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Objective: To apply a continuous hazard function approach to
calculate the lifetime density function (LDF) at any age, and to
compare the life expectancies derived from the LDF with those
obtained with standard life table (SLT) methods.
Methods: Age-specific mortality rates were modeled through a
continuous hazard function. To construct the cumulative hazard
function, appropriate integration limits were considered as
continuous random variables. The LDF at any age was defined
on the basis of the elemental relationships with the cumulative
hazard function. Life expectancies were calculated for a
particular set of mortality data using the SLT approach and
the expectancy of the LDF defined.
Applications and comparisons: The proposed approach was
applied using mortality data from the 2001 census of Catalonia
(Spain). A Gompertz function was used to model the observed
age-specific mortality rates, which fitted the observed data
closely. The LDF and the life expectancy, median and standard
deviation of the LDF were derived using mathematical software.
All differences, in percentages, between the life expectancies
obtained from the two methods were 1.1% or less.
Conclusions: The LDF gives a wider interpretation of life
duration, by extending a deterministic value like life expectancy
to a fully informative measure like the LDF.

L
ife expectancy is a widely used measure in epidemiology
that provides a point estimation of the expected remaining
lifetime of an individual at a given age.1–6 It is commonly

calculated with standard life table (SLT) methods, usually given
for discrete time intervals.2 4 7 The existing variability in life
duration contrasts with life expectancy, which does not truly
represent the wide range of possible lifetime values.3 The
lifetime density function (LDF) is a highly informative measure
for studying mortality and life duration, but it cannot be
derived directly from age-specific mortality rates.6 A continuous
interpretation of lifetime, and consequently of life expectancy,
can be performed using a continuous form of the hazard
function and treating age conveniently as a continuous
variable. The objective of this analysis was to apply a
continuous hazard function approach for the calculation of
the LDF at any age, and to compare the life expectancies
derived from the LDF with those obtained with SLT methods.

METHODS
Basis of the method
We will refer to time as a continuous random variable and not
as a discrete time interval, in which the future lifetime
expresses the amount of time to be lived after a particular
age. The probability density function of lifetime given by
f(x) = m(x)S(x) is derived on the basis of the relationship
between the hazard function m(x) and the survival function
given by S(x) = exp(–H(x)). These three functions are equiva-
lent in the sense that any two may be derived from the

third.2 6 8–10 In the expression of the survival function; H(x)
denotes the cumulative hazard function, which is equivalent to
the area under the hazard function m(x). The area under the
hazard function was defined by taking the corresponding
integration limits ranging from x, current age of an individual,
to x + yx, age at death or quantity of time lived from birth to
death, where X and Yx are non-negative continuous random
variables.

The calculated area will give the risk of dying at a given age x
up to a particular future time yx. Substituting the terms in the
expression of the probability density function given by
f(x) = m(x)S(x) the following expression is obtained:

Where m(t) denotes a continuous form of the hazard
function. The hazard is a rate and thus it is non-negative and
has no upper bound. Under some circumstances, the observed
mortality rate can be modeled as a parametric continuous
hazard function if proper time units and death as the event of
interest are considered.

The LDF cannot be defined solely by its mean and variance
because it does not follow a symmetric pattern. Solving
equation 2 provides important information in the interpretation
of life duration, allowing any statistical measure usually
obtained from a density function to be calculated.

Validation
A specific case was developed. The setting was Catalonia
(Spain). Population data of the last census of Catalonia in 2001
and the number of deceased in 2001 were obtained from the
Institute of Statistics (Institut d’Estadı́stica de Catalunya;
IDESCAT). The calculated mortality rates were modeled
through a Gompertz function using the Levenberg–Marquardt
non-linear iterative least-squares method.11–15 Separate models
were adjusted for men and women. The Gompertz function was
the curve that best fitted our observed data.11–14 16–20

To compare SLT calculations and the approach proposed, life
expectancies were calculated by applying both methods to the
population and mortality data from Catalonia described above.
The differences between the life expectancies predicted by the
two approaches were calculated.

APPLICATIONS AND COMPARISONS
Representation of the observed mortality rates and the modeled
Gompertz hazard function showed that the estimated function
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almost overlaps with the observed mortality rates for both men
and women (data not shown).

The lifetime probability density functions at any current age
are represented in fig 1 and show a great asymmetry, being left
skewed and with a flattened slope for ages under 50 years for
men and 60 years for women. As age increases over these
values, the density becomes more right skewed and leptokurtic.

Table 1 compares the life expectancies obtained with the
approach proposed with those obtained from the SLT method.
Life expectancies were calculated for all age values between one
and 100 but, for reasons of space, only ages at five-year
intervals are presented in the table; however, the results refer to
all the data. All differences were 1.1% or less. For women, the
largest difference was found in the middle-age range (approxi-
mately 55–65 years), in which a maximum difference of 0.90
(84.51 versus 85.41) more years for the age of 58 years was
estimated with the SLT method. This difference diminished
gradually as younger and older ages were considered. For males
the largest differences were found in the youngest age groups
(1–15 years of age) and in those approximately 60 years of age.
A maximum difference of 0.70 (77.62 versus 76.92) more years
was estimated by the proposed approach for infants aged one

year, and a difference of 0.53 (81.47 versus 82.00) more years
was estimated by the life tables for people aged 65 years.

As the present study concerns asymmetric forms of the
density function, calculation of the median and standard
deviation of the distribution was especially relevant and is
included in table 1. Median values were higher than mean
values for ages less than 60 years for men and under 75 years
for women, reflecting the left skewness of the distribution for
these ages. For ages over these values the opposite relationship
was found but was less pronounced. Standard deviations were
larger in males than in females for ages under 65 years, for ages

Table 1 Life expectancy (age at death) from standard life table calculations

Age
(years)

Males Females

Life table Lifetime density function

% Difference
in life
expectancy

Life table Lifetime density function

% Difference
in life
expectancy

Life
expectancy

Life
expectancy

Median
age at
death Lifetime SD

Life
expectancy

Life
expectancy

Median
age at
death Lifetime SD

5 77.00 77.63 79.68 12.56 0.82 83.75 83.70 85.41 10.39 0.05
10 77.06 77.64 79.69 12.52 0.76 83.79 83.71 85.41 10.38 0.10
15 77.11 77.67 79.69 12.45 0.72 83.83 83.71 85.41 10.37 0.14
20 77.30 77.71 79.70 12.36 0.53 83.92 83.72 85.41 10.35 0.25
25 77.54 77.77 79.72 12.24 0.30 84.00 83.73 85.41 10.31 0.32
30 77.74 77.86 79.74 12.06 0.15 84.10 83.75 85.42 10.26 0.42
35 78.00 77.99 79.78 11.83 0.01 84.23 83.78 85.43 10.19 0.53
40 78.30 78.19 79.85 11.51 0.13 84.38 83.83 85.44 10.07 0.65
45 78.72 78.49 79.97 11.09 0.30 84.58 83.92 85.47 9.89 0.77
50 79.23 78.91 80.15 10.56 0.41 84.83 84.07 85.51 9.64 0.90
55 79.95 79.51 80.46 9.90 0.56 85.16 84.31 85.60 9.28 1.00
60 80.82 80.34 80.94 9.10 0.60 85.56 84.68 85.76 8.80 1.03
65 82.00 81.48 81.69 8.16 0.64 86.09 85.25 86.04 8.15 0.97
70 83.42 82.98 82.82 7.12 0.52 86.84 86.11 86.54 7.34 0.84
75 85.23 84.91 84.46 6.00 0.37 87.84 87.34 87.39 6.37 0.57
80 87.49 87.32 86.68 4.87 0.19 89.30 89.06 88.77 5.28 0.27
85 90.33 90.23 89.54 3.79 0.11 91.45 91.34 90.83 4.15 0.12
90 93.70 93.60 92.97 2.82 0.10 94.33 94.21 93.65 3.07 0.12
95 97.74 97.41 96.90 2.01 0.34 98.05 97.66 97.17 2.12 0.40

Life expectancy (age at death), median and standard deviation (SD) from the lifetime density function, and percentage difference in life expectancy between standard life
table calculations and the continuous lifetime calculation proposed. Data from Catalonia, 2001.

Figure 1 Density function of life duration
for men and women. Mortality data from
Catalunya 2001.

What this paper adds

The study of mortality is of great interest for epidemiologists,
demographers and statisticians. Calculation of the lifetime
distribution function at any age using a continuous approach
gives useful information for the interpretation of mortality and
life duration beyond the usual life expectancy calculated
through standard life tables.
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over 65 years women had larger standard deviations. The large
standard deviations obtained show the great variability
involved with human mortality and life duration.

DISCUSSION
Life expectancies obtained from the LDF were valid as they
were similar to those calculated using SLT methods. The
applied method allows the characterisation of the lifetime
distribution, which seems essential on account of the level of
uncertainty found in life expectancy.6 The LDF was shown to be
non-symmetric and to have different shapes depending on the
current age considered. In addition to its utility in the interpreta-
tion of mortality, the LDF might be of great interest in situations
in which a priori distributions are needed, such as Bayesian
statistics or stochastic processes. A poorly estimated hazard
function would, however, lead to biased estimations.2 10 21

In conclusion, the LDF provides a wider interpretation of life
duration by extending a deterministic point estimation such as
life expectancy to a totally informative measure like the density
function of lifetime values.
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Policy implications

The applied procedure, which is based on age-specific
mortality rates, gives the opportunity to study life duration
more accurately, because all the information about the
distribution of lifetime is contained in its density function.
Obtaining density functions is essential in several statistical
methods such as Bayesian analysis or simulation.
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