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Abstract
We study semiparametric varying-coefficient partially linear models when some linear covariates
are not observed, but ancillary variables are available. Semiparametric profile least-square-based
estimation procedures are developed for parametric and nonparametric components after we calibrate
the error-prone covariates. Asymptotic properties of the proposed estimators are established. We also
propose the profile least-square-based ratio test and Wald test to identify significant parametric and
nonparametric components. To improve accuracy of the proposed tests for small or moderate sample
sizes, Wild bootstrap version is also proposed to calculate the critical values. Intensive simulation
experiments are conducted to illustrate the proposed approaches.
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1 Introduction
Various efforts have been made to balance the interpretation of linear models and flexibility
of nonparametric models. Important results from these efforts include semiparametric varying-
coefficient partially linear models (SVCPLM), in which the response variable Y depends on
variables Z, X and U in the form of

(1.1)

where Θ is a p-dimensional vector of unknown parameters, α(·) is a q-variate vector of unknown
functions, U is a vector of nonparametric components, which may be multivariate, and the
model error ε has mean zero and finite variance. For notational simplicity, we assume that U
is scalar. αT(U)X is referred to as a nonparametric component since α(U) is nonparametric.

Model (1.1) permits the interaction between the covariates U and X in such a way that a different
level of covariate U is associated with a different linear model about ΘTZ, and allows one to
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examine the extent to which covariates X interact. This model presents a novel and general
structure, which indeed covers many well-studied important semiparametric regression
models. For example, when Z = 0, (1.1) reduces to varying-coefficient models, which were
originally proposed by Hastie and Tibshirani (1993), and studied by Fan and Zhang
(1999),Xia and Li (1999), and Cai, Fan and Li (2000). When q = 1 and X = 1, model (1.1)
reduces to well-known partially linear models, in which Y depends on Z in a linear way but is
related to another independent variable U in an unspecified form. There is a great deal of
literature on the study of partially linear models (e.g., Engle et al., 1986;, Robinson, 1988; and
Speckman, 1988). A survey of partially linear models was given by Härdle, Liang and Gao
(2000). The study of SVCPLM has been investigated by Zhang, Lee and Song (2002), and Fan
and Huang (2005) among others. Zhang, Lee and Song (2002) developed the procedures for
estimation of the linear and nonparametric parts of the SVCPLM. Fan and Huang (2005)
proposed a profile likelihood technique for estimating parametric components and established
the asymptotic normality of their proposed estimator.

All studies of the SVCPLM are limited to considerations of exactly observed data. However,
in biomedical research observations are measured with error. Simply ignoring measurement
errors, known as the naive method, will result in biased estimators. Various attempts have been
made to correct for such bias, see Fuller (1987) and Carroll et al. (2006) for extensive
discussions and examples of linear and nonlinear models with measurement errors. In this
paper, we are concerned with the situation where some components (ξ) of Z are unobserved
directly, but auxiliary information is available to remit ξ. Let Z = (ξT, WT)T, where ξ is a p1 ×
1 vector and W is a vector of the remaining observed components. We assume that ξ is related
to observed η and V through the relationship ξ = E(η|V). Thus, we study the following model

(1.2)

where E(ε|Z, X, U) = 0, E(ε2|Z, X, U) = σ2(Z, X, U), and e is an error with mean zero and
positive finite covariance matrix Σe = E(eeT). The four covariates V, W, X and U are different.
In our structure, we allow that V and (X, W, U) may overlap. Model (1.2) is flexible enough
to include a variety of models of interest. We give three examples to illustrate its flexibility.

Example 1.1
(Errors-in-variable models with validation data) Z is a p-variate variable vector and is not
observed. Z̃ is an another p-variate vector and is observed associated with vector Z. Assume
that we have primary observations {Yj, Z̃j, Uj, j = 1, ···, n}, and n0 independent validation
observations {Zj, Z̃j, Ui, i = n + 1, ···, n + n0}, which are independent of the primary
observations. Let V = (Z̃T, U)T. The partial errors-in-variable model with validation data is
written as

(1.3)

This model has been studied by Sepanski and Lee (1995), Sepanski and Carroll (1993), and
Sepanski, Knickerbocker and Carroll (1994). Taking X = 1, θ = 0, η = Z, and ξ = E(Z|V) in
model (1.2), we know that model (1.3) is a sub-model of (1.2).
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Example 1.2
(De-noise linear model) The relation between the response variable Y and covariates (ξ, W)
is described by Y = βTξ + θTW + ε, where β and θ are parametric vectors respectively. The
covariate ξ is measured with error since instead of observing ξ directly we observe its
surrogate η. This forms a de-noise linear model:

(1.4)

where ξ = ξ(t) is subject to measurement error at time t and the measurement errors ε and e
are independent of each other at each time t.

Cai, Naik and Tsai (2000) used this model to estimate the relationship between awareness and
television rating points of TV commercials for certain products. Cui, He and Zhu (2002)
proposed an estimator of the coefficients and established asymptotic results of the proposed
estimator. It is easy to see that model (1.2) embeds (1.4).

Example 1.3
(Rational expectation model) Consider the following rational expectation model:

(1.5)

where ηt − E(ηt|Vt) is the expectation payoff for price variable ηt given historical information
Vt. In this model, (Yt, St, ηt, Vt) except E(ηt|Vt) can be observed directly.

Beside estimation and inference of γ and ζ, within the econometric community, the following
model is of interest.

(1.6)

It is worthy to note that model (1.6) is a sub-model of (1.2). An interesting question is to test
whether the model (1.6) satisfies the rational expectation model (1.5), that is to test following
hypothesis:

(1.7)

In the econometric literature, regressing unobserved covariates is also called generated
regression. This topic has been widely studied. Pagan (1984) gave a comprehensive review on
the estimation of parametric models with generated regression. Ai and Mcfadden (1997)
presented a procedure for analyzing a partially specified nonlinear regression model in which
the nuisance parameter is an unrestricted function of a subset of regressors. Ahn and Powell
(1993) and Powell (1987) considered the case with the generated regressors in the
nonparametric part of the model. Li (2002) considered the problems of estimating a
semiparametric partially linear model for dependent data with generated regressors. Their
models are special cases of the rational expectation model.
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Various procedures similar to generated regression have been proposed to reduce the bias due
to mis-measurement. Regression calibration and simulation extrapolation have been developed
for measurement errors models (Carroll et al., 2006). Liang, Härdle and Carroll (1999) studied
a special case of (1.2), partially linear errors-in-variables models, and proposed an attenuated
estimator of the parameter based on the semiparametric likelihood estimate. Wang and Pepe
(2000) used a pseudo-expected estimating equation method to estimate the parameter in order
to correct the estimation bias.

In an attempt to develop a unified estimation procedure for model (1.2), we propose a profile-
based procedure, which is similar to regression calibration method in spirit. The procedure
consists of two steps. In the first step, we calibrate the error-prone covariate ξ by using ancillary
information and applying nonpara-metric regression techniques. In the second step, we use
profile least-square-based principle for estimating the parametric and nonparametric
components. Under the mild assumptions, we derive the asymptotic representives of the
proposed estimators, and use the representives to establish asymptotic normality. We also
propose the profile least-square-based ratio test and Wald test for the parametric part of model
(1.2), and a goodness-of-fit test for the varying coefficients in the nonparametric part. The
asymptotic distribution of the proposed test statistics is derived. Wild bootstrap versions are
introduced to calculate the critical values for those tests.

The paper is organized as follows. In Section 2, we focus on the estimation of the parameters
and nonparametric functions, and on the development of asymptotic properties of the resulting
estimators. The error-prone covariates are first calibrated. Bandwidth selection strategy is also
discussed. In Section 3, we develop profile least-square-based ratio tests for parametric and
nonparametric components. Wild bootstrap methods are proposed to calculate the critical
values. The results of applications to simulated and real data are reported in Section 4. Section
5 gives a conclusion. Regularity assumptions and technical proofs are relegated to the
Appendix.

2 Estimation of the parametric and nonparametric components
When ξ is observed, estimators of β and α(u), and associated tests have been developed to study
model (1.2). These estimators and tests cannot be used directly when ξ is unobservable. We
first need to calibrate ξ by using ancillary variables and V because a direct replacement of ξ
by η will result in bias.

2.1 Covariate calibration
For notational simplicity, we assume V is univariate in the remainder of this paper. Let ηi,k be
the kth entry of vector η, and Lb(·) = L(·/b)/b, b = bk (k = 1, 2, ···, p1) is a bandwidth for the
kth component of η. Assume throughout the paper that ξk(υ) has r + 1 derivatives and we
approximate ξk(υ) by a r-order polynomial within the neighborhood of υ0 via Taylor expansion

Denote
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Wυ = diag{Lb(V1 − υ), ···, Lb(Vn − υ)}. The local polynomial estimator (Fan and Gijble, 1996)

of (a0,k, …, ar,k)T can be expressed as . As a consequence, ξk(v) is

estimated by , for k = 1, …, p1, where ζ1 is a (r + 1) × 1 vector
with 1 in the first position and 0 in other positions.

In what follows, we denote A⊗2 = AAT, μj = ∫ ujL(u)du, νj = ∫ ujL2(u)du, Su = (μj+l)0≤j,l≤r, and
cp = (μr+1, ···, μ2r+1)T. fυ(υ) is the density function of V.

Under the assumptions given in the Appendix, we can prove (Fan and Gijbels, 1996, pp 101–
103 or Carroll et al., 1997, pp 486) that

(2.1)

uniformly on υ ∈ . This fact will be used for proving the main results in the Appendix.

2.2 Estimation of the parametric component
Let (Yi, ηi, Vi, Wi, Xi, Ui), i = 1, 2 ···, n, be the observations from model (1.2). The unknown
covariates ξi are substituted by their estimators given in the above section. We therefore have
following “new” model:

(2.2)

where  are still treated as errors. If ξ ̂i would be an unbiased estimator of ξi, then Eε̂i = 0.

Approximate αj(U) within the neighbors of u by aj(u) + bj(u)(U − u) for j = 1, …, q. Write

 and Θ = (βT, θT)T. Following the profile likelihood based procedure proposed
by Fan and Huang (2005), our profile least-square-based estimator of Θ is defined as

(2.3)

where Z̃ = (I − S)Ẑ, I is the n × n identity matrix,
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and Y = (Y1, …, Yn)T, Wu = diag{Kh(U1 − u), …, Kh(Un − u)}n×n, Ẑ = (Ẑ1, ···, Ẑn)T, 0q is the
q×1 vector with all the entries being zero, K(·) is a kernel function, h is a bandwidth and Kh(·)
= K(·/h)/h.

We now give a representation of Θ̂n. This representation can be used to obtain the asymptotic
distribution of , which we give in Theorem 2. This result extends the method of
Fan and Huang (2005) to a SVCPLM with generated regressors.

Write Φ(U) = E(XZT|U), Γ(U) = E(XXT|U), B(V) = E[{Z − ΦT(U)Γ−1(U)X}|V], ψ(Z, X, U)
= Z − ΦT(U)Γ−1(U)X, and Σ = E(ZZT) − E{ΦT(U) Γ−1(U)Φ(U)}.

Theorem 1—Under Assumptions 1–5 in Appendix, we have

where  .

Theorem 2—Let nb2(r+1) → 0. Under Assumptions 1–5 in Appendix,  converges
to a normal distribution with mean zero and covariance matrix Σ1, where Σ1= Σ−1DΣ−1,

Furthermore, if e is independent of ε given (Z, X, U, V), and ε is independent of (Z, X, U), the
asymptotic covariance can be simplified as Σ−1(σ2Σ + E[(eTβ)2{B(V)}⊗2])Σ−1. If e is also
independent of V, the asymptotic covariance can further be simplified as σ2Σ−1 + βTΣeβΣ−1E
{B(V)⊗2Σ−1.

The proof of Theorem 2 can be completed by using Theorem 1. We omit the details.

The asymptotic variance has a similar structure to that of Das (2005). The first term of
asymptotic variance can be viewed as the variance from the first stage estimation without
measurement error/missing data, the second one is the variance of the second stage for
estimating unobserved variable and the third one is the covariance of two stage estimators. If
e = 0 in model (1.2), i.e., the covariate can be exactly observed, the variance of Θ̂n is the same
as that of Fan and Huang (2005). To achieve the root-n estimator of Θ, Theorem 2 indicates
that undersmoothing is required in estimating ξ(υ), and the optimal bandwidth does not satisfy
the condition of Theorem 2.
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Example 1.1 (con.) Let β ̂n be the estimator of β in model (1.3). Assume n0/n → λ. Checking

the conditions of Theorem 2, we can conclude that  where Σ⋆ =
Σ−1{σ2 + λβTE[E{Z − E(Z|U)|V}]⊗2β} and Σ = E[{ξ − E(ξ|U)}⊗2].

Example 1.2 (con.) For the de-noised models introduced in Section 1, we apply Theorem 2 to
derive the asymptotic distribution of the estimator, Θ̂ = (β ̂T, θ ̂T)T, given by Cui, He, and Zhu

(2002), and obtain that .

The asymptotic covariance of Θ̂n can be consistently estimated by Σ̂n = nΣ̂− 1σ ̂2 + Σ̂− 1Q̂Σ̂−1,

where Σ̂−1 = (Z̃TZ̃)−1Z̃T(I−S)T(I−S)Z̃(Z̃TZ̃)−1, , and

, and B̂(v) = Ẑ − Ê{ΦT(U)Γ−1(U)X|V = v} and Ê{ΦT(U)
Γ−1(U)X|V = v} is a nonparametric regression estimator of ΦT(U)Γ−1(U)X on V. α̂(·) will be
given in the next section.

Generally Σ̂n is difficult to calculate. However, implementation will become simpler in some
cases. For example, in the errors-in-variables model with validation data, a direct simplification
yields B(V) = Z − ΦT(U)Γ−1(U)X, D = {βTE(eeT|V)β}Σ, and the asymptotic covariance matrix
equals Σ−1{σ2 + λβTE(eeT|V)β}. This matrix can be estimated by a standard sandwich
procedure. The similar situation also applies for the asymptotic covariance matrix, Σ−1{σ2 +
βTE(eeT|V)β}, of the de-noise model.

2.3 Estimation of the nonparametric components
After obtaining estimates Θ̂n, we can estimate aj(u) and bj(u) for j = 1, …, q, and then αj(u).
Write Ψ(u) = {a1(u), …, aq(u), b1(u), …, bq(u)}T. An estimator of the nonparametric
components Ψ(u) is defined as

(2.4)

Correspondingly, a(u) is estimated by , where Iq is
the q×q identity matrix, H = diag(1, h)⊗Iq. We have the following asymptotic representation
for the resulting estimator.

Theorem 3—Under Assumptions 1–5 given in Appendix, we have

Based on this representation, we can derive the asymptotic normality of the proposed
nonparametric estimators of the varying coefficient functions. The proof is straightforward but
tedious. We omit the details.
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For notational simplicity, we assume that ε is independent of (Z, X, U) and e is independent
of (V, U) in the remaining part of this paper.

Theorem 4—Under Assumptions 1–5, we have

as n → ∞, where

and

in which  , Λ(u0) = {E[{E(X|V)}|U = u0]}⊗2 q0 = μ2/(μ2 − μ1),
.

Furthermore, if nhb2r+2 → 0, then

where  ,

The first term of Σ2 is the asymptotic covariance of the usual profile likelihood estimator (Cai,
Fan, and Li 2000) when ξj is observed. The second term is attributed to calibrating the error-
prone covariates. In the error-in-variable model with validation data, if X is independent of
V and E(X) = 0, the measurement errors have no impact on the effect of the covariance Σ2.
Theorem 4 also indicates that if n1/2 max(h5/2, br+1) → 0, the bias of α̂(u) tends to zero and α̂
(u) is asymptotically normally distributed with rate (nh)1/2.

After obtaining Θ̂n and α̂(u), one can easily give an estimator of the variance σ2 of the error
ε:
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In our simulation, a simple version of  is used. Note that S depends only on the observations
, and we can derive a “synthetic linear model”, that is, Y − ZΘ = M + ε, where

M = αT(U)X. A straight-forward derivation yields (I − S)Y = (I − S)ZΘ + (I − S)ε. Standard
regression gives the least square estimates Θ̂ and then M̂ = S(Y − ZΘ̂). Note that Z is not
always observed. Replacing Z by its estimates, we obtain a consistent estimator M̂ of M; that
is, M̂ = S(Y − ẐΘ̂). A consistent estimator σ2 may be defined as

, where M ̂i is the ith element of M̂.

2.4 Bandwidth selection
The proposed procedure involves two bandwidths, h and b, to be selected. To derive asymptotic
distributions of the proposed estimators, we theoretically impose the rates of convergence for
the bandwidths. It is worthy to point out that undersmoothing is necessary when we estimate
ξ and the optimal bandwidth for b is then violated.

As mentioned before, the optimal bandwidth for b cannot be obtained because undersmoothing
the nonparametric estimators of the covariates is needed. The consequence of undersmoothing
ξ is that the bias is kept small and precludes the optimal bandwidth for b. The asymptotic
variances of the proposed estimators for constant coefficients depend on neither the bandwidth
nor the kernel function. Hence, we can use the similar method of mixture of higher-order
theoretical expansions, proposed by Sepanski, Knicherbocker and Carroll (1994) or the typical
curves approach by Brookmeyer and Liao (1992) to select the bandwidth b. As done by
Sepanski, et al. (1994), the suitable bandwidth is b = Cn−1/3, where C is a constant depending
on unknown function ξ(υ) and its twice derivatives. In practice, one can use a plug-in rule to
estimate the constant C. A useful and simple candidate C is σ ̂V, the sample deviation of V. This
method is fairly effective and easy to implement. In our simulation example, the bandwidth is
b = σ ̂υn−1/3. Based on the asymptotic analysis and empirical experience for fixed time case (i.e.
de-noise models), we suggest a simple rule of thumb as follows: the smoothing parameter b is
so chosen that intervals of size 2b would contain around 5 points for n up to 100 and between
8−1n1/3 and 4−1n1/3 points for larger n.

We use “leave-one-sample-out” method to select the bandwidth h. This method has been widely
applied in practice, for example Cai, et al. (2000) and Fan and Huang (2005). We define the

cross-validation score for h as , where Θ̂n,−i is the
estimated profile least-square-based estimator defined by (2.3), and computed from the data
with measurements of the i-th observation deleted and α ̂h,−i(·) is the estimator defined in (2.4)
with Θ̂n replaced by Θ̂n,−i. The likelihood cross-validation smoothing parameter hcυ is the
minimizer of CV(h). That is, hcυ = arg minh CV(h).

3 Tests for parametric and nonparametric components
3.1 Test for parametric components

An interesting question is to consider the following hypothesis

(3.1)

where A is a given l × p full rank matrix.
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Let  be the estimators of Θand α ̂0(·) be the estimator of α(u) under the null

hypothesis. Denote . RSS0 can be further

expressed as , where Θ̂0 = Θ̂ − (Z̃TZ̃)−1AT{A
(Z̃TZ̃)−1AT}− 1AΘ̂, and Θ̂ = (Z̃TZ̃)−1Z̃TỸ, an estimator of Θ without the restriction, with Z̃ =
(I − S)Ẑ and Ỹ = (I − S)Ŷ.

Similarly, let  and α ̂1(·) be the estimators of Θ and α(·) under the alternative

hypothesis, respectively. Denote , which can be

expressed as . Following Fan and Huang (2005), we
define a profile least-square-based ratio test by

Under their set-up, Fan and Huang (2005) showed that statistic Tn is the profile likelihood ratio
when the error distribution is normally distributed. In the present situation, because of effect
of measurement error on variables, no central χ2-distribution as that of Fan and Huang
(2005) is available. However, we can still prove that 2Tn has the asymptotic noncentral χ2

distribution under the alternative hypothesis of (3.1), which we summarize in the following
theorem.

Theorem 5—Suppose that Assumptions 1-5 in Appendix are satisfied and nb2r+2 → 0, as n
→ ∞. Under the alternative hypothesis of (3.1),

where ωi for 1 ≤ i ≤ l are the eigenvalues of   and   is the central
χ2 distribution with degree of freedom 1. Furthermore, let Σ̂1 and Σ̂ be the consistent estimators

of Σ1 and Σ, respectively. Then , where

 is noncentral χ2 distribution with degrees of
freedom l, and the noncentral parameter λ = σ−2ϱ limn→∞ nΘTAT(AΣ−1AT)−1AΘ with

.

In a similar way, we may construct the Wald test for hypothesis (3.1) as Wn
=Θ̂TAT(AΣ̂1AT)−1AΘ̂ and demonstrate that Wn and 2ϱnTn have the same asymptotic
distribution under the alternative hypothesis. These properties can therefore be used to calculate
power of the proposed tests.

Example 1.3 (con.) Generalize (1.6) to a more flexible model:
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Write Θ = (βT, ζT, γT)T and . The hypothesis (1.7) is equivalent to

(3.2)

where A = (1p1, −1p1, 0), 1p1 is p1-variate vector with all entries 1. This is an expression of
(3.1). As a consequence, the proposed profile least-square-based ratio test and Wald test can
be applied to test this hypothesis.

For hypothesis (3.2), one may also propose a Wald-type statistic: Wn(h) =
Θ̂TAT(AΣ̂hAT)−1AΘ̂, where Σ̂h = Σ̂−1(σ ̂2 + β ̂TΣ̂eβ ̂). It can be proved that 2ϱnTn and Wn have
the same asymptotic χ2 distribution.

3.2 Tests for the nonparametric part and Wild bootstrap version
It is also of interest to check whether the varying-coefficient functions α(u) in model (1.2) are
parametric functions. Specifically speaking, we consider the following hypothesis:

where γ is an unknown vector, αi(·, ·) is a known function, i = 1, 2, ···, q.

For simplicity of presentation, we test the homogeneity:

(3.3)

Let α̃1, ···, α̃q and Θ̃ be the profile estimator under H0. The weighted residual sum of squares

under H0 is , where wi(·) are weighted functions

such that , and wi ≥ 0. In general, the weight function w has a compact support,
designed to reduce the boundary effects on the test statistics. When σ2(Z, X, U) = υ(Z, X, U)
σ2 for some known function υ(Z, X, U), we may choose wi = υ−1(Zi, Xi, Ui). See Fan, Zhang,
and Zhang (2001) for a similar argument.

Under the general alternative that all the varying-coefficient functions are allowed to be varying
of random variable U, we use the local likelihood method to obtain estimator β ̂ and α ̂(U).
Therefore, the corresponding weighted residual sum of squares is

In a similar way as in Section 3.1, we propose a generalized likelihood ratio (GLR) statistic:
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(3.4)

Under mild assumptions, one can derive the asymptotic distribution of TGLR. This distribution
can be used to gain the empirical level. See Fan, Zhang and Zhang (2001) for a related
discussion.

These arguments can be applied to the following partially parametric null hypothesis:

The difference is only the definition of RSS(H0), for which we use the profile likelihood
procedure to estimate constant coefficient αi, i = 1, 2, ···, r and Θ, and use the profile linear
procedure to estimate the nonparametric component αi(·), i = r + 1, ···, q under the null
hypothesis.

Although the asymptotic level of TGLR is available, TGLR may not perform well when sample
sizes are small. For this reason and for practical purposes, we suggest using a bootstrap
procedure. To be specific, let

be the residuals based on estimators (2.3) and (2.4) for parametric and nonparametric parts,
respectively. We use the Wild bootstrap (Wu, 1986;Härdle and Mammen, 1993) method to
calculate the critical values for test TGLR. Let τ be a random variable with a distribution function
F(·) such that Eτ = 0, Eτ2 = 1 and E|τ|3 < ∞. We generate the bootstrap residual , where
τi is independent of ε ̂i. Define bootstrap version  like TGLR based on the bootstrap sample
( ), where  for i = 1, 2 ···, n. On a basis of the distribution of

, we have the (1 − α) quantile  and reject the parametric hypothesis if .

4 Numerical Examples
4.1 Performance of the proposed estimators

In this section, we conducted simulation experiments to illustrate the finite sample
performances of the proposed estimators and tests. Our simulated data were generated from
the following model:

(4.1)

W1 and W2 are bivariate normal with marginal mean zero, marginal variance 1 and correlation
, while X1 and X2 are independent and normal with mean zero and variance 0.8. The

unobserved covariate ξ is related to auxiliary variable (η, V) through ξ(V) = 3V − 2 cos(4πV)
and η = ξ(V) + e. V is a uniform random variable on [0, 1] and U is a uniform random variable
on [0, 3]. The errors ε and e are independent each other, and normal variables with mean 0 and
variances  and , respectively. The varying-coefficient functions are
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(4.2)

(4.3)

(4.4)

where , and ϱ is chosen one from the set {0.0, 0.2, 0.5, 0.7, 1.0}.

The sample size was 100. We generated 500 data sets in each case, applying to each simulated
sample the bootstrap test proposed for the parametric part based on 500 bootstrap repetitions.
The Gaussian kernel has been used in this example. The optimal bandwidth h were chosen by
the leave-one-out cross-validation method described in Section 2.4 and the bandwidth b was
selected as b = συn−1/3, where συ is the sample deviation of V.

We consider four scenarios. In the first three scenarios  and .

i. β = (0, c − 1, 1)T for c ∈ {0, 0.1, 0.2, 0.25, 0.5, 0.7, 1.0} and α1(u) and α2(u) are given
in (4.2) and (4.4);

ii. β = (0, −0.8, 1)T and α1(u) and α2(u) are given in (4.3) and (4.4) with ϱ ∈ {0.0, 0.2,
0.5, 0.7, 1.0};

iii. β = (0.2, −1, 1)T and α1(u) and α2(u) are the same as in (ii).

iv. The setting is the same as that of (iii). But the signal-noise ratio ( )
varies from 0.3 to 0.8 by 0.1.

The corresponding results are presented in Tables 1–4, in which we display the estimated values
and associated standard errors, standard derivations, and coverage probabilities based on the
benchmark estimator (i.e., all covariate measured exactly), the proposed estimator and the naive
estimator (ηi directly used as the covariates). We summarize our findings as follows.

When β1 = 0 (scenario (i) and (ii)), all estimates are close to the true values regardless of the
non-parametric functions α1(u) and α2(u). The differences among the estimated values based
on three methods are slight and can be ignored. However, when β1 = 0.2, the estimates of β1
based on the naive method have severe biases and the associated coverage probabilities are
also substantially smaller than 0.95. These biases were not improved when the sample size was
increased (not listed here). But the proposed estimation procedure performs well. On the other
hand, the estimates of β2 and β3 are similar based on the three methods. From Table 4, we can
see that the naive estimator of β1 has zero coverage probabilities when r = 0.3, while the
proposed estimator has fairly reasonable coverage probabilities. With increase of r, it is readily
seen that coverage probabilities of the proposed estimator are closer to the nominal level, which
indicates the proposed method is promising.

4.2 Performance of the proposed tests
We now explore the numerical performance of the proposed tests. Firstly, we want to test
hypothesis of the parametric component of form:

Zhou and Liang Page 13

Ann Stat. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4.5)

where A = (1, 1, 1)T, c is a value from the set {0, 0.1, 0.2, …, 0.7, 1}, β = (0.2, c − 1.2, 1)T,
α1(·) and α1(·) are the same those as scenarios (i). The same models and error distribution as
in section 4.1 are used.

The power to detect H1 were calculated by using the critical values from chi-squared
approximation and Wild bootstrap approximation. To compare test performances, the powers
of the tests based on the benchmark estimator, the proposed estimator and the naive estimator
are presented. In implementing the Wild bootstrap method, we generated 500 bootstrap samples
from the model

here,  is a wild bootstrap residual; i.e., , with ε ̂i = Yi − {β ̂1ξ ̂i + β ̂2W1i + β ̂3W2i +
α̂1(Ui)Z1i + α̂2(Ui)Z2i}, and  with probability  and

 with . Using this bootstrap sample ( ), we can
calculate the  and , and get the 95% percentiles as the critical values for the proposed tests
at the significance level 0.05.

The power of Tn associated to scenario (iii) is presented in Table 5 for β1 = 0.2. Note that the
power is actually the empirical level when c = 0. All empirical levels close nominal level 0.05
and the empirical level based on the Wild bootstrap procedure are consistently smaller than
those based on the χ2 approximation and are closer to the nominal level. These facts apply for
β1 = 0 (not listed here). As c increases to 0.7, the powers of two tests based on χ2 approximation
is greater than 0.92. Similar conclusions can be drawn for the Wald test, whose simulation
results are also given in Table 5.

We further study the numerical performance of the test by checking the nonparametric
component. We consider the following hypothesis:

(4.6)

The simulation results obtained by using the Wild bootstrap approximation method to choose
critical value are shown in Table 6. When ϱ = 0, the results are the empirical levels, which are
close to the nominal level. The power is greater than 0.99 when ϱ = 0.5. Table 6 also indicates
that the power is a monotone increasing function of ϱ.

4.3 Real data example
To illustrate the proposed estimation method, we consider a dataset from Duchenne Muscular
Dystrophy (DMD) study. See Andrews and Herzberg (1985) for a detailed discussion on the
dataset. The dataset contains 209 observations corresponding to blood samples on 192 patients
(17 patients have two samples) collected from a project to develop a screening program for
female relatives of boys with DMD. The program’s goal was to inform a woman of her chances
of being a carrier based on serum markers as well as her family pedigree. Another question of
interest is whether age should be taken into account in the analysis. Enzyme levels were
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measured in known carriers (75 samples) and in a group of non-carriers (134 samples). The
serum marker creatine kinase ( ck) is inexpensive to obtain, while the marker lactate
dehydrogenase ( ld) is very expensive to obtain. It is of interest to predict the value ld by
using the level of ck, carrier status and age of patient.

We consider the following model: Y = β0 + β1Z1 + β2Z2 + g(U), where Z1 = ck is measured
with errors, and Z2 = carrierstatus is exactly measured, U is age and Y denotes the observed
level of lactate dehydrogenase. We justify the measurement error of Z1 by regressing Z1 on
U. The estimates and associated standard errors based on the naive and proposed methods are
as follows: β ̂0,naive = 4.6057(0.113), β ̂1,naive = 0.1509(0.027), β ̂2,naive = 0.2269(0.055); β ̂0,n =
4.4296(0.329), β ̂1,n = 0.1775(0.042), and β ̂2,n = 0.3702(0.050). The estimated curves of the
nonparametric function g(u) are provided in Figure 1. Accounting for measurement errors, the
estimate of β1 increases about 17.2%, and the associated standard error also increases 55%.
The estimate of β2 also increases when measurement errors are taken into account. The patterns
of the nonparametric curve are similar, and shows slight difference.

5 Discussion
We developed estimation and inference procedures for the SVCPLM when parts of the
parametric components are unobserved. The procedures are derived by incorporating ancillary
information to calibrate the mismeasured variables, and by applying the profile least-square-
based principle.

In some case we may not have an auxiliary variable η, but we can observe two or more
independent replicates of V. For instance, when two measurements V1 and V2, which satisfy
that V1 = ξ + u1 and V2 = ξ + u2, and E(u1|V2) = 0 and E(u2|V1) = 0, are available, we can
estimate ξ by

because E(V1|V2 = υ) = E(V2|V1 = υ) = E(ξ|V = υ). The proposed procedure applies to this
situation as well, and similar results to those presented in this paper can be obtained for the
resulting estimator.

It is of interest to extend the proposed methodology to a more general semiparametric model:

where G(·) is a link function. The study of this model with mismeasured components of Z
needs further investigation and is beyond the scope of this paper.
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Appendix
In this Appendix, we list assumptions and outline proofs of the main results. The following
technical assumptions are imposed.

A.1 Assumptions
1. The random variable U has a bounded support . Its density function fu(·) is Lipschitz

continuous and bounded away from 0 on its support. The density function of random
variable V, fυ(v), is continuously differentiable and bounded away 0 and infinite on
its finite support . {αi(u), i = 1, 2, ···, q} have continuous second derivative.

2. The q × q matrix E(ZZT|U) is non-singular for each U ∈ . All elements of the
matrixes E(ZZT|U), E(ZZT|U)−1 and E(ZXT|U) are Lipschitz continuous.

3. The kernel functions K(·) and L(·) are density functions with compact support [−1, 1].

4. There is an s > 2 such that E||Z||2s < ∞ and E||X||2s < ∞ and for some δ < 2 − s−1 such

that n2δ−1h → ∞, n2δ−1bk → ∞ and , k = 1, 2, ···, p1 where bk is the
bandwidth parameter in polynomial estimator ξ ̂k(·) of ξk(·).

5. nh8 → 0 and nh2/(log n)2 → ∞.

A.2 Preliminary Lemmas

Write .

Lemma A.1
Suppose that (Zi, Xi, Ui), i = 1, 2, ···, n are i.i.d random vector. E|g(X, Z, U)| < ∞ and E[g(·, ·,
u)|U = u] has continuous second derivative on u. Further assume that E(|g(X, Z, U)|s|Z = z,
X = x) < ∞. Let K be a bounded positive function with a bounded support, satisfying Lipschitz
condition. Given that n2δ−1h → ∞ for some δ < 1 − s−1, then we have
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Furthermore, Assume that E[εi|Zi, Xi, Ui] = 0, E[|εi|s|Zi, Xi, Ui)] < ∞, then

Proof—The first result follows an argument similar to that of Lemma A.2 of Fan and Huang
(2005). The second result follows the first result and an argument similar to Xia and Li
(1999).

Lemma A.2
Suppose that E[g(Z, X, u)|U = u] has continuous second derivative on u and E|g(X, Z, U)|s <
∞. Under Assumptions 1–5, we have

and

where h(·) is a twice continuous differentiable function.

Proof—Note that  can be decomposed as

By Lemma A.1, the first term equals fu(u)E{g(X, Z, u)ξ|U = u}μk + O(cn1) uniformly on u ∈
 in probability. Recalling the asymptotic expression given in (2.1) and using Lemma A.1,

one can show that the second term is O(cn2). This completes the proof of Lemma 2.

Lemma A.3
g(·, ·, u) has continuous second derivative on u and E|g(X, Z, U)| < ∞. Under Assumptions 1–

5,  and  are of order O(cn) a.s.
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Proof—The proof follows from (2.1) and arguments similar to Lemma A.2.

Lemma A.4
Under Assumptions 1–5, we have

in probability.

Proof—We first prove that

(A.1)

A direct calculation yields

(A.2)

On the other hand, Lemma A.3 implies

(A.3)

A combination of (A.2) and (A.3) implies

(A.4)

and then

(A.5)

It follows from these arguments that , and (A.1)
follows.

Note that

. The
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second term, J2, is  by Lemma A.3. Write Z̃* = (I − S)Z. We have

. It follows from (2.1) that

By an argument similar to that of (A.5), we derive

where ρ̃(Zl, Xl, Ul) can be expressed as

Denote by ρ(Zl, Xl, Ul) the main term of the right hand side of the above formula. Note that E
{ρ (Zl, Xl, Ul)|Ul} = 0. By Lemma 3 of Chen, Choi and Zhou (2005) we have

(A.6)

Furthermore, we can show, in a similar way as that for (A.6), that

These arguments imply that

(A.7)
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We now deal with the term . Note that  equals

, which can be further decomposed as

This completes the proof of Lemma A.4.

Lemma A.5
Under Assumptions 1–5, we have Z̃T(I −S)(I −S)TZ̃/n → Σ in probability and Σ̂ = n
(Z̃TZ̃)−1Z̃T(I −S)(I −S)Z̃(Z̃TZ̃T)−1 → Σ.

Proof—The proof of the first result can be finished by arguments similar to those of Lemmas
A.2–A.4, while the second one can be proved by arguments similar to Lemma 7.3 of Fan and
Huang (2005).

Lemma A.6

Under Assumptions 1–5, we have .

Proof—The proof follows (A.5) and an argument similar to that of Lemma 7.4 of Fan and
Huang (2005).

Lemma A.7
g (·) and h(·) are two continuous function vectors. Under Assumptions 1–5, we have

 and  in probability.

Proof—The proof follows from arguments similar to those of Lemma A.2.

Lemma A.8

Under Assumptions 1–5, we have  ,
where ε= (ε1, ···, εn)T.

Proof—Note that . By the same
argument as those for (A.3), we have

This formula along with (A.2) yields . A
combination of these arguments with Lemma A.7 finishes the proof of Lemma A.8.
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A.3 Proof of Theorem 1
Note that Θ̂n can be expressed as (Z̃TZ̃)−1Z̃T(I −S)ZΘ+ (Z̃TZ̃)−1Z̃T(I −S)M + (Z̃TZ̃)−1Z̃T(I

−S)ε. By Lemma A.8, the third term equals .
The first term equals, via Lemma A.4,

By Lemma A.6 and (A.1), it follows that the second term of Θ̂n’s expression is of order
 in probability. These arguments imply that

This completes the proof of Theorem 1.

A.4 Proof of Theorem 3
By the definition of Ψ̂ (u), we have

where  and . It is easy
to show that Rn = o(n−1/2) in probability. Note that

It follows from (A.2) that
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(A.8)

and

Furthermore, (A.3) implies that

(A.9)

We therefore have , where Mu = α(u)TX.

By Taylor expansion and a direct simplification, we have

Hence,

(A.10)

It follows from (A.8)–(A.10) that  can be represented as
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By the similar argument of Lemma A.8, we have

The proof of Theorem 3 is completed.

A.5 Proof of Theorem 5
The proof is similar to Theorems 3.1 and 3.2 of Fan and Huang (2005). We only give a sketch.
We first prove that n−1RSS1 = σ2{1 + oP (1)}.

By a similar procedure as that of Theorem 3.2 in Fan and Huang (2005), we can obtain that

, where M ̂i0 is the ith element of M̂0 = S
(Y −ZΘ̂). A direct calculation yields that

(A.11)

By (2.1), Theorem 2 and Jensen inequality, we know that the first term in the right-hand side
of (A.11) is bounded by

(A.12)

which is op(1). A similar argument can show that the second term in the right-hand side of (A.
11) is also op(1). We therefore have n−1RSS1 = σ2{1 + oP (1)}.
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Furthermore, RSS0 can be decomposed as

, where Q1=
{Z̃(Θ ̂ − Θ ̂0)}T{Z̃(Θ ̂ − Θ ̂0)}, Q2= (Y − M ̂ − ẐΘ ̂) {Z̃(Θ ̂ − Θ ̂0)}, Q3={Z̃(Θ ̂ − Θ ̂0)}T(Y − M ̂ −
ẐΘ ̂).

Recalling the expression of Θ̂0 and the result given in (A.1), we know that n−1Z̃T Z̃ → Σ in

probability, and  in distribution. In an
analogous way, we can that show Q2 and Q3 are asymptotic negligible in probability. These
statement along with the Slutsky theorem imply that

 in distribution. Finally, following the lines

of Rao and Scott (1981), we can prove that the distribution of  has the approximate
distribution as , and complete the proof of Theorem 5.
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Figure 1.
Estimated curves of the nonparametric function for the DMD study. The solid, dotted lines
were obtained using the naive and proposed method, respectively.
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Table 6

Empirical power of level 0.05 for hypothesis (4.6) using the Wild bootstrap procedure. Data were generated from
(4.1) and (4.3) with β = (0.2, −1, 1)T and ϱ ∈ {0, 0.5, 0.10, 0.15, 0.5, 0.7}.

ϱ B P N

0 0.060 0.050 0.080

0.05 0.110 0.140 0.160

0.10 0.240 0.260 0.250

0.15 0.410 0.360 0.360

0.20 0.520 0.510 0.500

0.50 0.990 0.990 1.000

0.70 1.000 1.000 1.000
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