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Abstract
Objective—To determine the magnitude and importance of declines in model performance
associated with altering the source data and time frame from which comorbid conditions were
identified in claims-based risk-adjustment among persons with hip fracture.

Study Design and Setting—Medicare claims data were used to identify incident hip fracture
cases in 1999. Three risk-adjustment instruments were evaluated: one by Iezzoni, the Charlson Index
(Romano adaptation), and the Clinical Classification Software (CCS). Several implementation
strategies, defined by altering data source (MedPar and/or Part B claims) and time frame (index
hospitalization and/or 1-year pre-period), were assessed for each instrument. Logistic regression was
used to predict one-year mortality and model performance was compared.

Results—Each instrument had modest ability to predict 1-yr mortality following hip fracture. The
CCS performed best overall (c = 0.76), followed by the Iezzoni (c = 0.73) and Charlson models (c
= 0.72). Although each instrument performed most favorably when applied to both inpatient and
outpatient claims and when comorbidities were considered during the pre-period, varying data source
and time frame had trivial effects on model performance.

Conclusion—The similar predictive ability of the three risk adjustment instruments suggests that
ease of implementation be a key consideration in choosing an approach for hip fracture populations.

Keywords
risk adjustment; hip fracture; Medicare; administrative data; prospective cohort; ROC analysis

“What’s New”

Key Finding: Three distinct diagnosis-based risk adjustment instruments had similar ability
to predict death among persons with hip fracture when applied claims from alternative care
settings and over varying lengths of follow-back.
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What This Research Adds: This research supports existing evidence that using increasing
complicated algorithms for risk adjustment produces only marginal gains in model
performance.

Implication: Ease of implementation should be considered alongside of performance when
using diagnosis based risk-adjustment instruments in claims-based analysis of persons with
hip fracture.

INTRODUCTION
Hip fracture is common among the elderly and is associated with considerable mortality,
comorbidity, and health service utilization [1]. This disabling medical event can cascade into
a series of adverse health consequences including infection[2,3], heart failure[2], pneumonia
[3,4], depression[5], and functional dependency[6]. Nearly a third of all persons who
experience a hip fracture die within one year[2], and increasingly, people who experience hip
fracture become institutionalized following acute treatment in the hospital[7]. Hip fracture
already taxes the U.S. healthcare system and its burden is expected to increase as the population
ages[8]. Growing awareness of variation in practice and clinical outcomes associated with hip
fracture, as well as the evolving link between reimbursement and performance measurement,
make it more important than ever to understand the care received by persons with hip fracture.

The age and frailty of this population make risk-adjustment important as a way of removing
potentially confounding effects of patients’ illness burden. When characterizing the health
services received by persons with hip fracture, either for inter-provider comparisons of quality
or when comparing patient outcomes, adequate risk-adjustment ensures that the observed
populations are sufficiently similar, such that differences in outcome likely result from
variations in the care that is provided and not the underlying level of illness among the patients.

Administrative claims data can be a useful tool for examining patterns of care associated with
hip fracture. When applied to administrative data, many risk-adjustment instruments rely on
patient diagnosis codes[9–12] or the use of specific health resources (e.g., prescription drugs
[13–15]) to construct a comorbidity profile for each individual that is then used in statistical
models to hold the effect of specific patient characteristics constant across observations,
helping researchers and health managers make unbiased evaluations.

Risk-adjustment instruments and alternative strategies for implementation are evaluated
according to their ability to predict patient outcomes, usually service utilization, expenditures,
or mortality. Early approaches to risk-adjustment relied on relatively simple strategies for
grouping diagnosis codes according to common chronic conditions[9,10,16,17]. Recent efforts
to enhance predictive power have led to development of increasingly sophisticated algorithms
able to identify a broader range of coexisting diseases[18–20], draw on data from multiple care
settings[11,12] and alternative claim types[13–15], and more effectively account for disease
severity[12,21].

This progression in complexity is well documented. Fowles et al. found that diagnosis-based
risk assessment was better able to predict future health expenditures than either simple
demographic information or self-reported functional status[22]. Weiner and Allen argued that
ambulatory data provide the best source of diagnostic information, by capturing coexisting
disease among those not hospitalized[23]. By applying a diagnosis-based risk-adjustment
instrument to Part B physician claims, Klabunde et al. identified substantially more persons
with coexisting disease and more accurately predicted health service use and mortality than
when the instrument was applied solely to hospital data[24]. Others have shown that
supplementing diagnosis-based risk-adjustment instruments with pharmacy[25] and laboratory
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[26] data enhances predictive ability. Strukenborg, Wagner, and Conners reported a higher
number of coexisting conditions per patient and consistently better model performance when
they compared the Deyo[10] adaptation of the Charlson Index(17 categories of comorbid
illness) with Elixhauser’s[19] method (30 categories of comorbid illness) [27]. Among persons
who experienced myocardial infarction, Ash et al. found that increasing the complexity of the
risk-adjustment model (i.e., using a series of risk-adjustment instruments, each of which was
designed to identify more coexisting conditions than the previous) improved model
performance[28].

In contrast to the ‘more is better’ approach, other researchers rally behind the use of simple
measures to predict outcomes. Farley, Harley, and Devine found that simple counts of utilized
health services compared favorably to several common diagnosis-based risk-adjustment
strategies in predicting health outcomes [29]. Perkins et al. reported only marginal differences
between relatively simple (e.g., counts of diseases and the Charlson Index) and more complex
(Ambulatory Care Groups) risk-adjusters in their ability to predict total expenditures, physician
visits, and mortality[30]. Melfi et al. reported that simple counts of coexisting diseases
predicted mortality better than the more complicated Charlson Index[31]. Similarly, Ellis et
al. found only modest benefit from combining outpatient and inpatient diagnoses in their ability
to prospectively predict expenditures among Medicare beneficiaries, but substantial
improvements when considering the severity of the patients’ illness burden[12]. These findings
highlight an important trade-off between the predictive power of some complex risk-
adjustment strategies and the ease of use and interpretation associated with simpler models.

We sought to examine how using different input data affected the adequacy of risk prediction
among Medicare beneficiaries with hip fracture. Using Medicare inpatient and outpatient
claims data, we examined the effects of altering the source data (MedPar vs. part B claims)
and time frame (index event vs. the preceding year) used to identify comorbid conditions on
the ability of three diagnosis-based risk-adjustment instruments to predict 1-year mortality
following hip fracture. We chose the most robust instrument with the broadest input data as
the reference risk-adjustment strategy and examined the decline in performance experienced
with simpler strategies.

METHODS
Data were obtained from a 20% sample of the 1998–2000 MedPar and Part B evaluation and
management (E/M) claims files. The eligible study population included Medicare enrollees
who, at the time of the index fracture in 1999, were between the ages of 65 and 99, were eligible
for Medicare parts A and B (individuals enrolled in a Medicare health maintenance
organization were excluded), who were hospitalized with a primary diagnosis of hip fracture
or who had evidence of surgical repair of hip fracture (N = 43,811). The index fracture was
defined as the first hospitalization in 1999 with a primary diagnosis of hip fracture or any
hospitalization in 1999 with evidence of surgical hip fracture repair. Comorbidity was assessed
at the time of the index fracture or during the preceding 365 days (pre-period). One-year
mortality following hip fracture was defined as death within 365 days of the index fracture
admission date.

Risk Adjustment Instruments
In addition to adjustment for age, sex, and race (ASR) characteristics, three diagnosis-based
risk-adjustment instruments were evaluated: one proposed by Iezzoni et al. [32], the Charlson
Comorbidity Index (Romano adaptation)[17], and the Agency for Healthcare Research and
Quality’s (AHRQ) Clinical Classification Software(CCS) [33]. All three are freely available,
as either published or downloadable lists of diagnoses codes, and are fairly straightforward to
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translate into an electronic algorithm for implementation with datasets that contain ICD-9-CM
diagnosis codes.

The instrument proposed by Iezzoni et al. was designed to identify severe forms of 13 chronic
conditions common among the elderly [32]. An electronic algorithm assigns an indicator flag
based on presence or absence of specific ICD-9-CM codes that represent the most severe cases
of each comorbidity (e.g., diabetes with end-stage organ disease or nutritional deficiencies that
require assistive feeding devices). We simplified Iezzoni’s instrument by combining the
categories for cancer and metastatic cancer into a single category. The small number of
comorbidities identified and relative ease of use make the Iezzoni instrument an attractive
strategy for risk-adjustment in administrative data and for aged populations likely to have an
elevated base level of illness.

Similar to Iezzoni, the Romano adaptation of the Charlson Comorbidity Index uses ICD-9-CM
diagnosis codes to assign indicator flags for common chronic conditions, but adds codes for
acute myocardial infarction. The Charlson Index also differs from the Iezzoni Index in two
other important ways. First, a broader range of diagnosis codes are used to detect each chronic
condition, giving it the potential to identify comorbidities in more patients than the Iezzoni
instrument. Second, the Charlson Index also weights each comorbidity based on severity and
assigns each individual an overall risk score representing the sum of their comorbidity weights.
In our analysis, the Charlson’s tool was implemented first as an index (weighted sum of
comorbidity indicators), and also as individual components (simply assigning an indicator
based on the presence or absence of the comorbidity without assigning a weight and
comorbidity score). This approach was taken because in several preliminary analyses, the
Charlson index score produced predicted mortality probabilities with only a small degree of
variation, making it difficult to group individuals based on their predicted risk of death.

The CCS is a ‘clinical grouper’ that classifies ICD-9-CM diagnosis codes into 259 clinically
meaningful and mutually exclusive categories. Though not developed as a risk-adjuster, CCS
performs well when used for this purpose with administrative data[28]. The CCS uses a broad
definition for each disease and, unlike the Iezzoni and Charlson instruments, makes little
distinction regarding disease severity when categorizing diagnosis codes. Individuals can
receive a flag for as many CCS categories as their recorded diagnoses support. Because the
CCS classifies diagnoses codes with a high degree of detail, we were concerned that several
categories may represent complications of hip fracture-related care. We tested a modified
version of the CCS that eliminated categories that were likely complications of fracture-related
care (e.g., skin ulcers) and those irrelevant in an elderly population (e.g., categories related to
child birth), but found no difference in predictive ability between the modified and original
forms. We report only findings from the un-modified, original CCS. A complete list of CCS
categories can be downloaded from AHRQ.

Strategies for Implementation
Each risk-adjustment instrument was applied to seven distinct data source and time-frame
combinations. In order of increasing complexity, they are as follows: (1) MedPar alone at the
index fracture, (2) MedPar alone during the pre-period, (3) MedPar alone at index and during
the pre-period, (4) Part B during the pre-period, (5) MedPar at the index and Part B during the
pre-period, (6) MedPar and Part B during the pre-period, and (7) MedPar at the index and
during the pre-period and Part B during the pre-period. We applied a restriction to Part B claims,
that a comorbid condition could be flagged during the pre-period only if it appeared two or
more times at least 7 days apart. While such a restriction could limit identification of comorbid
conditions among infrequent health services users, it reduces the number of falsely identified
conditions and rules out diagnoses.
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Data Analysis
The most complex risk prediction procedure considered in our analysis was application of CCS
to MedPar at the time of the index fracture and to MedPar and Part B during the pre-period.
This strategy allowed for the highest level of disease differentiation and took advantage of the
broadest set of claims from which to identify comorbid conditions. We identified this
combination a priori as the reference standard to which we would compare the other models.

Logistic regression was used to predict 1-year mortality following hip fracture. Adjustments
for age, sex, and race were considered alone and then added to each of the other risk prediction
strategies. In total, there were parameters added to each model for 19 distinct age(65–69, 70–
74, 75–79, 80–84, 85+), sex (male, female), and race (black, non-black) combinations. White
males age 65–69 were considered the reference and not identified with an indicator in the
statistical models. Statistically insignificant or negative coefficients were not dropped.

Each risk prediction model was evaluated on its ability to predict death within 1 year of the
index hip fracture. Model discrimination—the ability of each model to correctly distinguish
individuals who died from those who did not—was assessed using c-statistics provided in
standard statistical output. The c-statistic equals the area under the receiver operating
characteristic (ROC) curve when applied to a binary outcome and measures the ability to
correctly rank order any two randomly drawn individuals on their predicted likelihood of dying.
C-statistics are valued from 0.5 – 1.0 with higher values signifying greater ability to accurately
distinguish those with and without the outcome. C- values less than 0.7 are generally considered
poor and those over 8 are considered good. Model performance was compared and tested for
statistically significant differences using a method proposed by Hanley and McNeil to compare
the area under ROC curves [34,35]. Three comparisons were made: (1) to our reference
standard model, (2) across risk-adjustment strategies for the same data source/time-frame
combination, and (3) within the same risk-adjustment strategy but across data source/time-
frame combinations. Results are presented in Table 2. Simple comparisons of the Akaike’s
Information Criterion (AIC), a measure of relative goodness-of-fit that penalizes overfitting
statistical models with superfluous parameters, were considered in secondary analyses and
served as confirmatory tests of our primary findings.

Model performance was also evaluated among subjects with similar predicted mortality. Model
calibration curves that plot observed and predicted mortality were constructed and evaluated
using the Lemeshow and Hosmer chi-square test [36,37]. This allowed us to visually identify
the range of predicted mortality from which each model deviated from perfect prediction.
Statistical analyses were performed using SAS version 9.1.3 (Cary, NC).

RESULTS
Characteristics of the hip fracture cohort are presented in Table 1. A cohort of 43,811 persons
with hip fracture was identified. The cohort was predominantly female (77%), non-black
(96%), and aged 75 or older (85%). The vast majority of patients were treated surgically (97%).
One-year mortality was 27%.

Controlling for age, sex, and race alone had poor predictive ability (c = 0.63). Overall, the
predictive ability achieved among the prediction models considered here was modest, ranging
from c = 0.68 for one implementation of the Charlson instrument to c = 0.76 for the CCS. Table
2 describes the performance of the three risk-adjustment instruments when applied to each data
source and time-frame combination.

Comparison #1 tested for differences from our reference standard model (CCS applied to
MedPar at index and MedPar + Part B during the pre-period: c = 0.76) which are denoted by
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“*” in Table 2. Almost all of the other prediction models underperformed compared to the
reference standard, and most differences were statistically significant. The two exceptions were
alternative implementations of the CCS which used MedPar data from the index hospitalization
supplemented with either hospital claims (c = 0.76) or Part B (c = 0.76) data from the pre-
period. Consideration of the AIC suggests that the CCS when applied to MedPar at index and
Part B during the pre-period (AIC = 44,176), may even perform slightly better than the more
complex reference standard model (AIC = 44,385).

Comparison #2 considered differences across risk-adjustment instruments when applied to the
same data source and time-frame combination and is denoted by “‡” in Table 2. These
comparisons indicate that the Iezzoni and Charlson instruments performed well overall, but
showed significantly worse ability to predict mortality relative to the CCS. The magnitude
varied across models, though on average, Iezzoni (4% difference from the CCS counterpart
model) was preferable to the Charlson instrument implemented as a weighted index and as
flagged components (6% difference from the CCS counterpart model − both implementations).

Comparison #3 tested the effect of varying the data source and time frame within each risk-
adjustment instrument, with statistically significant differences denoted by “§” in Table 2.
Altering data source and timeframe led to trivial changes in the performance. While all three
instruments performed best when applied to a broad range of claims data, comparisons of c-
statistics and the AIC within each risk-adjustment strategy suggest that application of each
instrument to MedPar at index appeared to generate the largest degree of predictive power.
Supplementing hospital claims from the index admission with data from the pre-period and
from outpatient visits added marginal performance improvements that were nearly uniform in
magnitude across instruments. While several implementations of the CCS were similar in their
ability to predict mortality risk (similar c-statistics), this instrument had a large degree of
variation, with a 10% difference between the most (c=0.76) and least (c=0.69) favorable
implementations. The marginal benefit of adding additional input data was smaller for the
Iezzoni (7% difference between the most and least favorable models) and Charlson instruments
(6% difference).

Figure 1 depicts observed mortality plotted against deciles of predicted mortality for our
reference standard model. Table 3 shows the input values for this plot. The straight line
represents a model with perfect discrimination (c = 1.0), e.g., the ability to perfectly distinguish
those who died from those who did not. Several trends emerge from observation of this plot.
First, all three instruments produced lower than expected risk estimates among persons at
average risk of death and higher than expected risk estimates among persons with very high
or very low risks of death. Second, the risk-prediction model derived from each instrument
produces a unique range of predicted mortality among subjects. Not surprisingly, the large
number of parameters in the CCS model generates the widest range of predicted mortality
values, from close to zero to almost 1. The other instruments generate predicted mortality values
in a much smaller range, clustering more patients with similar values. Though not shown,
similar plots were generated for each of the prediction models examined. There was some
variation in the range of predicted mortality values, but the general “U” shape remained, and
similar conclusions could be drawn about the discriminative ability of each risk prediction
model. The Lemeshow-Hosmer chi-square test indicated statistically significant differences
between observed and predicted mortality across deciles for each of the instruments considered
(LH χ2 statistic > 15.5 with 8 DF: p<0.001 for each model). However, it is unlikely that such
differences are particularly meaningful since their magnitudes are small and overall model
performance was good (c = 0.72 – 0.76).
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DISCUSSION
Administrative claims data from the 1998–2000 CMS MedPar and Part B claims files were
used to evaluate the performance of three freely-available diagnosis based risk-adjustment
instruments. The Charlson Index, a method proposed by Iezzoni, and the CCS all predicted
post-hip fracture mortality better than controlling for age, sex, and race alone. The CCS
performed best overall, followed by the Iezzoni and Charlson instruments. The effect on model
performance of varying the data source (MedPar vs. part B) and the time frame (index vs. pre-
period) ranged from trivial to substantial, depending on which risk-adjustment instrument and
implementation strategy was used.

Differences were detected both across risk-adjustment instruments when the data source and
time frame were held constant and within risk-adjustment strategies when the source and time
frame for input data varied. Although these differences were statistically significant, their
practical implications are unclear. For example, there was a 4% loss in predictive ability
between the CCS reference standard model and the Iezzoni counterpart when applied to the
same input data (c = 0.76 vs. 0.73). However, when model performance was examined across
subgroups for each of these models, they appeared similar in their ability to distinguish deaths
from survivors, suggesting that the small predictive gain may not be worth the computational
burden of the more complex risk adjustment strategy.

Regardless of risk-adjustment instrument or implementation strategy, most predictive power
was derived from diagnoses captured using MedPar data from the index event. The addition
of Part B data provided marginal predictive benefit for all three instruments considered. There
was no difference between models that used MedPar at index and during the pre-period and
models that used MedPar at index and MedPar and Part B during the pre-period. This finding
gives further evidence that it may be important to consider the trade-off between a small loss
of predictive power and the relative ease of coding an instrument to one dataset at one point
in time. For example, the CCS gained little predictive power (about 1%) when applied to the
most complex input data (MedPar at index + MedPar and Part B during the pre-period)
compared to MedPar data alone at the index event. It is clear why so much predictive power
comes from the index event—primary and secondary diagnoses are identified during the
hospitalization and used for billing, among other purposes. Since payment is related to the
accuracy of diagnostic coding, there is an incentive to be comprehensive. Still, evidence
suggests that diagnostic coding for hospitalizations may be largely inaccurate [38].

The performance of the CCS relative to the Charlson and Iezzoni instruments suggests that it
differentiates a greater number of pre-existing diseases during the index hospitalization than
the other instruments, but raises concern about the identification of post-hip fracture
complications. Although this can enhance the predictive power of the risk-adjustment
instrument, particularly when mortality is the primary outcome and complications occurring
in the hospital may represent near-death experiences[39], it may undermine our ability to detect
poor quality when comparing post-fracture care across providers. For example, a hopspital’s
post-hip fracture mortality rate is a prominent quality indicator. When pre-fracture health status
is adequately controlled, higher post-fracture mortality rates are thought to reflect failure in
post-surgical care processes[40]. A risk-adjuster that identifies post-surgical complications
(e.g., pneumonia, skin ulcers, or infection) as pre-existing comorbidities, particularly
complications that increase the risk of death but that may be related more to processes of care
than to specific patient characteristics, as may erroneously lead to lower risk-adjusted mortality
rates among hospitals that provide poor quality care.

In other settings, both the CCS and the Charlson indices have performed more favorably than
shown here. When used to predict mortality among elderly myocardial infarction patients in
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Medicare claims data, they performed in the good to excellent range, with c-statistics of 0.74
and 0.82 for the Charlson and CCS indices, respectively [28]. This discrepant performance
may result from differences in the illness burden among hip fracture patients compared to
myocardial infarction patients.

Although our findings may be discouraging for researchers seeking a risk-adjustment
instrument to use among persons with hip fracture, there may be few better alternatives for this
population. Other risk-adjustment instruments used in hip fracture cohorts include the Chronic
Disease Score (CDS) [41], the RAND Sickness at Admission Score[16,42,43], and the Acute
Physiology and Chronic Health Evaluation (APACHE) score [42,43 ]. As CDS uses
prescription drug utilization to predict patient outcomes, it is difficult to apply to cohorts
defined from Medicare claims, which have limited prescription drug data. The RAND and
APACHE instruments perform well in predicting post-fracture locomotion, adverse events,
and mortality, but require more detailed clinical information than are available from the
standard diagnoses contained in administrative claims. Schwartz et al. have compared several
measures of patient disease severity on ability to predict length of stay (LOS) among persons
with hip fracture. Included were 14 severity measures that came from a wide range of input
data, including diagnostic codes as well as observed clinical data. The authors reported that
these measures of severity had little ability to explain variations in LOS across hospitals[44],
while their clinical detail make these data difficult for hospitals, payers, and other decision
makers to obtain.

Several limitations suggest that care should be taken when interpreting the results of this
analysis. There is inherent difficulty in distinguishing complications from comorbidities when
relying on diagnosis codes in administrative data [32,38,45]. This misclassification is
particularly threatening when diagnoses are drawn from the index admission, but can be
minimized by considering only those diagnoses present during the pre-period. This analysis
evaluated model performance when diagnoses were drawn from the index admission, the pre-
period alone, and from both simultaneously and found relatively little difference in most cases.

The CCS was designed to simply group diagnoses, not necessarily for risk-adjustment. While
its ability to predict mortality has been validated in administrative data [28], its use may pose
two distinct problems. First, many of its classification categories are irrelevant for an elderly
population. Inclusion of these categories would likely weaken this instrument’s performance
in a prediction model since many cohort members who do not have the outcome could
potentially be flagged with comorbid conditions that do little to predict mortality. The second
problem using the CCS poses is more serious, but again is related to the volume of disease
categories that it defines. In this case, there is concern that some of the disease categories may
represent complications of fracture-related care rather than pre-existing illness. Including these
would likely increase the instrument’s ability to predict death since complications probably
place an affected individual at greater risk of death. Considering diagnoses in these
classification categories as comorbidities of hip fracture could confound our results and lead
to erroneous conclusions regarding CCS’s predictive ability among hip fracture patients. With
regard to each of these problems, the similarity between the modified and unmodified model
results suggests these biases had little effect on our analyses and confirm the CCS’s admirable
predictive ability.

Caution is needed when the performance of several risk-adjustment tools is compared, since
each instrument identifies comorbid conditions based on a slightly different set of diagnostic
codes[25]. We were able to make valid comparisons across instruments because we applied
them to the same population, with a constant distribution of comorbid conditions.
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Conclusion
Effective and freely available risk-adjustment strategies that are fairly straightforward to
implement exist for claims-based analyses of individuals with hip fracture. Altering the source
data (MedPar vs. Part B claims) and time frame (index event vs. the year preceding the index
event) used to identify comorbid conditions offers only a marginal advantage for predicting
one-year mortality among hip fracture patients. When predictive ability is similar for different
risk-adjustment instruments, model performance should be weighed against complexity and
ease of use.
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Figure 1.
Calibration Curve Comparing the CCS, Iezzoni, and Charlson Instruments applied to MedpPar
(index + Pre) + Pt. B (Pre)
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Table 1
Characteristics of the Hip Fracture Cohort

Characteristic N (%)

Age

 65–74 6,615 (15)

 75–84 18,006 (41)

 85+ 19,233 (44)

Female 33,778 (77)

Black race 1,665 (4)

One-year mortality 11,512 (26)

Fracture surgically repaired 42,365 (97)

J Clin Epidemiol. Author manuscript; available in PMC 2009 March 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Radley et al. Page 14
Ta

bl
e 

2
C

-S
ta

tis
tic

s R
at

in
g 

M
od

el
 P

er
fo

rm
an

ce
 fo

r O
ne

-Y
ea

r M
or

ta
lit

y 
Fo

llo
w

in
g 

H
ip

 F
ra

ct
ur

e 
am

on
g 

M
ed

ic
ar

e 
B

en
ef

ic
ia

rie
s

A
dj

us
tm

en
t I

ns
tr

um
en

ts

C
ha

rl
so

n

Im
pl

em
en

ta
tio

n 
St

ra
te

gy
C

C
S

C
om

po
ne

nt
s

In
de

x
Ie

zz
on

i

M
ed

Pa
r (

in
de

x+
pr

e-
pe

rio
d)

 +
 P

ar
t B

 (p
re

-p
er

io
d)

0.
76

0.
72

*,
‡

0.
71

*,
‡

0.
73

*,
‡

M
ed

Pa
r (

pr
e-

pe
rio

d)
 +

 P
ar

t B
 (p

re
-p

er
io

d)
0.

72
*,

§
0.

69
*,

‡,
§

0.
69

*,
‡,

§
0.

70
*,

‡,
§

M
ed

Pa
r (

in
de

x)
 +

 P
ar

t B
 (p

re
-p

er
io

d)
0.

76
0.

71
*,

‡
0.

70
*,

‡
0.

72
*,

‡

Pa
rt 

B
 (p

re
-p

er
io

d)
0.

71
*,

§
0.

68
*,

‡,
§

0.
68

*,
‡,

§
0.

70
*,

‡,
§

M
ed

Pa
r (

in
de

x 
+ 

pr
e-

pe
rio

d)
0.

76
0.

71
*,

‡
0.

71
*,

‡
0.

72
*,

‡

M
ed

Pa
r (

pr
e-

pe
rio

d)
0.

69
*,

§
0.

68
*,

‡,
§

0.
68

*,
‡,

§
0.

68
*,

‡,
§

M
ed

Pa
r (

in
de

x)
0.

75
*,

§
0.

70
*,

‡,
§

0.
69

*,
‡,

§
0.

71
*,

‡,
§

Le
ge

nd
:

M
od

el
s a

re
 a

rr
an

ge
d 

fr
om

 m
os

t t
o 

le
as

t c
om

pl
ex

 b
as

ed
 o

n 
da

ta
 so

ur
ce

 a
nd

 ti
m

e 
fr

am
e 

to
 w

hi
ch

 e
ac

h 
w

as
 a

pp
lie

d.
 A

ll 
m

od
el

s a
dj

us
te

d 
fo

r a
ge

, s
ex

, a
nd

 ra
ce

 d
iff

er
en

ce
s.

* C
om

pa
ris

on
 1

 - 
de

no
te

s s
ta

tis
tic

al
 d

iff
er

en
ce

 (p
 <

 0
.0

5)
 fr

om
 th

e 
re

fe
re

nc
e 

st
an

da
rd

 m
od

el
:

C
C

S 
- M

ed
Pa

r (
in

de
x 

+ 
pr

e-
pe

rio
d)

 +
 P

ar
t B

 (p
re

-p
er

io
d)

.

‡ C
om

pa
ris

on
 2

 - 
de

no
te

s s
ta

tis
tic

al
 d

iff
er

en
ce

 (p
 <

 0
.0

5)
 fr

om
 th

e 
m

od
el

 w
ith

 th
e 

gr
ea

te
st

 n
um

be
r o

f p
ar

am
et

er
s (

C
C

S)
 a

cr
os

s r
is

k-
ad

ju
st

m
en

t s
tra

te
gi

es
 fo

r t
he

 sa
m

e 
da

ta
 so

ur
ce

 a
nd

 ti
m

e-
fr

am
e

co
m

bi
na

tio
n.

§ C
om

pa
ris

on
 3

 - 
de

no
te

s s
ta

tis
tic

al
 d

iff
er

en
ce

 (p
 <

 0
.0

5)
 fr

om
 th

e 
m

od
el

 w
ith

 th
e 

br
oa

de
st

 d
at

a 
so

ur
ce

 a
nd

 ti
m

e-
fr

am
e 

co
m

bi
na

tio
n 

[M
ed

Pa
r (

in
de

x 
+ 

pr
e-

pe
rio

d)
 +

 P
ar

 B
 (p

re
-p

er
io

d)
] w

ith
in

 e
ac

h 
ris

k-
ad

ju
st

m
en

t s
tra

te
gy

.

J Clin Epidemiol. Author manuscript; available in PMC 2009 March 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Radley et al. Page 15
Ta

bl
e 

3
M

od
el

 C
al

ib
ra

tio
n 

by
 D

ec
ile

 o
f P

re
di

ct
ed

 M
or

ta
lit

y

D
ie

d
Su

rv
iv

ed

M
or

ta
lit

y 
R

is
k

T
ot

al
 P

at
ie

nt
s

O
bs

er
ve

d
E

xp
ec

te
d

O
bs

er
ve

d
E

xp
ec

te
d

D
ev

ia
tio

n
L

.H
. χ

2

C
C

S

0–
8%

4,
38

1
17

8
27

8
4,

20
3

4,
10

3
39

16
6

8–
12

%
4,

38
1

32
3

44
0

4,
05

8
3,

94
1

34

12
–1

5%
4,

38
1

53
4

58
0

3,
84

7
3,

80
1

4

15
–1

9%
4,

38
1

70
7

73
7

3,
67

4
3,

64
4

1

19
–2

2%
4,

38
1

98
8

89
9

3,
39

3
3,

48
2

11

22
–2

7%
4,

38
2

1,
20

1
1,

09
0

3,
18

1
3,

29
2

15

27
–3

3%
4,

38
1

1,
48

1
1,

33
1

2,
90

0
3,

05
0

24

33
–4

2%
4,

38
1

1,
70

5
1,

63
1

2,
67

6
2,

75
0

5

42
–5

5%
4,

38
1

2,
13

6
2,

10
1

2,
24

5
2,

28
0

1

55
–1

00
%

4,
38

1
2,

89
5

3,
06

2
1,

48
6

1,
31

9
30

Ie
zz

on
i

6–
11

%
4,

30
3

22
6

39
4

4,
07

7
3,

90
9

79
22

4

11
–1

3%
4,

59
7

40
3

54
1

4,
19

4
4,

05
6

40

13
–1

8%
3,

49
2

53
8

54
5

2,
95

4
2,

94
7

0

18
–2

0%
5,

13
5

97
8

93
3

4,
15

7
4,

20
2

3

20
–2

3%
4,

23
2

98
9

89
5

3,
24

3
3,

33
7

13

23
–3

0%
4,

37
2

1,
29

9
1,

15
3

3,
07

3
3,

21
9

25

30
–3

2%
4,

53
7

1,
53

9
1,

40
1

2,
99

8
3,

13
6

20

32
–3

9%
4,

38
1

1,
61

8
1,

57
3

2,
76

3
2,

80
8

2

39
–5

1%
4,

37
2

2,
03

4
1,

98
4

2,
33

8
2,

38
8

2

51
–9

6%
4,

39
0

2,
52

4
2,

72
9

1,
86

6
1,

66
1

41

C
ha

rls
on

7–
11

%
4,

28
5

23
0

41
3

4,
05

5
3,

87
2

90
20

9

J Clin Epidemiol. Author manuscript; available in PMC 2009 March 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Radley et al. Page 16

D
ie

d
Su

rv
iv

ed

M
or

ta
lit

y 
R

is
k

T
ot

al
 P

at
ie

nt
s

O
bs

er
ve

d
E

xp
ec

te
d

O
bs

er
ve

d
E

xp
ec

te
d

D
ev

ia
tio

n
L

.H
. χ

2

11
–1

4%
4,

49
8

43
6

55
5

4,
06

2
3,

94
3

29

14
–1

9%
4,

36
0

77
8

70
6

3,
58

2
3,

65
4

9

19
–2

0%
5,

61
1

1,
15

2
1,

11
5

4,
45

9
4,

49
6

2

20
–2

3%
3,

15
4

76
5

68
7

2,
38

9
2,

46
7

11

23
–2

8%
4,

33
1

1,
14

6
1,

09
7

3,
18

5
3,

23
4

3

28
–3

3%
4,

42
1

1,
52

6
1,

39
7

2,
89

5
3,

02
4

17

33
–3

9%
4,

39
6

1,
66

9
1,

56
0

2,
72

7
2,

83
6

12

39
–5

0%
4,

39
8

1,
96

9
1,

94
6

2,
42

9
2,

45
2

0

50
–9

7%
4,

35
7

2,
47

7
2,

67
1

1,
88

0
1,

68
6

36

Le
ge

nd
:

Ea
ch

 ri
sk

-a
dj

us
tm

en
t i

ns
tru

m
en

t a
pp

lie
d 

to
 M

ed
Pa

r (
in

de
x 

+ 
pr

e-
pe

rio
d)

 +
 P

ar
t B

 (p
re

-p
er

io
d)

.

D
ev

ia
tio

n 
= 

di
ff

er
en

ce
 b

et
w

ee
n 

ob
se

rv
ed

 a
nd

 e
xp

ec
te

d 
pr

ob
ab

ili
tie

s o
f d

ea
th

 a
m

on
g 

de
at

hs
 a

nd
 su

rv
iv

or
s.

C
al

cu
la

te
d 

us
in

g:
 (O

de
at

hs
 −

 E
de

at
hs

)2
 / 

(to
ta

l n
o.

 p
t. 

in
 g

ro
up

)*
(E

de
at

hs
/to

ta
l p

ts
 in

 g
ro

up
)*

(1
 −

 (E
de

at
hs

/to
ta

l p
at

ie
nt

s i
n 

gr
ou

p)
)

L.
H

. =
 L

em
es

ho
w

-H
os

m
er

 χ
2 

> 
15

.5
, d

f =
 8

, p
 <

 0
.0

01
 fo

r e
ac

h 
ris

k-
ad

ju
st

m
en

t s
tra

te
gy

J Clin Epidemiol. Author manuscript; available in PMC 2009 March 9.


