated arthropathy

 HTLV-associated uveitis

Malignant disorders

 Smoldering ATLL Atypical lymphocytes, limited skin lesions

 Chronic ATLL Lymphocytosis, skin lesions, liver, lung, lymph node involvement

 Acute ATLL, lymphomatous form T-cell non-Hodgkin’s lymphoma with frequent blood, skin, bone lesions

 Acute ATLL, leukemia form T-cell leukemia with hypercalcemia, lytic bone lesions,
lymphadenopathy, visceral or leptomeningeal involvement,
opportunitistic infections

HTLV, human T cell leukemia/lymphoma virus; ATLL, HTLV-1-associated leukemia/lymphoma.
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Table 2
Tax oncoprotein activities

Transcriptional activities

 Serum-response factor

 cAMP-response factor–activation of viral promoter

 Nuclear factor κB–activation of cytokines, anti-apoptosis genes, cell proliferation genes, and angiogenesis

Posttranscriptional activities

 Proliferation–inhibition of p16 cell cycle inhibitor, activation of cyclin-dependent kinase 4 and cyclin 2

 Apoptosis–inactivation of p53

 Genetic instability defect in G2/M checkpoint caused by binding mitotic arrest defect 1 protein, Cdc20 anaphase-promoting complex, and checkpoint
kinases Chk1 and 2
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