Skip to main content
. 2009 Mar 12;4(3):e4833. doi: 10.1371/journal.pone.0004833

Table 1. Relative Conservation of Rickettsia Vir Proteins to Vir and Vir-like Proteins from Other Bacteria.

Protein1 L query2 No. hits3 Distribution4 Other5
α β γ δ ε
VirD4 591 500 229 64 36 3 31 137 (6)
VirB4a 805 500 244 60 75 2 76 43 (15)
VirB4b 810 456 218 53 59 2 73 51 (28)
VirB11 334 500 200 109 107 18 8 58 (4)
VirB6a 1061 151 130 2 5 0 1 13 (2)
VirB6b 668 181 147 1 13 0 1 19
VirB6c 967 202 158 5 20 1 1 17 (2)
VirB6d 890 197 172 4 18 0 0 3 (1)
VirB6e 1154 247 174 14 35 1 9 14 (3)
VirB8a 228 101 65 4 11 1 3 17 (3)
VirB8b 242 153 80 10 36 0 16 11 (4)
VirB9a 247 411 203 74 73 3 36 22 (13)
VirB9b 158 342 197 53 63 1 8 20 (11)
VirB10 481 380 193 52 69 4 47 15 (11)
VirB3 95 80 65 1 7 0 6 7
1

Consensus annotation. Grouped by function: substrate presentation (VirD4), translocation energetics (VirB4, VirB11), mating channel (VirB6, VirB8-VirB10), attachment (VirB3).

2

Length (aa) of R. typhi query sequence.

3

Number of blastp subjects yielding significant alignments (maximum hits set to 500).

4

Distribution of subjects across five classes of proteobacteria.

5

Non-proteobacterial subjects, with number of plasmid encoded proteins in parentheses. Note: plasmid encoded Vir and Vir-like proteins were not assigned to a taxonomic class, hence some may be from plasmids found in proteobacteria.