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The number of biologically interesting natural products possessing peroxide structure motifs
is substantial and still growing.1 Many peroxy natural products display antitumor, anticancer
and anti parasite activities, which are attributed to the propensity of the peroxide to initiate
radical reactions in an ironrich environment.2 Furthermore, peroxide natural products such as
artemisinin are clinically important anti malaria drugs. Despite the potential of chiral peroxides
as biologically interesting or even clinically important compounds, synthetic methods for the
preparation of chiral peroxides are highly limited.3,4,5,6 In particular efficient catalytic
enantioselective peroxidations with simple achiral precursors are urgently needed, yet none
are available. In fact only a single example of a chiral auxiliarydirected peroxidation in high
diastereoselectivity could be found in the literature.7 Herein, we wish to report the development
of a highly enantioselective peroxidation of α,β-unsaturated ketones with an easily accessible
chiral organic catalyst.

The base-promoted reaction of α,β-unsaturated ketones 1 with hydroperoxides 2 represents a
classic epoxidation reaction. Asymmetric variants of this epoxidation with both chiral metal
and organic catalysts have also been reported.8-13 It is well-established that the epoxide 3 is
formed via a two-step mechanism (Scheme 1); nucleophilic addition of the hydroperoxide 2
to 1 followed by an intramolecular nucleophilic substitution of the resulting enolate (5) that
breaks the weak peroxide bond. In principle this epoxidation pathway (1 to 3) could be
converted into a peroxidation pathway (1 to 6) if 5 could be trapped by protonation, although
the overwhelming preference of 5 for the intramolecular nucleophilic substitution is evident
from the lack of reported peroxidation of α,β-unsatrated carbonyl compounds.

Although chiral amine-catalyzed nucleophilic epoxidations of α,β-unsaturated carbonyl
compounds have already been reported,13 we suspected that a cinchona alkaloid derivative
such as 814 could not only render the nucleophilic addition of the hydroperoxide 2 to the
iminium intermediate 9 enantioselective, but also strongly influence the partitioning of the
peroxyenamine intermediate 10 between the epoxidation (10 to 11) and the peroxidation (10
to 12) pathways (Scheme 2). Presumably, due to steric crash and multipoint binding
interactions between the peroxyenamine intermediate and the covalently linked cinchona
alkaloid, the bond-rotational freedom of the peroxyenamine should be hampered, compared to
that of the enolate 5 in Scheme 1. We expected that this conformational rigidity imposed by
8 on the peroxyenamine would diminish its ability to adopt the active conformation by which
the nucleophilic enamine moiety is optimally aligned relative to the O-O bond for the
nucleophilic attack. This in turn would decelerate the epoxidation. In contrast, with the
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protonated quinuclidine as a proton source nearby to facilitate the protonation of the
peroxyenamine, the peroxidation might be accelerated.

We then investigated how α,β-unsaturated ketone 1A reacted with TBHP (2a) in the presence
of 8. We found that, with TFA (20 mol%) as the additive, the reaction afforded the peroxide
6Aa as the dominant product and in 85% ee (entry 1, Table 1). When performed in toluene and
with 30 mol% TFA both the peroxide/epoxide (6/3) ratio and the enantioselectivity could be
improved to an excellent level (entry 2, Table 1). Importantly, the reaction demonstrated
considerable scope for both the α,β-unsaturated ketones 1 and the hydroperoxides 2. Paticularly
noteworthy are the highly enantioselective peroxidations of α,β-unsaturated ketones 1 with the
α-methoxy isopropyl hydroperoxide 2c (entries 18-23, Table 1). The ability to employ 2c
considerably increases the synthetic potential of this new catalytic asymmetric peroxidation,
as the corresponding chiral peroxides could be readily converted to chiral hydroperoxides
suitable for further elaborations (Scheme 3).15 The catalytic asymmetric peroxidation also
provides a new enantioselective route to the chiral β-hydroxy ketones as peroxides could be
easily reduced to the corresponding alcohol (Scheme 3).16

Following our observation that the peroxide/epoxide ratio inversely correlated with the reaction
temperature, we performed the reactions of various α,β-unsaturated ketones with cumene
hydroperoxide (2b) at elevated temperature (23 or 55 °C vs. 0 °C) in order to establish
conditions for an asymmetric epoxidation of 1.17 As summarized in Table 2, highly
enantiomerically enriched epoxides were indeed obtained as the major product and in
synthetically useful yields.18

In summary, by using a chiral catalyst to not only induce enantioselectivity but also to convert
a well established epoxidation pathway into a peroxidation pathway, we have developed the
first highly enantioselective catalytic peroxidation reaction. Employing readily available
reagents and catalyst, this novel reaction is expected to open new possibility in the asymmetric
synthesis of the biologically interesting chiral peroxides. Furthermore, with the same catalyst
and reagents, a highly asymmetric epoxidations of acyclic enones could be established simply
by performing the reaction at a higher temperature.
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Scheme 1.
Mechanism of Base-Catalyzed Nucleophilic Expoxidation of α,β-Unsaturated Ketones
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Scheme 2.
A Proposed Catalytic Cycle for the Reaction of 1 and 2 with Cinchona Alkaloid 8
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Scheme 3.
Synthetic Transformation of Chirall Peroxides 6
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