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Abstract
We have extended our previously developed 3D multi-scale agent-based brain tumor model to
simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our
algorithm continues to employ an epidermal growth factor receptor (EGFR) gene-protein interaction
network to determine the cells’ phenotype, it now adds an implicit treatment of tumor cell adhesion
related to the model’s biochemical microenvironment. We simulate a simplified tumor progression
pathway that leads to the emergence of five distinct glioma cell clones with different EGFR density
and cell ‘search precisions’. The in silico results show that microscopic tumor heterogeneity can
impact the tumor system’s multicellular growth patterns. Our findings further confirm that EGFR
density results in the more aggressive clonal populations switching earlier from proliferation-
dominated to a more migratory phenotype. Moreover, analyzing the dynamic molecular profile that
triggers the phenotypic switch between proliferation and migration, our in silico oncogenomics data
display spatial and temporal diversity in documenting the regional impact of tumorigenesis, and thus
support the added value of multi-site and repeated assessments in vitro and in vivo. Potential
implications from this in silico work for experimental and computational studies are discussed.
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1. INTRODUCTION
We present the extension of our previously developed three-dimensional (3D) agent-based,
multi-scale brain tumor model to incorporate a simplified glioma progression pathway in an
effort to study the impact of clonal heterogeneity on tumor growth dynamics. For the micro-
macroscopic environment, we expanded the initial setup [1-3] by simulating the interaction
between the chemoattractant concentration and the degree of cell adhesion. Like before [3], a
set of chemoattractants such as glucose, oxygen tension and transforming growth factor alpha
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(TGFα) diffuses [4-6] along a gradient that depends both on the initial conditions as well as on
the cells’ consumption and secretion (TGFα). Also, the glioma cells’ considerably high
migration rate in vivo, and even more so in vitro [7] is impacted by the TGFα concentration to
properly reflect available experimental data [8-11]. Specifically, we modeled the
chemotactically attracted cells as follows: once the concentration of the so called homotype
attractant [12], in this case TGFα, substantially exceeds that of the heterotype attractant [13]
such as glucose, the homotype attractant (TGFα) plays a much more important role for directing
cell attraction and vice versa. For the molecular environment, each cell is equipped with an
epidermal growth factor receptor (EGFR) gene-protein interaction pathway [1-3] that is
implicitly integrated with a simplified cell cycle module [14]. The pathway molecule ‘activated
phospholipase Cγ’ (PLCγ) is deemed critical in determining the cell phenotype which
represents experimental results reported in part by [15] for the case of breast cancer. However,
other than in our previous works where heterogeneity arose only from phenotypic alterations
of an otherwise mono-clonal tumor, here, we have integrated a simplified cancer
progression model (based on [16]) to generate a heterogeneous brain tumor that eventually
consists of five distinct clonal populations that emerged through mutational events. These
clones differ in their EGFR density in addition to being able to adjust their phenotypic behavior
readily to the micro-environmental conditions. Reflecting experimental data, the sub-clones
with higher EGF receptor density are more aggressive [17], and operate with an inefficient
metabolism [18,19]; yet, they achieve a higher chemotactic search precision to move faster
along the environment’s least resistance, most permission and highest attraction paths [20].
We will discuss the results and their potential implications, and introduce plans for future work.

2. PREVIOUS WORKS
Earlier tumor models focused primarily on either the micro-macroscopic or the molecular level
to simulate tumor growth and migration. For instance, for the micro-macroscopic scale,
Mansury et al. [21-23] proposed a two-dimensional (2D) agent-based model in which the
spatio-temporal expansion of malignant brain tumor cells is guided by environmental
heterogeneities (mechanical confinement, toxic metabolites and nutrient sources) in order to
gain more insight into the systemic effect of such cellular chemotactic search precision
modulations. For the molecular scale, Schoeberl et al. [24] built up a computational model to
describe the dynamics of the MAPK cascade activated by EGF receptors and Araujo et al.
[25] developed an EGFR signaling network model that not only shows the protein dynamics
in the EGFR pathway but also predicts the therapeutic effect of inhibitors on the molecular
network. In an effort to develop a cell cycle module, Alarcon et al. [14] extended the work of
Tyson and Novak [26] to model the cancer cell cycle process under hypoxic conditions.
Additionally, to simulate mutation among different clones, Sole and Deisboeck [16] revised
the previous quasispecies model of Swetina and Schuster [27] to research the impact of genetic
instability on tumor growth. While these models undoubtedly are useful at their particular scale
of interest, the quest of studying the tumor as a biological system that crosses scales requires
a multiscale modeling approach. Therefore, in [28] and [1,2] our group developed a 2D multi-
scale agent-based tumor model to integrate both, the molecular and micro-macroscopic
environments. Specifically, in [1] we put forward an EGFR gene-protein interaction pathway
in which activated PLCγ is employed to determine the cell phenotype. Subsequently, in [2] we
then compared the biological behavior of glioma cell clones with varying EGFR density.
Building on this work, in [3] we recently introduced a 3D multi-scale agent-based brain tumor
model which explicitly includes a cell cycle description. However, this multi-scale model has
a number of shortcomings that include simulating a monoclonal, and thus a genetically stable
tumor, and it also suffers from a rather simplistic description of the tissue microenvironment.
To model these features more realistically the subsequent section will describe the setup of a
much more sophisticated 3D multi-scale brain tumor model that now includes implicitly the
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phenotype of cell adhesion as it relates to chemoattractant [10] and incorporates specifically
the emergence of heterogeneous tumor cell clones.

3. MATHEMATICAL MODEL
As before, this multi-scale agent-based brain tumor model includes macro-microscopic and
molecular environments that interact with each other. The following sections describe these
environments and their relationships in detail.

3.1. Macro-microscopic environment
3.1.1. Clonal heterogeneity—Here, a slice of virtual brain tissue is modeled with a
100*100*100 3D rectangular lattice as depicted in Figure 1. A continually replenished nutrient
source, representing a blood vessel, is located in Cube 4.

To yield tumor heterogeneity, an element of genetic instability is introduced that is based on
the mutation model presented by [16]. Our ‘progression pathway’ here incorporates five glioma
cell clones (A, B, C, D and E) that emerge sequentially (Figure 2), and that are distinct in their
EGFR receptor density. Based on experimental data, in our setup, cell clones with higher EGFR
receptor density are more aggressive [17,29,30] and operate with an inefficient metabolism
[18,19]; yet, they achieve a higher chemotactic search precision to move faster along the
environment’s least resistance, most permission and highest attraction paths [20].

In the beginning, five hundred clone A cells are initialized as close as possible to the center of
the lattice as each cell occupies one lattice point. As a first iteration, the model implements a
linear progression pathway in assuming that clone A can only mutate to B, clone B to C, C to
D, and D to E. The respective mutation rates depend on the cell’s proliferation period and are
listed in Table 1.

To mimic progression from a relatively genetically stable precursor, we set the mutation rate

from clone A to B as . Applying the same calculation for the
remaining clones, we deduce a mutation rate from B to C of 11%, from C to D of 12% and D
to E of 15%.

3.1.2. Chemoattractants—Transforming growth factor alpha (TGFα) is a protein that not
only can affect the secreting tumor cell itself, hence generates an ‘autocrine’ feedback loop,
but also can impact bystander cells, an effect known as ‘paracrine’. Habib et al. [12] refers to
this soluble chemical effector as homotype chemoattractant. Conversely, glucose, not produced
by tumor cells, is denoted as heterotype attractants [13]. Our setup places a blood vessel in the
center of Cube 4 to supply glucose, TGFα and oxygen for the developing brain tumor. Initially,
these chemoattractants are dispersed by normal distribution described in Eq. 1-3:

(1)

(2)

(3)
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In Eq. 1, Tm stands for the maximum TGFα (X1) concentration in the tumor [31] and σt is the
parameter that controls the dispersion of the TGFα level. In Eq. 2, Ga is the minimum blood
glucose (X14) level while Gm stands for the maximum concentration of glucose in blood, with
σg being the parameter controlling the dispersion of glucose [32]. Likewise, in Eq. 3, ka is the
minimum oxygen tension and km represents the maximum oxygen tension (k44) [3,14], σo is
the parameter controlling the dispersion of the oxygen tension level, and dijk is the L-infinity
[21] distance to the center of Cube 4. During the simulation, at each time step the cell will take
up glucose to maintain its metabolism and secrete TGFα [1] triggering both paracrine and
autocrine biological behavior that is described by Eq. 4-5:

(4)

(5)

In Eq. 4-5, t represents the time step, ST is the TGFα secretion rate [33] and rn is the cell’s
glucose uptake coefficient [34] for each clone. Because [19] argues that the metabolism of
cancer cells is approximately eight times larger than the metabolism of normal cells and since
[34] discovered that for U87 human glioma cells the glucose uptake rate is 0.77 pmol/h per
cell, we assign each clone (A, B, C, D and E) a different glucose uptake rate related to its EGFR
density, which is listed in the Table 2.

Because the chemo-attractants’ initialization through Eq. 1-3 causes different gradients in the
3D lattice, the aforementioned biochemicals glucose, TGFα and oxygen will simultaneously
diffuse [1-3] during the simulation according to Eq. 6-8.

(6)

(7)

(8)

where D1 is the diffusion coefficient of glucose [5], D2 is theTGFα diffusion coefficient [6]
and Do stands for the diffusion coefficient of oxygen [4].

3.1.3. Chemotaxis approach—The general outline can be summarized in these three steps:
(1) when the cell is going to move to or split its progeny into a new location, it will employ
Eq. 13-14 to decide which chemoattractant, heterotype or homotype, dominates the new
location search; (2) the TGFα concentration of the cell’s neighborhood determines which
spatial ‘permission’ pattern (3D Moore neighborhood, 3D Diagonal neighborhood or 3D Von
Neumann neighborhood) for the cell to choose, as detailed in Eq. 10-12; finally (3) Eq. 9 is
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employed to find the new location for the cell. In the following, we first introduce the term of
‘chemotactic search precision’, followed by the description of a cell’s spatial ‘permission’
under various chemoattractant concentrations. We then briefly illustrate how homotype and
heterotype chemoattractants impact the tumor cells’ migratory and proliferative behavior.

Representing the biological mechanism of chemotaxis we have again implemented a search
mechanism as put forward already in [21,22].

(9)

where Tijk stands for the perceived attractiveness of location (i,j,k), Lijk represents the correct,
non-erroneous evaluation of location (i,j,k) where εj ~ N(μ,σ2) is an error term that is normally
distributed with mean μ and variance σ2 . The parameter ψn is positive between zero and one,
0≤ψn≤1 , and represents the extent of the ‘search precision’ (with ‘0’ exhibiting purely random
walk behavior, and ‘1’ being fully biased without any error in signal processing); the subscript
of ψ represents the different clones. In accordance with experimental data [29] that report an
acceleration of the tumor’s spatio-temporal expansion rate with increasing EGFR density per
cell, we argue that a cancer cell with high EGFR density should express a comparably high
search precision (being lesser affected by the noise function). Thus, we assign a search precision
value of 0.5 for clone A and B, and 0.7 for clone C, D and E, respectively.

The definitions of the Von Neumann and Moore neighborhoods [21] usually are restricted to
2D lattices. We therefore define 3D Von Neumann neighborhood, 3D Diagonal neighborhood,
and 3D Moore neighborhood as detailed in Eq. 10-12 with

(10)

(11)

(12)

Here, (x0, y0, z0) denotes the current location of the cell and (x ,y ,z) represents the coordinates
of its neighborhood. We set the grid size to 10μ m to reflect the (idealized) average diameter
of a real tumor cell and each simulation step represents approximately 2.5 hours, similar to our
previous study [3]. The maximum distance for a given tumor cell to migrate under a 3D Von
Neumann neighborhood search is therefore 10μ m/simulation step, 14.4μ m/simulation step
under a 3D Diagonal neighborhood search, and 17.3μ m/simulation step under a 3D Moore
neighborhood search paradigm, hence well within the range of the tumor cell migration rate
reported in vitro [7].

It has been well established that cancer cells differ from normal cells in a variety of ways which
include uncontrolled proliferation, loss of contact inhibition, progressive lack of tumor cell-
tumor cell adhesion and tissue invasion [35]. Also, Athale and Deisboeck [2] already
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demonstrated in separate simulation runs that in silico, glioma cells with higher EGFR density
are more aggressive with faster migration and lower proliferation rate. Moreover, as indicated
by [8-11] the concentration of chemoattractant can impact the degree of tumor cell adhesion
and the cells’ migration rate. We therefore ranked the diffusive TGFα concentration at three
levels in decreasing order: If the neighborhood of the tumor cell carries a high average TGFα
concentration (= level 1) the cell can choose its next location from the 3D Moore neighborhood
( ) which conveys the highest spatial permission and therefore results in the fastest
cell migration rate. If the cell resides at a location within the second TGFα concentration level

(2), it will choose the next location from the 3D Diagonal neighborhood ( ). Otherwise,
the cell will select its next location from the more restrictive 3D Von Neumann neighborhood
( ). We therefore incorporate in our expanded model here not only that the
chemotactically-driven search precision of clones C, D, E is higher than that of clones A and
B. Rather, in addition, we implement that a higher TGFα concentration can increase the cell’s
spatial “permission”, thus reflecting its progressive loss of tumor cell-tumor cell adhesion as
reported in [8-11], and as such implicitly adding an element of haptotaxis.

As discussed earlier, Lijk is the correct, non-erroneous evaluation of location, which includes
homotype and heterotype chemoattractants. Eq. 13 models this biological behavior, i.e., if a
cell resides in location (x0, y0, z0) and the sum of its 3D Von Neumann neighborhood TGFα

( ) is greater than glucose concentration ( ), then this cell is subjective to
choose the homotype attractant, otherwise the cell is attracted by the heterotype cue.

(13a)

(13b)

3.1.4. Cell phenotype—As before, we simulate four different cellular phenotypes, i.e.
migration, proliferation, quiescence and apoptosis – now, however, for each of the five different
glioma cell clones. We again implement the concept of ‘dichotomy’ for glioma cells, first put
forward by [36] which argues on the basis of mounting experimental data that migration and
proliferation are mutually exclusive behaviors that can happen in sequence, yet hardly at the
same time in the same cell. Using breast cancer cells, Dittmar et al. [15] discovered that
PLCγ is activated transiently during cell migration. Building on this experimental data, Athale
et al. [1,2] and Zhang et al. [3] employ a PLCγ threshold (σPLC) to model a hypothesized
biological switching behavior in that PLCγ is activated to a greater extent during migration and
more gradually during proliferation. Thus, the migration potential is assessed by a cell
evaluating the following function:

(14)
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where Mn is the migration potential that equals the change in concentration of active PLCγ
over time and n is the cell number. Once Mn is greater than σPLC, the cell chooses a migratory
phenotype, otherwise it undergoes proliferation. We note that there are three possibilities that
the cell enters the reversible quiescent state: (1) the cell is unable to find an empty location to
migrate to or proliferate into; or (2) the migration potential (Mn) is less than σPLC and
ppTGFα – EGFR _ s is less than σEGFR ; or, (3) the glucose concentration around the cell drops
to critically low values. If the on-site glucose concentration diminishes even further, the cell
enters an apoptotic state [32].

3.2. Molecular environment
The sub-cellular setup is described in detail in [3]. Here, we therefore only briefly summarize
this molecular environment, focus on its modifications, and note that the model’s intracellular
workflow is depicted in Figure 3.(a). Specifically, each cell is equipped with an EGFR gene-
protein interaction network shown in Figure 3.(b), which is composed of 14 molecular species
in addition to the five molecular species involved in our simplified cell cycle representation,
as listed in Table 3. These molecular species interact with each other according to mass balance
equations, denoted by the general form:

(15)

where Xi is the mass of ith (i=1-14) molecules comprising the EGFR network and αi,
βi(i=1-14) are the rate of synthesis and degradation rate of EGFR pathway, respectively. Also,
Xi(i=15-19) molecules are the components of the cell cycle and αi, βi(i=15-19) are the
coefficients of the cell cycle module. The values of parameters and constants are listed in [3].
As an important extension of our previous works, a proliferation process has now been
explicitly integrated into the model in that more aggressive cell clones are associated with a
shorter cell doubling time.

4. RESULTS
Our code is implemented in Java (Sun Microsystems, Inc., USA), combined with in-house
developed classes for representing molecules, reactions and multi-receptors as a set of
hierarchical objects. Running the simulation 10 times with different random normal
distribution, σg, of glucose (Eq. 2), the algorithm requires a total of 70 hrs 46 min of CPU time
on a computer with an IBM Bladecenter machine (dual-processor 32-bit Xeons ranging from
2.8-3.2GHz w/2.5GB RAM) and Gigabit Ethernet. Each node runs Linux with a 2.6 kernel and
Sun’s J2EE version 1.5.

Employing a multi-level growth model, our analysis spans several scales of interest in starting
with the overall, macroscopic behavior followed by the multicellular population patterns before
focusing on the distinct impact molecular-level dynamics have on microscopic cell phenotypes.

Volumetric tumor growth dynamics
We measure the tumor system’s [total] volume by counting the number of lattice sites occupied
by a tumor cell regardless of its phenotype, hence lumping together both proliferative- and
migratory-driven expansion. Figure 4 shows the tumor’s volumetric increase over time for the
10 simulation runs.

To achieve a higher spatial resolution of analysis, we divide the macroscopic tumor into three
microscopic regions, sectioning the distance between the tumor and the nutrient source such
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as shown in Figure 5.(a): region 1 is closest to the nutrient source, region 3 is farthest from the
nutrient source, with region 2 being located in between.

Tumor heterogeneity
In an attempt to quantify clonal heterogeneity we employ the so-called Shannon Index which

is defined as  where pi is the frequency of clone i within the tumor [37]. Figure
5.(b) displays this index for region 1, 2, and 3 at each time step. While the indices for all three
regions generally increase (i.e., exhibit more clonal heterogeneity) region 1 experiences an
unexpected drop around t = 100, which indicates the emergence of a more homogenous sub-
section prior to a gain of clonal diversity similar to that of the other two geographic sub-regions.

Visualizing this type of emergent heterogeneity by orienting us on curve-crossing points seen
in Figure 5.(b), we display in Figure 6.(a)-(c) representative 3D snapshots of the tumor at
consecutive time points t = 105, 180 and 230. As one would expect from a chemotaxis-driven
search, the tumor overall expands towards the location of the nutrient source (compare with
Figure 1).

Expansion rate per tumor region
To support this impression quantitatively, we measure the expansion rate for each sub-region
by computing the average expansion radius for each region based on its center of mass. The
results show that tumor region 1, i.e., closest to the nutrient source, expands much faster than
regions 2 and 3 that are farther from the nutrient source (Figure 7). The lesser expansion rate
of region 2 (versus region 3) is due to the fact that cells in region 2 find fewer empty locations
to choose from.

Expansion rate per tumor clone
The next question to address is then how much of that regional specificity is due to its prevailing
clonal population and as such we measure the expansion rate for clone A, B, C, D and E at
each time step by computing the average expansion radius for each clone based on the center
of each clone. From Figure 8 one can see that clone E (with the highest EGFR density per cell)
exhibits the highest expansion rate increase. In contrast, although clone A and B (with lower
EGFR density) originate first, and thus also start to expand much earlier than clone C, D and
E, these two lower malignant clones keep a much smaller expansion rate for most of the
simulation.

So far, the results support the notion that a higher density of the more aggressive clone E is
responsible for the higher expansion rate increase in the tumor region that is closest to the
nutrient source. This therefore warrants a more detailed look into the phenotypic dynamics of
the cancerous clones in general, and of clone E in particular.

Phenotypic spectrum per tumor clone
Turning then to the microscopic analysis level by monitoring the phenotypic fractions of clone
A, B, C, D and E at each time step (Figure 9. (a)-(e)) it is evident that clones with higher EGFR
density are eventually comprised of a larger migratory fraction, while exhibiting a smaller
proliferation and quiescence cell population. Specifically, clone E has the largest and most
sustained migratory cell population, and, as the curve shows, the ‘population’ crossover
between a more stationary, proliferation-dominated to an expansive, migration-dominated
clone happens earlier than in the other, less aggressive tumor clones. We also note that,
qualitatively, the fluctuations in the curves increase from a fairly periodic pattern in the lower
malignant clones A and B, to a much less regular, ‘noisy’ pattern in the higher malignant clones.
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Molecular phenotype-switching profiles
Moving now to the sub-cellular level, and building on our previous study [3], we use a heatmap
display to visualize the percentage change of each molecular component of the implemented
EGFR network (Figure 3. (b)) when the cells switch their phenotype from migration to
proliferation or from proliferation to migration. We focus on time points, t =200 and 230, i.e.
when the simulation begins to show sustained migration for most of the clones and again, when
the run is almost completed. From Figure 10 it is evident that no phenotype switching signature
is exactly alike. That is, differences exists between time points, phenotype switches, and
geographic regions. However, there are also some similarities as for most cases, the signals for
dimericTGFα – EGFR cell surface complex (X3), phosphorylated active dimeric TGFα –
EGFR cell surface complex (X4), cytoplasmic inactive dimeric TGFα – EGFR complex (X5),
cytoplasmic EGFR protein (X6) and Ca-bound inactive PLCγ (X10) experience a more profound
dynamic change for each region.

5. DISCUSSION & CONCLUSIONS
In here, we present an expansion of our 3D multi-scale agent-based brain tumor model that has
now been extended to (1) also incorporate an element of genetic instability to simulate glioma
progression and to analyze its impact across multiple scales. Building on our previous works
[1-3], this model not only encompasses molecular, microscopic and macroscopic scales of
observation, but now also integrates (2) both, cell doubling time and cell cycle into the cells’
proliferation module. (3) This model also simulates the impact of chemoattractants on cancer
cell adhesion and migration rate. In the following, we discuss the results in more detail.

The tumor region adjacent to a blood vessel representing nutrient source (i.e., region 1) harbors
early on the highest clonal heterogeneity (Figure 5.(b)), reflecting the spatio-temporal output
of the implemented linear progression path. However, around time step t = 100 this geographic
‘tip’ region (Figure 6.(a)-(c)) becomes increasingly homogeneous due to a temporary
competitive advantage of the most aggressive clone E with regards to its chemo-sensing ability
and high spatial expansion rate. During a period that is marked by variability across runs
(increasing fluctuations in standard deviation), clone E prevails in its quest to move fastest into
the direction of “(least resistance,) most permission and highest attraction” [20], and, in the
process, impacting the spatio-temporal patterns of the entire tumor system.

However, the micro-environmental conditions closer to the core of the tumor, i.e. for cells in
regions 2 and 3 are less selective for clone E and thus continuous tumor progression yields a
sustained increase in the Shannon Index that eventually even exceeds the peak value for region
1. One can argue that, other than region 1, regions 2 and 3 allow for an element of temporary
coexistence (if not cooperation) between the clones. Since regions 2 and 3 together add up to
a larger volume than region 1 alone, this finding corresponds well with another recent claim
of cancer cell cooperation fostering tumorigenesis [38], and also with the results reported by
[37] on esophagus cancer which indicated that clonal heterogeneity is a greater risk factor for
progression to cancer than the expansion of a homogeneous clone with a low Shannon Index
value. This seems confirmed with our own results as clone E’s dominance of region 1 is
relatively short-lived with the heterogeneity index soon returning to values comparable to the
two proximal tumor regions. The question arises then as to what precisely are the effects of
such clonal heterogeneity on tumor growth dynamics? First, due to their higher density of EGF
receptors per cell, clones C, D and primarily E exhibit an increased expansion rate (Figure 8)
over clones A and B. Correspondingly, Figure 9 confirms that these tumor clones with higher
EGFR density switch earlier to an invasive phenotype-dominated cell population that operates
with a larger fraction of migratory cells, yet with lesser proliferative and quiescent cells. Our
in silico model shows that higher EGFR expression leads to faster expansion of tumor areas
that harbor more such aggressive cell populations, in areas of nutrient abundance. This, in turn,
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will result in overall growth asymmetries (see region 1, Figure 7), i.e., findings that taken
together correspond well with reported experimental and clinical results [17,29,30].

Taking advantage of our algorithm’s multi-scale design we can analyze the molecular
composition of the gene-protein interaction network at the location and time when the cell
transitions from one phenotype to another. Specifically, Figure 10 demonstrates that there are
both spatially and temporally distinct molecular signatures that lead to the cells’ phenotypic
switch. Cautiously extrapolated to an orders of magnitude more complex experimental
situation, one wonders how much more robust in vitro and in vivo expression profiles would
have to be within a patient’s tumor (let alone across an entire patient population) to warrant
the single site and time point assessments that are commonly used for functional genomics in
clinics. In fact, applying a global genomic analysis Maher et al. [39] recently showed wide-
spread differences between primary and secondary glioblastoma entities and reported that the
latter group (which develops over multiple years from lower malignant astrocytomas [40]) is
heterogeneous in its molecular pathogenesis. Our findings should not be misinterpreted as
questioning the value of such high-throughput data, rather, our in silico results argue that
assessing the molecular profile repeatedly, and at different sites of the tumor, should add
predictive power. Interestingly, we found that at time step 200 the percentage changes of some
molecules (i.e., X3, X4, X5, X6 and X10) in region 2 and 3 is more substantial than in region 1
regardless of the switch per se. The reason for this is that the higher EGFR density in clones
C-E results in higher concentrations of other downstream molecules as well. Hence, the relative
molecular fluctuations should be lesser in clones C, D and E than in clones A and B. And, since
region 1 is mostly comprised of cells derived from clones C-E, its molecular composite
signature appears to be more preserved between the time points than that of the other two
regions. However, over time many more aggressive cells originate from clones A and B also
in the more proximal tumor regions, and we see therefore eventually a somewhat more
homogeneously aggressive pattern where regions 2 and 3 start to resemble the distant region
1. As such, by monitoring the molecular signature dynamics per region, one can at least in
silico visualize the gradual tumorigenic evolution of sub-regions of the tumor, in an effort to
better understand how they may contribute to multicellular growth behavior.

Despite these considerable extensions, our modeling platform of course has still a number of
shortcomings that can and should be addressed in future works. For example, we currently rely
on a fixed mutation rate between each clone and mutations only occur linearly from A to E,
without any non-linear ‘shortcuts’ and without assigning a different weight to specific
mutations as well as we scaled some microscopic parameters due to the insufficient
computational capability. In subsequent research, we intend to implement a dynamical
mutation rate that depends both on intrinsic and extrinsic, or microenvironmental factors. Other
extensions on the molecular level will rely on sensitivity analysis, or may include a more
explicit treatment of vascular architecture. Nonetheless, this work significantly enhances our
previously introduced platform [1-3] by including the element of genetic instability and
integrating both cell cycle and cell doubling time into the cells’ proliferation process. Given
the fact that we begin to be able to validate some of the model’s predictions with experimental
studies, we firmly believe that this type of interdisciplinary approach holds significant promise
to help improve our understanding of brain cancer progression and its impact on the tumor
system’s regional and global growth dynamics.
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Abbreviations

ECM extracellular matrix

EGF(R) epidermal growth factor (receptor)

MAPK mitogen activated protein kinase

PLCγ phospholipase Cγ

TGFα transforming growth factor α
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Figure 1.
Schematic of the 3D lattice, with Cube 4 harboring the nutrient source. We apply the Dirichlet
boundary condition [41] and set the chemo-attractant concentration in the boundary to zero.
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Figure 2.
The mutational steps that constitute the genetic progression pathway from clone A to E.
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Figure 3.
(a) The cancer cell’s sub-cellular workflow that determines its phenotypic output. (b) The
EGFR gene-protein interaction network (see text for details).
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Figure 4.
The volume of the tumor system (y-axis) over time (x-axis). Shown are mean values of 10
simulation runs with random standard deviation (grey) of the glucose concentration at a range
between 50 and 60 nmol/lattice site.
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Figure 5.
(a) The schematic shows the separation of the tumor into three regions (dotted lines) with
varying distance to the nutrient source (black circle in Cube 4; compare with Fig. 1). (b)
Depicted is the Shannon Index (y-axis) over time (x-axis) for these three distinct regions. Shown
is the result of 10 runs with standard deviation.
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Figure 6.
3D snapshots of the tumor system at time step t = 100 (a), t = 180 (b), t = 230 (c). The red
circle depicts the location of the nutrient source (compare with Fig. 1). Note, the light and dark
green colors represent cells of clone A in their proliferation state and migration state,
respectively; light and dark blue represent cells of clone B in proliferation and migration states;
light and dark yellow represent cells of clone C in proliferation and migration state; light and
dark purple represent cells of clone D in proliferation and migration states; light and dark
red represent cells of clone E in proliferation and migration states. Finally, light and dark
grey represent cells in the quiescence and apoptosis states, respectively, for clones A-E.
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Figure 7.
The expansion rate (y-axis) of regions 1, 2 and 3 over time (x-axis).
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Figure 8.
The expansion rate (y-axis) of clone A, B, C, D and E over time (x-axis).
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Figure 9.
The phenotypic spectrum (y-axis) for clone (a) A, (b) B, (c) C, (d) D and (e) E over time (x-
axis).
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Figure 10.
Percentage change of each EGFR network component (compare with Fig. 3(b)) combined to
molecular signatures and represented as heatmaps, for the three geographic tumor regions, at
time step 200 and 230, respectively. (Note: M → P = phenotypic switch from migration to
proliferation; P → M = from proliferation to migration [3]; color scale represents percentage
change: e.g., 0.005 equals 0.5%).
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Table 1

Cell cycle times and proliferation periods for clone A to E.

Clone type Cell cycle Proliferation period

A T 2T

B T 1.8T

C T 1.6T

D T 1.4T

E T 1.2T
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Table 2

Coefficients of the tumor heterogeneity model taken from the literature [1-3,5,6].

rA 3.85×10−12 mol/step Glucose uptake coefficient for clone A

rB 4×10−12 mol/step Glucose uptake coefficient for clone B

rC 7.7 ×10−12 mol/step Glucose uptake coefficient for clone C

rD 1.54×10−11 mol/step Glucose uptake coefficient for clone D

rE 3.08×10−11 mol/step Glucose uptake coefficient for clone E

D1 6.7 ×10−7 cm2s−1 Diffusion coefficient of glucose

D2 5.18×10−7 cm2s−1 Diffusion coefficient of TGFα

Do 8×10−5 cm2s−1 Diffusion coefficient of oxygen tension

Tm 147 ±18 pg / ml Maximum concentration of TGFα

Ga 0.72×10−9 mol/site Normal concentration of glucose

Gm 2.36×10−9 mol/site Maximum concentration of glucose

ST 0.3 molecules/min Secretion rate of TGFα

ka 0.0017 Dimensionless Constant (DC) Normal concentration of oxygen

km 0.0025 DC Maximum concentration of oxygen
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Table 3

Symbols of the EGFR gene-protein interaction network, and cell cycle module, taken from the literature[3].

Symbol Variable

X1 TGFα extracellular protein

X2 EGFR cell surface receptor

X3 Dimeric TGFα – EGFR cell surface complex

X4 Phosphorylated active dimeric TGFα – EGFR cell surface complex

X5 Cytoplasmic inactive dimeric TGFα – EGFR complex

X6 Cytoplasmic EGFR protein

X7 Cytoplasmic TGFα protein

X8 EGFR RNA

X9 TGFα RNA

X10 PLCγ inactive , Ca-bound

X11 PLCγ active, phosphorylated, Ca-bound

X12 Nucleotide pool

X13 Glucose cytoplasmic

X14 Glucose extracellular

X15 cdh1-APC complex

X16 cyclin-CDK

X17 Mass of the cell

X18 Protein p27

X19 RBNP
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