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Abstract
Aberrant CpG island methylation is associated with transcriptional silencing of regulatory genes in
human cancer. While most CpG islands remain unmethylated, a subset accrues aberrant methylation
in cancer via unknown mechanisms. Previously, we showed that CpG islands differ in their intrinsic
propensity towards hypermethylation. We developed a classifier (PatMAn) based on the frequencies
of seven DNA sequence patterns that discriminated methylation-prone (MP) and methylation-
resistant (MR) CpG islands. Here we report on the genome-wide application and direct testing of
PatMAn in cancer. Although trained on data from a cell culture model of de novo methylation
involving overexpression of DNMT1, PatMAn accurately predicted CpG islands at increased risk of
hypermethylation in cancer cell lines and primary tumors. Analysis of CpG islands predicted to be
MP revealed a strong association with embryonic targets of Polycomb Repressive Complex 2
(PRC2), indicating that PatMAn predicts not only aberrant methylation, but also PRC2 binding. A
second classifier (SUPER-PatMAn) that integrates the seven PatMAn DNA patterns with SUZ12
protein enriched regions as a marker of PRC2 occupancy showed improved performance (prediction
accuracy=81-88%). In addition to many non-PRC2 targets, SUPER-PatMAn identified a subset of
PRC2 targets that were more likely to be hypermethylated in cancer. Genome-wide, CpG islands
predicted to be MP were enriched in genes known to undergo hypermethylation in cancer, genes
functioning in transcriptional regulation, and components of developmental pathways. These
findings demonstrate that hypermethylation of certain gene loci is controlled in part by an underlying
susceptibility influenced by both local sequence context and trans-acting factors.
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INTRODUCTION
CpG island hypermethylation is associated with local changes in chromatin architecture and
serves as one mechanism for silencing tumor suppressor gene transcription in human cancer.
It is estimated that individual tumors exhibit aberrant de novo DNA methylation of 1-5% of
the nearly 38,000 CpG islands in the human genome (1-3). While there is significant variation
in the methylation profile from one tumor to the next, a subset of CpG islands are reproducibly
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methylated across multiple tumors and cancer types (1). However, the mechanisms by which
specific CpG islands are targeted for aberrant methylation in cancer cells remain unclear. One
hypothesis suggests that the DNA methyltransferase enzymes may be aberrantly targeted to
specific loci by transcription factors or other DNA binding proteins. For example, the
oncogenic PML-RAR transcription factor has been shown to bind the DNMTs and direct de
novo methylation to a downstream target gene in acute promyelocytic leukemias (4). More
recently, the DNMTs have been shown to interact with components of the Polycomb
Repressive Complex 2 (PRC2) and to be recruited to sites of polycomb-mediated repression
in cancer cells (5-8). PRC2 consists of SUZ12, EED, RbAP46/48, and the histone
methyltransferase EZH2 which mediates the tri-methylation of histone H3 lysine 27
(H3K27me3) at approximately 10% of genes in human embryonic stem cells (9). Interestingly,
a fraction of these PRC2-target genes undergo aberrant DNA methylation in human cancers
(8,10,11) suggesting that the mark imposed by PRC2 during development may predispose
some genes for later de novo methylation.

In previous work, we identified CpG islands with different propensities for aberrant
methylation in response to stable overexpression of the DNMT1 DNA methyltransferase (12,
13). Of 1,749 CpG islands analyzed, the majority (70%; n=1,223) were methylation-resistant
(MR) and remained unmethylated in multiple cell clones regardless of DNMT1 expression.
However, a distinct subset (3%, n=66) was found to be methylation-prone (MP) in that they
were consistently hypermethylated in multiple independent DNMT1-overexpressing clones
(13). Using pattern recognition and supervised machine learning techniques, we established a
classifier based on seven short DNA patterns (TCCCCCNC, TTTCCTNC, TCCNCCNCCC,
GGAGNAAG, GAGANAAG, GCCACCCC, GAGGAGGNNG) that was capable of
accurately discriminating MP and MR CpG islands in cross-validation and blind tests (Figure
1) (13). We refer to this sequence-based classifier as PatMAn for Pattern-based Methylation
Analysis. These initial findings indicated that individual CpG islands differ in their inherent
susceptibility to aberrant DNA methylation and suggested that this susceptibility is conferred
in part by local features encoded in the DNA sequence. These data support the concept of an
“instructive” mechanism of de novo DNA methylation in cancer wherein the risk of
methylation is a predetermined intrinsic property of some CpG islands (3).

We now report on the genome-wide application and biological validation of the PatMAn
classifier. We find that PatMAn predicts with high confidence CpG islands at increased risk
of de novo methylation not only in DNMT1-overexpressing cells, but also in cancer cell lines
and primary tumors. Furthermore, we find a significant enrichment of PRC2 target genes
among the MP CpG island class suggesting that the algorithm and the sequence patterns that
define it are predictive not only of aberrant methylation, but also of polycomb binding. The
development of a second classifier that integrates PRC2 occupancy data as an additional
biological feature increased the accuracy and specificity of methylation-susceptibility
predictions. These findings demonstrate that aberrant CpG island methylation is influenced by
both local sequence context and at least one trans-acting factor.

METHODS
Cell lines and primary tumor specimens

The generation of human fibroblasts overexpressing DNMT1 and matched controls expressing
vector alone (NeoR) has been previously described (12). Maintenance of the HMEC, MCF10A,
SKBR3, Hs578t, T47D, MDA-MB-468, MCF7, ZR75-1, MDA-MB-435s, MDA-MB-453 and
MDA-MB-231 cell lines has been described (14). All other cell lines (A549, Calu-1, H157,
H1792, H226, H460) were obtained from ATCC and maintained in DMEM media containing
10% fetal bovine serum. Primary human bronchial epithelial cells (HBEC) were generated
from autopsy samples after enzymatic dissociation of epithelium and stroma with collagenase.
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Twenty snap-frozen non-small cell lung cancer specimens (16 adenocarcinoma, 4 squamous
cell carcinoma) and paired adjacent normal tissue were obtained from the Emory University
School of Medicine Tissue Procurement and Banking Service.

Methylation analyses
Genomic DNA was extracted from cell lines and primary tumors using the DNeasy Tissue Kit
(Qiagen) and was bisulfite-modified as described (15). For primary tissue samples, 1μg of
DNA was bisulfite-modified with the EZ DNA Methylation-Gold kit (Zymo Research)
according to manufacturer’s recommendations. MSP was performed with approximately 80ng
of bisulfite-modified DNA as previously described (14). MSP primers are listed in
Supplementary Table 1. As a methylation positive control, genomic DNA was in vitro
methylated with the bacterial DNA methyltransferase M.SssI (New England Biolabs)
according to manufacturer’s recommendations.

CpG island extraction
A database of CpG island genomic coordinates from the HG17 freeze of the human genome
(NCBI Build 35) was generated by applying a modified version of the CpG Island Searcher
PERL program (www.cpgislands.com) utilizing the criteria of length ≥ 500bp, GC content ≥
55%, and CpG Obs/Exp ≥ 0.65 established by Takai and Jones (16).

Annotation of CpG islands to genome-wide ChIP datasets
Raw SUZ12 ChIP-chip data from human embryonic stem cells (9) was obtained from
http://www.ebi.ac.uk/arrayexpress (ID: E-WMIT-7). Data processing and identification of
SUZ12 enriched, non-enriched, and uninformative regions are described in detail in the
Supplementary Methods. Briefly, SUZ12 enriched and non-enriched genomic regions were
identified with a modified version of the PERL-implementation of the ChIPOTle program
(17). This analysis identified 4,350 SUZ12 enriched regions (average length = 1,313bp). CpG
islands were then assessed for proximity (within 1kb) to SUZ12-enriched and non-enriched
regions. This allowed for the annotation of SUZ12 binding status for 93% of CpG islands in
the genome. There were 3,642 SUZ12 (+) CpG islands, 31,238 SUZ12 (-) CpG islands, and
the remaining 2,650 had insufficient data.

ChIP-Seq dataset for H3K27me3, H3K4me3, RNA PolII, and H3K27Ac in CD4+ T cells were
obtained from http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.html or
http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcellacetylation.html (18,19). Spatial
mapping was performed with a custom PERL program which aligns CpG islands by their
centers and then calculates the average number of ChIP-Seq tags at each base within a specified
window. A 500bp centered moving average was applied to highlight larger trends and smooth
out short-range fluctuations.

Classifier generation and application
A supervised learning strategy was used to develop a predictive rule based on a set of sequence
attributes that discriminate MP and MR sequences (see Supplementary Methods for a detailed
description) (13). Briefly, pattern recognition was first employed on a training set of 9 MP and
9 MR CpG islands to identify common short DNA patterns. Feature selection and a novel
optimization-based discrete support vector machine (DAMIP; (20)) were then applied. This
machine-learning approach returned a classifier based on a set of 7 short discriminatory DNA
patterns that achieved an accuracy of 89% in 10-fold cross-validation tests. This DNA
sequence-based classifier is herein referred to as PatMAn, and has been previously reported
(13). A second classifier, termed SUPER-PatMAn, was developed based on the same training
set of MP and MR sequences using the 7 discriminatory patterns from PatMAn and SUZ12
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enrichment status (scored as positive, negative, or uninformative; see Supplementary Methods)
as input into the DAMIP classification engine To compare their predictive power, the PatMAn
and SUPER-PatMAn classifiers were then applied to all human CpG islands.

Classifier performance calculations
Accuracy, specificity, and sensitivity were calculated as follows:

where TP = true positive, FP = false positive, TN = true negative, and FN = false negative. For
scoring purposes, a CpG island was scored as MP if it exhibited increased methylation in at
least 2 of 3 DNMT1 clones compared to the average methylation among NeoR clones or higher
methylation in at least 20% of cancer cell lines relative to the highest methylation event
observed in control cells.

RESULTS
Using methylation data from a cell culture model in which de novo methylation is induced by
overexpression of DNMT1, we previously generated a classifier involving 7 novel DNA
sequence patterns that could discriminate MP and MR CpG islands (13). To further evaluate
the predictive potential of the PatMAn classifier and to determine the extent to which PatMAn
is predictive of aberrant methylation in other settings, we applied it to all 37,530 CpG islands
from the NCBI build 35 (UCSC HG17) meeting the criteria of Takai and Jones (length ≥ 500bp,
GC content ≥ 55%, and CpG Obs/Exp ≥ 0.65) (16). PatMAn predicted 1,535 (4.1%) CpG
islands to be MP (Supplementary Table 2). The chromosomal distribution of predicted MP
CpG islands showed no apparent clustering after CpG island density was considered (Figure
2A). The accuracy of these predictions was then validated experimentally by assessing the
actual methylation status of 44 randomly-selected CpG islands from chromosomes 21 and 22
(23 predicted to be MP, 21 predicted to be MR) in normal IMR90 fibroblasts, DNMT1-
overexpressing cells, and vector-only controls (NeoR) (Figure 2B/C). CpG islands exhibiting
increased methylation in at least 2 of 3 DNMT1 clones compared to the average methylation
among NeoR clones were considered to be truly MP (i.e. true-positive if predicted MP and
false-negative if predicted MR). Two CpG islands (MGC16635, RIPK4) were methylated in
all samples examined, including normal fibroblasts and primary tissues (Figures 2 and 3) and
thus their potential for aberrant de novo methylation could not be assessed accurately. After
excluding these, more than half (12 of 22; 54.5%) of the CpG islands predicted to be MP by
PatMAn were indeed hypermethylated in DNMT1-overexpressing cells. In contrast, only 3 of
20 (15%) CpG islands predicted to be MR were hypermethylated (Figure 2C; p=0.01, Fisher’s
exact). Therefore, PatMAn was capable of predicting the actual methylation status of CpG
islands in DNMT1-overexpressing cells with an accuracy of 69% (specificity = 63%;
sensitivity = 80%; see Methods for calculation details).

To determine the extent to which PatMAn is predictive of aberrant methylation in human
cancer, we next analyzed the aforementioned 44 CpG islands in primary human mammary
(HMEC) and bronchial epithelial cells (HBEC), immortalized, non-transformed breast
epithelial cells (MCF10A), and a panel of nine breast and six lung cancer cell lines (Figure 3).
In general, those CpG islands predicted to be MP by PatMAn were more frequently methylated
in the cancer cell lines than in cultured primary cells (HMEC, HBEC) or a non-tumorigenic
(MCF10A) cell line. Again, two CpG islands (MGC16635, RIPK4) were methylated in all
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samples examined, including primary mammary and bronchial epithelial cultures (Figure 3)
and were excluded from performance calculations. If we consider CpG islands that exhibit
higher methylation in at least 20% of cancer cell lines relative to the highest methylation event
observed in control cells to be true-positives, then the accuracy of the classifier was 76.2%
(specificity = 69.2%, sensitivity = 87.5%). CpG islands predicted to be MP that were actually
hypermethylated in DNMT1-overexpressing cells also tended to be hypermethylated in breast
and lung cancer cell lines (Figures 2C and 3).

Although based on a limited dataset, it is also interesting to note that HBEC isolated from a
smoker exhibited hypermethylation of several predicted MP CpG islands as compared to
HBEC from a non-smoker (Figure 3). A similar phenomenon was observed in immortalized,
yet non-transformed mammary epithelial cells (MCF10A) compared to cultured primary
HMECs. These data suggest that the aberrant methylation of some CpG islands predicted to
be MP may be an early event in the tumorigenic process. Thus, the PatMAn classifier seems
to identify a class of CpG islands that are prone to aberrant methylation across multiple cell
(fibroblast and epithelial) and tumor types (breast and lung cancer), and in response to other
pre-malignant stress conditions (carcinogen exposure, immortalization).

The identification of CpG islands with different propensities for aberrant DNA methylation
provides an opportunity to examine other biological characteristics that might correlate with
methylation susceptibility. To this end, gene ontology analyses were performed on a dataset
of MP and MR CpG islands previously identified by restriction landmark genomic scanning
(RLGS) in the DNMT1 overexpression model (13). These studies revealed that MP CpG
islands were significantly enriched in genes functioning in transcriptional regulation (Figure
4A), whereas the MR class was enriched in genes functioning in protein binding,
phosphorylation, and metal binding (data not shown). In particular, the homeobox class was
the most significantly enriched category among the MP genes (16%; p=2.73×10-8), whereas
none of the MR genes encoded homeodomains.

Homeobox genes and other developmental regulators are frequent targets of polycomb-
mediated repression. One complex that mediates this repression is the Polycomb Repressive
Complex 2 (PRC2) which consists of SUZ12, EED, RbAp46/48, and the histone
methyltransferase EZH2 which catalyzes the tri-methylation of H3K27 (H3K27me3) (21).
PRC2 components are up-regulated in cancers (22) and interactions between EZH2 and
DNMTs have been reported (5-8). Genome-wide studies have characterized the distribution
of H3K27me3, SUZ12, and EED in human embryonic stem cells (9). Analysis of these data
revealed a striking relationship between loci enriched for PRC2 components and/or marked by
H3K27me3 and those CpG islands determined by us to be MP by RLGS in DNMT1-
overexpressing cells (Figure 4B). Approximately half (50.9%) of the MP CpG islands were
enriched for SUZ12, EED, and/or H3K27me3, whereas only 17.6% of MR CpG islands were
similarly enriched (p=7.2 × 10-7, Fisher’s exact). A similar analysis of genome-wide binding
data for the chromatin insulator CTCF (23) showed no relationship with methylation propensity
(Supplementary Figure 1).

There was also a striking relationship between SUZ12 occupancy and CpG islands predicted
by PatMAn to be MP (Figure 3). Indeed, those CpG islands predicted to be MP that were
actually hypermethylated in cancer cells tended to be those bound by SUZ12. Of the 9 CpG
islands predicted to be MP that were also bound by SUZ12, all were hypermethylated in cancer
cells. On the other hand, only 5 (38%) of the 13 CpG islands predicted to be MP that were
negative for SUZ12 were hypermethylated (p=0.006, Fisher’s exact). In contrast, there was no
correlation between SUZ12 binding and actual methylation status among the predicted MR
CpG islands. Only 2 predicted MR CpG islands were bound by SUZ12 and neither was
hypermethylated. Thus, the PatMAn classifier which is based solely upon DNA sequence is
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capable of distinguishing those PRC2 occupancy events that are associated with aberrant DNA
methylation in cancer cells from those that are not.

Based upon these observations, we next sought to determine whether the inclusion of polycomb
occupancy data in combination with DNA sequence features might aid in the discrimination
of MP and MR CpG islands. We used the genome-wide SUZ12 ChIP-chip data from human
embryonic stem cells (9) to annotate CpG islands for PRC2 occupancy status (Figure 4C;
Supplementary Methods). This analysis allowed for the annotation of 93% of CpG islands
genome-wide. Utilizing the same training set of CpG islands and supervised learning approach
used to generate PatMAn, we generated a new classifier in which SUZ12 occupancy status
was considered as a discriminatory feature in combination with the frequencies of the original
seven PatMAn DNA patterns. The accuracy of this new classifier, which we refer to as SUPER-
PatMAn (for SUZ12 Protein Enriched Regions and Pattern-based Methylation Analysis) was
then estimated by 10-fold cross-validation. Results of the cross-validation showed that MP
CpG islands were classified with an accuracy of 88% (1 of 9 misclassified) and MR CpG island
with an accuracy of 78% (2 of 9 misclassified) for an overall rate of correct classification of
83%.

When applied to all 37,530 human CpG islands, SUPER-PatMAn predicted 1,232 (3.3%) to
be MP (Supplementary Table 2). Analysis of the same 44 CpG islands used to assess PatMAn
performance showed that prediction accuracy improved from 69% to 81% in DNMT1-
overexpressing cells and from 76.2% to 88.1% in cancer cell lines. This improved performance
was due to a reduced rate of false positives resulting from the re-classification of 6 CpG islands
originally classified as MP by PatMAn (Figure 4D). As a result, specificity increased from
62.9% to 81.5% in DNMT1-overexpressing cells and from 69.2% to 88.5% in cancer cell lines.
Thus, this classification algorithm based on DNA sequence patterns plus PRC2 occupancy
exhibits increased predictive power for the classification of methylation susceptibility.

We next evaluated the ability of PatMAn and SUPER-PatMAn to identify cancer-associated
hypermethylation in primary tumors. We analyzed the methylation status of the 44 test CpG
islands in a collection of non-small cell lung tumors (T) and paired adjacent normal (N) tissues
from the same patient (Figure 5A). CpG islands that exhibited tumor-specific hypermethylation
in a preliminary screen of five N-T pairs were further assessed in 15 additional N-T pairs
(Figure 5B). Six CpG islands (TBX1, OLIG2, ADAMTS5, KCNJ6, MGC16635, RIPK4)
exhibited some methylation in normal adjacent tissues (data not shown) and were not
considered further. Of the remaining 38 CpG islands, 9 of 18 (50%) CpG islands predicted to
be MP by PatMAn exhibited tumor-specific hypermethylation. In contrast, only 2 of 20 (10%)
CpG islands predicted to be MR exhibited any hypermethylation (p=0.01, Fisher’s exact).
SUPER-PatMAn showed improved performance, with 69.2% (9 of 13) predicted MP CpG
islands exhibiting tumor-specific methylation, whereas only 8% (2 of 25) predicted MR CpG
islands showed any methylation (p=0.0002, Fisher’s exact) (Figure 5B). Taking into
consideration total hypermethylation events among all genes and tumors tested, CpG islands
predicted to be MP by the SUPER-PatMAn and PatMAn classifiers were methylated 9.1 and
6.3 times more frequently than the predicted MR CpG islands, respectively. Considering that
our analysis was limited to a single tumor type, the observed sensitivity of these classifiers is
likely an under-estimate. Thus, the PatMAn/SUPER-PatMAn classifiers trained on
methylation data from DNMT1-overexpressing cells are also capable of identifying CpG
islands that are prone to hypermethylation in primary lung tumors.

Genome-wide, there were 1,535 (4.1%) and 1,232 (3.3%) CpG islands predicted to be MP by
the PatMAn and SUPER-PatMAn classifiers, respectively. There was considerable overlap
between the two sets with 1,128 CpG islands being common between them (Figure 6A,B).
However, 407 CpG islands predicted to be MP by PatMAn were re-classified as MR by
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SUPER-PatMAn. Based upon our direct testing of chromosome 21/22 CpG islands, these CpG
islands likely represent false-positives misclassified by PatMAn. Additionally, 104 CpG
islands predicted to be MR by PatMAn were re-classified as MP by SUPER-PatMAn. Thus,
the combinatorial contribution of DNA sequence features and PRC2 occupancy predicts a
unique set of MP CpG islands that differs from those identified by either DNA sequence
patterns or PRC2 binding alone.

As expected, a significant fraction (n=471, 38.2%) of the CpG islands predicted to be MP by
SUPER-PatMAn exhibited SUZ12 binding in hES cells (χ2=1059, p<0.00001) (Figure 6B)
and were flanked by regions enriched in the polycomb-mediated H3K27me3 modification
relative to predicted MR CpG islands in an independent dataset of histone H3 modifications
from CD4+ T cells (18) (Figure 6C). However, it should be noted that even in the absence of
the additional SUZ12 occupancy feature, there was a highly significant association between
CpG islands predicted to be MP by the sequence-based PatMAn and those bound by SUZ12
in hES cells (n=370, 24.1%; χ2=386, p<0.0001) (Figure 6B). Similarly, PatMAn-predicted MP
CpG islands were surrounded by H3K27me3 enriched regions in CD4+ T cells relative to
predicted MR CpG islands (Figure 6C). This observation suggests that the seven DNA
sequence patterns that define the PatMAn classifier capture information that is predictive not
only of methylation, but also of polycomb binding.

Interestingly, the spatial analysis of H3K27me3 in CD4+ T cells showed that CpG islands
predicted to be MP by either classifier were flanked by this modification when compared to
predicted MR CpG islands. This relative enrichment of H3K27me3 appeared to be greatest at
the edges of the CpG islands and spanned several kilobases in either direction (Figure 6C). The
relative depletion of H3K27me3 over the center of CpG islands may be explained in part by
the presence of a peak of acetylated H3K27 (Supplementary Figure 2) as these two marks have
been reported to be mutually exclusive (19). In contrast, when H3K4me3 or RNA polymerase
II were similarly analyzed, no difference was observed between the CpG islands predicted to
be MP or MR by either classifier suggesting that this is not a general correlation with all
chromatin-associated features and that overall, there is little difference in transcriptional
activity between the MP and MR classes (Supplementary Figure 3).

In order to further investigate the genes that may be affected by aberrant methylation of CpG
islands predicted to be MP, CpG islands were assessed for proximity to RefSeq genes.
Automated literature searches followed by manual confirmation demonstrated that at least 100
genes known to be hypermethylated in cancer were predicted to be MP by SUPER-PatMAn,
including CCDN2, GATA4/6, HIC-1, and TIMP3 (Supplementary Table 3). Furthermore,
pathway analysis of genes predicted to be MP by PatMAn and/or SUPER-PatMAn revealed
significant associations with components of the WNT, Notch, Hedgehog, cell cycle, and TGF-
beta pathways (Figure 6D), many of which are known to be regulated by PRC2 (9, 24, 25) and
are reported to be methylated in cancer (Supplementary Table 4). Molecular function analysis
of SUPER-PatMAn predictions also revealed significant enrichment of homeobox genes and
other DNA binding proteins among the MP genes (Figure 6E). In addition to being targets of
PRC2, homeobox genes are frequently aberrantly methylated in human cancer (26). Indeed,
28 (60%) of the 47 homeobox genes predicted by SUPER-PatMAn to be MP were recently
reported to be hypermethylated in lung cancer cells (26). Thus, the genes associated with CpG
islands predicted to be MP by our classifiers constitute a unique fraction of the genome that is
enriched for SUZ12 binding, developmental signaling pathways, and molecular functions
related to DNA binding and transcriptional regulation.
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DISCUSSION
This study demonstrates that aberrant de novo DNA methylation is in part dictated by the
underlying sequence context of CpG islands and reveals a role for additional trans-acting
chromatin regulators. We have utilized these features to develop two classifiers capable of
predicting CpG island methylation susceptibility with high confidence. Although other
methylation prediction tools have been developed, these have focused primarily on the
methylation states of individual CpG dinucleotides or methylation of CpG islands in normal
cells (27-30). Our PatMAn and SUPER-PatMAn classifiers represent some of the first
computational approaches to identify CpG islands at increased risk of aberrant
hypermethylation. Genome-wide application of these classifiers predicted 3-4% of CpG islands
to be MP, including genes known to be methylated in cancer and many others that have not
yet been reported to be methylated. Thus, our predicted MP CpG islands provide a rich resource
for the identification of novel targets of aberrant methylation.

Interestingly, although none of the MP CpG islands from the training set encoded homeobox
genes or were otherwise specifically selected for polycomb occupancy, there was still a striking
relationship between the CpG islands predicted to be MP by PatMAn and PRC2 occupancy.
Thus, the PatMAn classifier, and the 7 DNA sequence patterns that define it, are not only
predictive of aberrant methylation but also of PRC2 occupancy. At present, the mechanism by
which PRC2 is directed to specific loci during mammalian development is largely unknown.
In Drosophila, PRC2 is directed by its interaction with complex enhancer elements known as
Polycomb Response Elements (PREs) (31). Such elements are several hundred bp in length,
can act at great distances from the target gene, and do not conform to a particular consensus
sequence. Rather, these elements have been functionally defined through the study of known
Polycomb target genes in flies. No such element has been identified in mammalian systems.
Therefore, our studies may have uncovered sequence features contributing to the mammalian
equivalent of a PRE. In this regard, several of the DNA patterns identified by our computational
model (GGAGNAAG, GAGANAAG, GAGGAGGNNG) resemble the consensus binding
motifs for the ZESTE (YGAGYG) and GAF (GAGAG) transcription factors which are thought
to act as Polycomb recruiting factors in Drosophila (32).

Several recent studies, including ours, have demonstrated a strong association between genes
hypermethylated in human cancers and those targeted by PRC2 in embryonic stem cells (8,
10,11). This finding suggests that PRC2 or the H3K27me3 mark imposed by this complex may
predispose certain CpG islands to aberrant DNA methylation during tumorigenesis. However,
the molecular mechanism linking the two processes is yet to be determined. Importantly, while
genome-wide studies estimate that as many as 10% of genes are marked by PRC2 in embryonic
cells (9), only a fraction of these are further targeted for de novo DNA methylation in cancer
cells, suggesting that additional factors are involved. Consequently, the use of SUZ12 binding
alone as an indicator of aberrant methylation would result in a high rate of false positives. Our
classifiers, on the other hand, predict only a small subset (10.3-12.9%) of SUZ12 bound CpG
islands as MP. For example, on chromosomes 21 and 22, only 11 (19.6%) of the 56 SUZ12-
enriched CpG islands were predicted to be MP and, of the nine tested in this study, all were
hypermethylated in cancer cell lines. Conversely, none of the examined SUZ12-bound CpG
islands that were predicted to be MR were hypermethylated. These data suggest that our
classifiers combine DNA sequence and SUZ12 binding information to identify a subset of
genes marked by PRC2 in embryonic cells that are more likely to be aberrantly methylated in
cancer.

Despite the strong relationship between polycomb-mediated repression and methylation
susceptibility, PRC2 binding alone can not account for all CpG island methylation in human
cancers. Indeed, similar to other studies (8,10,11), only half (9 of 18) of the CpG islands found
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to be hypermethylated in this study were bound by SUZ12 in ES cells. These findings imply
the existence of PRC2-independent mechanisms in cancer-associated methylation. Only
24-38% of genes predicted to be MP by either classifier are SUZ12 targets, suggesting that the
DNA sequence patterns (PatMAn) or combined DNA sequence and SUZ12-based (SUPER-
PatMAN) signatures associated with our classifiers effectively identify many of these PRC2-
independent events. Indeed, there were several CpG islands predicted to be MP by both
classifiers, that were hypermethylated in cancer cells that are SUZ12 negative (see Figure 5).
It is possible that the sequence patterns that define the PatMAn classifier pick up information
that is reflective of sequence-specific DNA binding proteins that might target DNMTs to MP
CpG islands. The best such example is the PML-RAR fusion protein which targets DNA
methylation to its target genes (4). However, this is a rare oncogenic event and few similar
cases have been reported. Alternatively, it is possible that the DNA patterns/chromatin
signature are reflective of a particular secondary structure that is prone to de novo methylation
by DNA methyltransferases. For example, Bock et al (29) determined that the rise and roll of
the DNA helix correlate with CpG island methylation status in normal lymphocytes. Further
work will be necessary to determine the contribution of PRC2-dependent and –independent
mechanisms in CpG island methylation in human cancers.

Although it has been known for over a decade that trithorax-group and polycomb-group
proteins have important roles in gene regulation, studies are only now beginning to reveal the
considerable role that these complexes and the histone modifications (i.e. H3K4me3 and
H3K27me3) they impart have on the establishment and fate of DNA methylation. Recent
studies have identified bivalent domains that are marked simultaneously by both H3K4me2/3
and H3K27me3 in embryonic stem cells (33,34). During differentiation, these domains resolve
to be marked by either H3K4me3 or H3K27me3, and are either permissive or repressive for
gene expression (34,35). Those that resolve into H3K27me3-only domains are associated with
increased DNA methylation during differentiation perhaps due to the ability of DNMT3L to
bind an unmethylated H3K4 (34,36). Conversely, those domains that lose H3K27me3 and
retain H3K4me3 remain unmethylated (34). Similar changes may precipitate alterations in
DNA methylation during human tumorigenesis. The dynamics of histone modification have
not yet been thoroughly assessed genome-wide during tumorigenesis. Nevertheless, it is
noteworthy that a subset of the predicted MP CpG islands reported in this study are flanked
by H3K27me3, yet enriched for H3K4me3 within the island in normal CD4+ T cells. Thus,
aberrant DNA methylation may be induced at these CpG islands through spreading of
H3K27me3 into the island, perhaps stimulating H3K4 demethylation through the recently
reported recruitment of the Rbp2 (JARID1A) H3K4me3 demethylase by PRC2 (37).

The PatMAn and SUPER-PatMAn classifiers were trained on methylation data derived from
DNMT1-overexpressing fibroblasts, but nevertheless can predict with some accuracy CpG
islands at increased risk of methylation in cancer cell lines and primary tumors, and across
cancer types. The sequence signatures associated with these classifiers thus likely reflect
features that are common to CpG island methylation in multiple settings. Previous studies have
shown that human tumors exhibit both shared and tumor-type specific methylation profiles
(1). In this regard, current efforts are focused on the development of tumor-type-specific
classifiers based on methylation data from primary tumors which may uncover novel features
reflecting the contribution of tissue-type specific factors to aberrant methylation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Developing and testing sequence-based computational tools for predicting susceptibility
to aberrant methylation
MP and MR CpG islands were identified by NotI RLGS in human lung fibroblasts stably
overexpressing DNMT1or a control plasmid (NeoR). A training set of 9 MP and 9 MR CpG
islands was used in a three-stage computational approach involving DNA pattern recognition,
feature selection, and an optimization-based discrete support vector machine (DAMIP) to
arrive at a classifier based on 7 DNA patterns with maximal discrimination potential. This
Pattern-based Methylation Analysis classifier, termed PatMAn, was applied to all human CpG
islands. Classifier performance was assessed by testing the actual methylation status of a subset
of CpG islands from chromosomes 21 and 22 in DNMT1-overexpressing cells, a series of
normal and cancer cell lines, and primary lung tumor samples. Improvements were made to
the classifier through the incorporation of an additional feature (i.e. SUZ12 binding). Re-
training based on actual methylation status of tested CpG islands allows for additional
refinement.
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Figure 2. Classification and biological testing of CpG islands from chromosomes 21 and 22
A, Fifty-two of 1,358 chromosome 21/22 CpG islands were classified as MP by the PatMAn
classifier (black ticks to right of each chromosome). A central moving average of CpG island
density (CpGi/100kb) is indicated to the left of each chromosome. B, The methylation status
of a subset of CpG islands from chromosome 21/22 were assessed by methylation-specific
PCR (MSP) in normal fibroblasts (IMR90), 3 independent vector-only clones (NeoR), and 3
independent DNMT1-overexpressing clones (DNMT1). DNA methylated in vitro with
M.SssI is included as a positive control. U, unmethylated; M, methylated. C, Heatmap
representation of MSP results. Each MSP was performed at least three times. The degree of
methylation was estimated from the relative abundance of the methylated and unmethylated
products and is scored on a 5 point scale ranging from completely unmethylated (white) to
completely methylated (blue). Those CpG islands scored as truly MP are indicated by asterisks
(*) and were defined as those that exhibited higher levels of methylation in at least 2 DNMT1-
overexpressing clones compared to the average NeoR methylation.
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Figure 3. Methylation status of CpG islands classified by PatMAn as MP or MR in control and
cancer cell lines
The methylation status of predicted MP (n=23; left panel) and predicted MR (n=21; right panel)
CpG islands was assessed by MSP in normal human mammary epithelial cells (HMEC),
primary human bronchial epithelial cells (HBEC) from a non-smoker and a smoker,
immortalized non-transformed breast epithelial cells (MCF10A), 9 breast cancer cell lines
(Hs578t, MCF7, MDA-MB-231/435s/453/468, SKBR3, T47D, ZR75-1), and 6 lung cancer
cell lines (A549, Calu1, H157, H226, H460, H1792). Each MSP was performed at least three
times. The degree of methylation was estimated from the relative abundance of the methylated
and unmethylated products and is scored on a 5 point scale ranging from completely
unmethylated (white) to completely methylated (blue). SUZ12 occupancy status is indicated
in white (negative) or black (positive). Those CpG islands scored as truly MP are indicated by
asterisks (*) and were defined as those that exhibited higher levels of methylation in at least
20% of cancer cell lines compared to the highest methylation level observed in the control
cells.
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Figure 4. Predicted MP CpG islands are enriched in targets of Polycomb Repressive Complex 2
A, Annotation of gene ontology terms among MP and MR CpG islands identified by RLGS
in DNMT1-overexpressing cells using the DAVID Bioinformatics Database. B, Analysis of
SUZ12 binding, EED binding, or the H3K27me3 modification (9) at MP and MR CpG islands
identified by RLGS in DNMT1-overexpressing cells (13). Pie charts indicate the fraction of
CpG islands enriched for 0, 1, 2, or all three of these factors. C, Representative SUZ12 enriched
(TBX1) and non-enriched (ADRBK2) CpG islands. Plotted are the normalized SUZ12
enrichment ratios for each probe within the window (red bars). Regions scored as SUZ12
enriched (red boxes) were compared to the genomic positions of CpG islands (green boxes),
and RefSeq genes (blue). D, Methylation status of CpG islands predicted to be MP (left panel)
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or MR (right panel) by SUPER-PatMAn. Each MSP was performed at least three times. The
degree of methylation was estimated from the relative abundance of the methylated and
unmethylated products and is scored on a 5 point scale ranging from completely unmethylated
(white) to completely methylated (blue). Those CpG islands scored as truly MP are indicated
by asterisks (*) and were defined as described in Figure 3. #, CpG islands re-classified by
SUPER-PatMAn; NS, non-smoker; S, smoker. SUZ12 occupancy status is indicated in white
(negative) or black (positive).
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Figure 5. Methylation status of CpG islands classified by SUPER-PatMAn as MP or MR in primary
lung tumors
The methylation status of predicted MP and predicted MR CpG islands was assessed by MSP
in a panel of 5 paired normal and cancerous primary lung samples. CpG islands exhibiting
hypermethylation in this sample set were further tested in 15 additional normal-tumor (N-T)
pairs. A, Representative MSP data for 3 predicted MP CpG islands (ERG, PP2447, SIM2) and
3 predicted MR CpG islands (TPST2, C21orf33, CRYZL1/ITSN1) in 5 N-T pairs. U,
unmethylated; M, methylated. B, Summary of methylation frequencies of all CpG islands
tested.
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Figure 6. Genome-wide comparison of PatMAn and SUPER-PatMAn predictions with PRC2
occupancy
PatMAn and SUPER-PatMAn were applied to all 37,530 CpG islands in the human genome.
A, CpG islands classified as MP by PatMAn (green) or SUPER-PatMAn (blue) are indicated
to the right of each chromosome. Regions enriched for the PRC2 component SUZ12 in human
embryonic stem cells (9) are indicated by red ticks. B, Venn diagram representing the overlap
between CpG islands classified as MP by PatMAn and/or SUPER-PatMAn, and those bound
by SUZ12. C, Spatial analysis of the relationship between CpG island predictions and
H3K27me3 ChIP-Seq data. All human CpG islands were aligned by their centers and the
average number of H3K27me3 ChIP-Seq tags (500bp centered moving average) was calculated
extending out 15kb in each direction. D, Analysis of KEGG pathways significantly enriched
among CpG islands predicted to be MP by PatMAn and SUPER-PatMAn using Ingenuity
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Pathways software. The dashed line represents a p-value of 0.05. E, Comparison of observed/
expected frequencies of functional terms significantly enriched among SUPER-PatMAn
predictions using the PANTHER classification system (38).
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