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Abstract
Although much research has been conducted to understand the influence of interpretive volume on
radiologists’ performance of mammography interpretation, the published literature has been unable
to achieve consensus on the volume standards required for optimal mammography accuracy. One
potential contributing factor is that studies have used different statistical approaches to address the
same underlying scientific question. Such studies rely on multiple mammography interpretations
from a sample of radiologists; thus, an important statistical issue is appropriately accounting for
dependence, or correlation, among interpretations made by (or clustered within) the same radiologist.
This manuscript aims to increase awareness about differences between statistical approaches used
to analyze clustered data. We review statistical frameworks commonly used to model binary
measures of interpretive performance, focusing on two broad classes of regression frameworks:
marginal and conditional models. While both frameworks account for dependence in clustered data,
the interpretations of their parameters differ; hence, the choice of statistical framework may
(implicitly) dictate the scientific question being addressed. Additional statistical issues that influence
estimation and inference are also discussed, together with their potential impact on the scientific
interpretation of the analysis. This work was motivated by ongoing research being conducted by the
Breast Cancer Surveillance Consortium; however, the ideas are relevant to a broad range of settings
where researchers seek to identify and understand sources of variability in clustered binary outcomes.
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INTRODUCTION
Despite improvements in the technical quality of mammography since the implementation of
the Mammography Quality Standards Act (MQSA) of 1992 (1), radiologists’ interpretive
performance of mammography has remained highly variable in the United States (2). Much
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research has been conducted toward understanding the role of patient, radiologist, and facility
characteristics in explaining this variation (3-7). Notwithstanding this large body of work,
substantial unexplained variability in interpretative performance remains.

A recent topic of interest is evaluating the influence of radiologists’ mammographic annual
interpretive volume on performance, which could help inform whether current certification
requirements should be changed (2). Conflicting study findings, however, have defied
consensus on whether and how interpretive volume influences performance (2,4-6,8-12).
Although these studies shared the common goal of understanding the influence of volume on
performance, they differed in several important ways, including the study populations, time
frames, choice of performance indices used as the primary outcomes, definitions of interpretive
volume, and selection of adjustment variables. Studies also differed in the statistical approaches
and modeling strategies used to characterize and estimate the associations of interest. To
achieve consensus on the answer to a specific scientific question such as the influence of
interpretive volume on interpretative performance, it is important to place into context
differences in statistical methodologies and how they may influence results. A recent Institute
of Medicine report on improving breast imaging quality standards underscored the need “to
establish the implications, advantages, and disadvantages of statistical approaches to
evaluating the influence of volume on interpretive performance” (2).

Motivated by this, we review commonly used statistical approaches for modeling the influence
of radiologist characteristics on interpretive performance. Evaluating radiologist interpretive
performance relies on observing multiple interpretations for each radiologist. This type of data
is often referred to as repeated measures or clustered data, because outcomes (i.e.,
interpretations) are clustered within the interpreting radiologist. While researchers have a broad
range of statistical methods at their disposal for analyzing clustered data, the focus here is on
regression-based modeling approaches, because they permit adjustment for possible
differences in case mix shown to affect interpretive performance (3-6). Two broad classes of
regression model formulations have been used to study interpretive performance: marginal and
conditional models. We compare and contrast these approaches, focusing on the scientific
interpretation of their parameters. We also outline various scientific and statistical issues that
should be considered when deciding on the specific modeling approach to use or when
interpreting the results of an analysis. We emphasize that the choice of the statistical method
may (often implicitly) dictate the scientific question being addressed, and that modeling
assumptions, and violation of these assumptions, have important implications for achieving
consensus across studies that have a common scientific goal.

Throughout this paper, we illustrate concepts using mammography interpretive performance
data collected by the Breast Cancer Surveillance Consortium (BCSC) (13). The National
Cancer Institute (NCI)-funded BCSC is a consortium of seven mammography registries that
has collected information on 7.5 million mammography examinations interpreted by over 1,000
radiologists at 243 radiology facilities in seven states across the United States
(http://breastscreening.cancer.gov). Each mammography registry annually links women in
their registry to a state tumor registry or regional Surveillance Epidemiology and End Results
(SEER) program that collects population-based cancer data. Five of the seven registries also
link to pathology databases to supplement cancer registry information and collect information
about benign disease. All data are sent to the BCSC’s central Statistical Coordinating Center
(SCC) for pooled analysis. Each BCSC registry, as well as the SCC, received institutional
review board (IRB) approval either for active or passive consenting processes or for a waiver
of consent to enroll women who obtained mammograms at BCSC sites, to link data, and to
perform analytic studies. All procedures are HIPAA-compliant, and all registries and the SCC
received a Federal Certificate of Confidentiality that protects the identities of research subjects
including radiologists (14).
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The remainder of the paper is organized as follows. We begin by outlining some design
considerations, concentrating on issues associated with the choice of primary outcomes and
predictor definitions. We then provide an overview of marginal and conditional models and
discuss differences in the interpretation of their model parameters. We give brief description
of additional statistical issues which will often be encountered in the analysis of clustered
binary data and conclude with a discussion and some recommendations for analytic strategies.
Although this paper is motivated by challenges in modeling the interpretive performance of
mammography, the ideas are relevant to a broad range of settings where researchers seek to
understand sources of variability in clustered binary outcomes—beyond both mammography
and radiologist interpretive performance.

DESIGN CONSIDERATIONS
Before we address the implications of differences in statistical methods for achieving consensus
across studies with a common scientific goal, we must consider how studies differ in their
outcome and predictor definitions. These choices dictate the mechanism a study is trying to
understand, i.e., the underlying process by which a predictor variable such as interpretive
volume influences interpretive performance. We cannot expect to achieve consensus from
studies exploring different mechanisms.

Choice of Outcome
When designing a study to investigate interpretive performance, a researcher may choose from
a variety of clinically meaningful outcome measures. In this paper, we focus on the assessment
of radiologist interpretive performance on the basis of a binary interpretation of no recall or
recall, possibly conditional on disease status. Let Yij = 0 or 1 denote the binary no recall/
recall outcome of the jth examination interpreted by the ith radiologist, and let Dij = 0 or 1
denote a binary indicator of disease status. For mammography studies, disease is typically
defined as a breast cancer diagnosis within 1 year of the mammography examination (15).
Throughout this manuscript, we use π to denote a generic performance measure of interest,
which may depend on a set of radiologist and/or case-specific predictors or covariates Xij.
Commonly used measures of interpretive performance include:

• Recall rate (or abnormal interpretation rate): the probability of recall for additional
work-up, P(Yij = 1 | Xij)

• Sensitivity: the probability of recall among those with disease, P(Yij = 1| Dij = 1, Xij)
• Specificity: the probability of no recall among those without disease, P(Yij = 0| Dij =

0, Xij)
• Positive predictive value of recall (PPV1): the probably of disease among patients

recalled, P(Dij = 1| Yij = 1, Xij)
• Cancer/disease detection rate (or diagnostic yield): the proportion of examinations

with detected disease, P(Dij = 1 AND Yij = 1 | Xij).

Choice of predictor
Annual interpretive volume is essentially a continuous variable with variability among
radiologists. Prior studies have discretized this volume into a few categories for analysis. For
example, Barlow and colleagues (2004) studied volume in a single year based on a self-report
assessment using three categories; ≤1000, 1001–2000 and >2000. In contrast, Smith-Bindman
and colleagues (2005) considered the average observed annual volume over a 5-year period,
categorized into six volume groups. They also considered the ratio of screening to diagnostic
mammograms (categorized into two groups at a threshold of 5.0). Although both studies
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examined interpretive volume, they reflect different mechanisms by which volume influences
interpretive performance and hence address different questions.

Separation of between- and within-cluster predictor effects
In addition to the specific choice of predictor, another important consideration when analyzing
clustered data is the potential for both within- and between-cluster effects of predictors. To
illustrate this, suppose interest lies in the (unadjusted) association between some performance
measure π and annual interpretive volume, Xij. Here, the predictor of interest is denoted with
a radiologist-specific index, i, and mammography case-specific index, j, to acknowledge that
volume may vary both between and within radiologists. Figure 1 illustrates how annual
interpretive volume can vary both between and within radiologists using data from five BCSC
radiologists. Radiologists 1 and 2 have higher average volume over the time period while
radiologists 4 and 5 have low volume. Radiologists 2 and 4 have large changes in volume over
time, while radiologist 5’s volume remains fairly stable.

To address the question of whether interpretive volume influences performance, one might
adopt the following logistic regression model:

(1)

The slope parameter β1 refers to the change in log-odds of a positive response associated with
a unit change in annual interpretive volume X. As noted above, a “unit change” in X may
correspond to one of two potential contrasts: (i) a between-radiologist change, comparing two
different groups of radiologists with different volumes; or (ii) a within-radiologist change,
assessing how an individual’s performance changes over time (e.g., as their annual volume
increases).

In many instances, both types of “change” occur within the study population and time-frame
facilitating the assessment of both cross-sectional (between-radiologist) and longitudinal
(within-radiologist) predictor effects. One might, however, anticipate the impact of the two
changes on interpretive performance to differ. For example, consider two populations of
radiologists, one that interprets 1,000 mammograms per year and another that interprets 5,000
per year. The difference in performance between these two populations of radiologists may
differ from the impact of increasing an individual radiologist’s annual interpretive volume from
1,000 mammograms per year to 5,000 mammograms per year. The model given by (1),
however, assumes the impact on performance is the same for these between- and within-
radiologist comparisons. As an alternative to making this restrictive assumption, Neuhaus and
Kalbfleisch (16) proposed decomposing the predictor variable into two components: the
cluster-level predictor mean X̄i and deviations of each observation from that mean Xij − X̄i.
This decomposition leads to a modification of model (1):

(2)

In model (2), the regression parameter β1
b denotes the between-radiologist effect and β1

w the
within-radiologist effect of the predictor X. Note that when the between- and within-radiologist
effects are equal, i.e., β1

b = β1
w, model (2) reduces to model (1). Whether β1

b and β1
w are equal

could be assessed with a hypothesis test. In addition, for some applications, it may be more
reasonable to include an interaction of the between- and within-radiologist effects. For
example, high-volume radiologists may not experience much change in performance with
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changes in their interpretive volume from year to year, whereas low-volume radiologists may
experience improvements in performance if they increase their interpretive volume.

REGRESSION APPROACHES FOR CLUSTERED DATA
A key feature of clustered data is the potential for dependence between interpretations made
by the same radiologist. Intuitively, observations for the same radiologist are more “similar”
than those for another radiologist. This dependence arises because of heterogeneity across
radiologists: differences in skill levels, thresholds for recalling patients, patient populations,
and/or practice or facility characteristics (4-6,17,18). One can account for such between-
radiologist differences by including appropriate, radiologist-specific covariates into a
regression model; however, in many instances unexplained heterogeneity, and hence
dependence, will remain.

Statistical models that assess predictors of interpretive performance must take into account the
potential dependence among multiple interpretations made by the same radiologist. Naïve
methods that ignore clustering, such as the traditional chi-square test or logistic regression,
yield biased standard error estimates. These methods rely on the data being a sample of
independent observations, while clustered data are inherently dependent. This dependence
typically lessens the amount of statistical information about parameters of interest below what
the overall sample size would suggest. For example, consider a study consisting of 50,000
mammography examinations interpreted by 10 radiologists. It is tempting to think 50,000
independent observations are available for analysis; however, the effective number of
independent observations is closer to 10 (i.e., the number of radiologists). Therefore, naïve
standard error estimates will be too small and inference based on confidence intervals and p-
values will be statistically invalid.

Two broad classes of regression models have been used to account for potential dependence
in the analysis of interpretive performance: marginal and conditional models (19-21).
Historically, the two approaches were developed specifically to account for dependence in
clustered or longitudinal data. While both approaches achieve this goal, careful consideration
of the model assumptions highlight important differences in the interpretation of the model
results; a consequence of these differences is that the two modeling approaches address
different scientific hypotheses. Indeed, the approaches are distinguished by the labels
“marginal” and “conditional” because of implicit differences in the interpretations of the
component parameters.

Conditional or cluster-specific models
Dependence among observations within a cluster can be induced by between-radiologist
heterogeneity that is not explained by measured covariates. Conditional or cluster-specific
models are a general class of regression models that approach the problem of accounting for
dependence within clusters by introducing cluster-specific parameters directly into the model
specification. These parameters serve to capture unmeasured between-cluster heterogeneity.
An example of a cluster-specific logistic regression model for a performance measure, say
recall rate, is

(3)

Where bi is a radiologist-specific parameter, and πC(Xij,bi) is the conditional probability of
recall given the covariates Xij = (Xij,1, …, Xij,p) and the radiologist-specific parameter bi.
Intuitively, the radiologist-specific effect bi induces dependence across the multiple
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observations from the ith radiologist, because a large positive value of bi indicates that each
mammogram-specific probability of being recalled, given by (3), will be high, while a large
negative value of bi indicates that each mammogram-specific probability of recall will be low.
In more general conditional models, the single radiologist-specific effect bi can be replaced
with a vector of effects, potentially depending on observed covariates.

Inspection of model (3) reveals that estimation is required for p+1+N parameters: β0
C, β1

C, …,
βp

C, b1, …, bN, where p is the number of covariates and N is the number of radiologists. Thus,
the number of parameters in model (3) is directly linked to the sample size; the number of
radiologist-specific effects increases with the number of radiologists. In such settings,
traditional estimation methods (such as maximum likelihood) can break down (22). One way
to overcome this problem is to use conditional logistic regression (23). This approach, which
has its roots in the analysis of matched case-control studies, takes the N radiologist-specific
effects to be nuisance parameters and uses the statistical technique of conditioning to eliminate
them from the likelihood. As a result, the task of estimation is concentrated on the p+1
regression parameters. An additional consequence of the conditioning, however, is that one is
no longer able to estimate the effect of any covariate that varies solely between radiologists,
such as gender or average annual interpretive volume. In such settings, an alternative to
removing the N radiologist-specific effects from the task of estimation is to impose some
distributional assumptions on how the radiologist-specific effects vary across the population
of radiologists. A common distributional assumption, for example, is that the bi are normally
distributed, with zero mean and constant variance, σ2. In this case, the task of estimation reduces
to p+2 parameters: the p+1 βC regression coefficients and the unknown variance term, σ2. With
this approach, the bi are treated as random variables and distinguished from the fixed model
terms (i.e., the βC regression coefficients). As such, the combination of model (3) with
distributional assumptions concerning the bi parameters is often referred to as a random effects
or hierarchical model.

In observational, community-based settings such as the BCSC, mammography cases are
typically interpreted by one or two radiologists. Multiple-reader multiple-case (MRMC)
studies provide researchers with a potentially more efficient design where each case is
interpreted by multiple radiologists, thereby reducing one source of study variability--
differences across the cases (24). While several random effects models have been proposed
for analyzing continuous performance measures collected from MRMC studies (24), extending
the framework outlined above to analyze a binary performance measure is straightforward.
Specifically, equation (3) could be modified to include an additional random effect
corresponding to the case number, to account for correlation among multiple interpretations
made on the same case.

Marginal or population-averaged models
An alternative approach to incorporating a radiologist-specific parameter into the mean model
to account for dependence within clusters is to model the population mean as a function of
covariates only, as in case of independent data, and then adjust for the dependence within
clusters in the calculation of the standard errors. Consider a model for a performance measure
πij based solely on the observed Xij:

(4)

A common technique for estimating the parameters in model (4) is that of generalized
estimation equations (GEE) (25). Specifically, an estimate of the vector of marginal regression
coefficients βM = (β0

M, β1
M, …, βp

M) is obtained by solving the estimating equations
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(5)

where Di is the first derivative of the vector πM (Xi) with respect to the regression parameters
βM and Vi is the assumed variance-covariance matrix for the vector of observed outcomes for
the ith radiologist Yi. Intuitively, the solution to the estimating equations, β̂M, is the value of
the regression parameters βM, that provides the closest correspondence between the observed
outcomes, Yi, and what is expected under the assumed model, πM (Xi). Provided the mean
model (4) is correctly specified, the estimating equations (5) are unbiased (i.e., have zero
expectation) regardless of the specific choice of the assumed variance-covariance V; hence,
the corresponding regression parameter estimates β̂M are consistent (asymptotically unbiased).

Estimation of standard errors that take into account the dependence within clusters is
straightforward. The sandwich or robust variance estimator is most commonly used and is
well-known to be robust in the sense that valid inference is obtained for the marginal regression
coefficients even if the variance-covariance matrix is misspecified. That is, the sandwich
variance estimator accounts for arbitrary dependence among observations within a cluster,
thereby ensuring valid inference (25). GEE methods that use standard software have also been
proposed for non-nested clusters or crossed studies, such as MRMC studies, where the same
cases are interpreted by multiple radiologists (8,26).

Interpretation of regression parameters
The nomenclature adopted to distinguish the two regression-based approaches for analyzing
clustered data (conditional and marginal) arose from differences in the interpretation of their
component parameters. To illustrate this, consider the interpretation of the conditional and
marginal log-odds ratios β1

C and β1
M from models (3) and (4) respectively. The interpretation

of both parameters relate to differences in performance (on the log-odds scale) between two
populations of mammograms (the unit of analysis here); the two populations differ in terms of
their covariates Xij,1, while all other remaining components are held constant. Suppose, for
example, we are interested in the effect of a binary measure of annual interpretive volume
Xij,1 which takes the value of 1 if the ith radiologist had a high volume (based on some criteria)
during the year the mammogram was interpreted and 0 otherwise, after adjusting for patient
age Xij,2. From (3), the interpretation of the conditional log-odds ratio can be derived via

(7)

Hence, in addition to holding patient age (Xij,2) constant, interpreting the conditional log-odds
ratio β1

C requires holding constant, or conditioning on, the value of the radiologist-specific
effect, bi. Consequently β1

C is referred to as a “conditional” or “cluster-specific” parameter.
In contrast, the interpretation of the marginal log-odds ratio, derived via

(8)

does not require conditioning on anything beyond the two measured predictor variables. In
particular, the interpretation of the marginal log-odds ratio does not require conditioning on
the radiologist-specific effect bi; hence β1

M describes differences in performance between two
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populations of mammograms, averaging across all radiologists. Consequently, β1
M is referred

to as a “population-averaged” or “marginal” parameter. Here, the term “marginal” is a
statistical term referring to marginalizing (integrating or averaging) over the distribution of a
random variable (in this instance, the random variable is the radiologist-specific effect b).

Connections between the two models
Although the two regression frameworks are presented separately, and have differing
interpretations, the marginal and conditional means are connected mathematically via the
convolution equation

(9)

In this expression, G(b) is the distribution of the random effects across clusters, often taken to
be Normal with zero mean and a constant variance. Examination of this expression reveals that
the marginal mean is equal to the average of the conditional mean, averaging with respect to
the distribution of the random effect b.

The relationship between the marginal and conditional means, given by equation (9), indicates
that both are well-defined in any given context. That is, given specification of the random
effects distribution G(b), the two associations could be considered simultaneously. In practice,
one typically decides which of the models is of primary scientific interest, and the modeling
framework is chosen accordingly.

Numerical differences in conditional and marginal regression parameters
Comparing equations (7) and (8) indicates that the crucial difference in interpreting the two
types of regression parameters is whether or not one conditions on the radiologist-specific
random effect, bi. For linear regression and ANOVA models for analyzing continuous
performance measures collected from MRMC studies (27-32), the marginal and conditional
regression coefficients can be shown to be numerically equivalent. However, for logistic
regression models, such as those considered here, the values of the marginal and conditional
odds ratios will typically not be numerically equivalent. Exceptions include when the random
effects have no variability across clusters or the true value of the conditional log-odds ratio
β1

C equals zero and the variability of the random effect distribution does not depend on the
covariate Xij,1 (in which case the marginal log-odds ratio β1

M also equals zero).

In most settings, the numerical difference between the marginal and conditional regression
coefficients depends on the various components of the model as well as the underlying variation
(magnitude and shape) of the distribution of the radiologist-specific random effects in the
population. If the random effects are normally distributed with constant variance (specifically,
if the variance does not depend on the covariate Xij,1), the marginal odds ratio will be attenuated
toward 1.0 compared to the conditional odds ratio (16,20). Figure 2 shows a hypothetical
example that illustrates this attenuation. The solid line represents the average radiologist-
specific effect of volume on sensitivity of mammography for a hypothetical conditional odds
ratio of 2.0 measuring the increased odds of an abnormal mammogram among women with
cancer corresponding to an increase in volume of 2,000 and a radiologist-specific effect
standard deviation of 2.0. The dashed line shows the relationship for the corresponding
marginal odds ratio of 1.5, which is attenuated relative to the conditional effect.

More generally, the value of one parameter given the other and the distributional assumptions
of the radiologist-specific random effects can be derived via the relationship given by equation
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(9). Table 1 shows how the numerical values of the conditional and marginal odds ratios, exp
(β1

C) and exp(β1
M), differ under various conditions in the simple setting of a single binary

predictor. As noted above, when the random effect variance does not depend on the predictor
X, the marginal odds ratio is attenuated toward 1.00, with the extent of the attenuation
depending on the value of the conditional odds ratio, the intercept, and the random effects
standard deviation. For example, when the conditional odds ratio is 2.00, the overall baseline
mean is 0.50, and the random effects standard deviation is 0.50 in both the X=0 and X=1 groups,
then the marginal odds ratio is 1.93. If the (common) standard deviation is 2.00, the attenuation
is greater and the marginal odds ratio is 1.52.

In contrast, if the radiologist-specific effect variability depends on X, the marginal odds ratio
can be either attenuated or increased relative to the conditional odds ratio. In some cases, the
marginal effect can even be in the opposite direction as the conditional effect. For example,
when the conditional odds ratio is 2.00, the overall baseline mean is 0.10, and the random
effects standard deviation is 2.00 when X=0 and 0.50 when X=1, then the marginal odds ratio
is 0.94. Last, it is also important to note that if a covariate has no conditional effect (i.e., the
conditional odds ratio is 1.00), the marginal odds ratio could be different from 1.00 if the
variability of the radiologist-specific effect depends on X. In other words, if high-volume
radiologists have the same conditional performance as low-volume radiologists, but high-
volume radiologists are less variable in their interpretations, they will have a larger marginal
performance than low-volume radiologists for performance measures with means above 50%.

For binary covariates, differences between the numerical values of the conditional and marginal
parameters do not depend on the covariate distribution (i.e., the prevalence of the binary
covariate). While we have focused here on a binary covariate, for continuous covariates the
differences between the two parameters may depend on the covariate distribution, in addition
to the factors considered in Table 1. In addition, in the case of a continuous covariate, it is
important to note that both the marginal and conditional effects of that covariate will not be
linear on the same scale (e.g., logit), unless the random effects are assumed to follow a specific
distribution called a bridge distribution (33,34).

Implications for science
Given the possible differences in the magnitude and direction of the conditional and marginal
effects, it is important to consider carefully whether inference should be made at the radiologist
or population level before analyzing clustered data with nonlinear regression models. For
instance, the question of whether interpretive volume influences radiologists’ interpretive
performance can be thought of in two ways. First, we may be interested in whether the
sensitivity and specificity of mammography examinations interpreted by high-volume
radiologists in the United States are better than these performance measures for mammography
examinations interpreted by low-volume radiologists. This is a population-level question
comparing the performance of mammography examinations interpreted by two different types
of radiologists. In contrast, we may want to know whether an individual radiologist’s
interpretive performance improves when his or her interpretive volume increases, controlling
for other traits of that radiologist that influence performance. This is a radiologist-specific
question that examines changes in an individual’s performance when one condition is changed
but everything else about that radiologist remains constant. Both questions may be of interest,
for example, to policy makers considering whether to increase the current interpretive volume
requirements for certification. If the current requirement of ≥960 mammograms over the prior
2 years was increased to 2,000 mammograms, radiologists with 2-year volumes below 2,000
would have to either (a) stop interpreting mammography, leaving these mammograms to be
interpreted by the group of remaining high-volume radiologists (the effect of this on the
performance of mammography in the United States is estimated from the marginal model) or
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(b) increase their annual volume to meet the new guidelines (the effect of this on an individual
radiologists-performance is estimated from the conditional model).

ADDITIONAL STATISTICAL CONSIDERATIONS
A variety of additional statistical issues that can influence estimation and inference, and
therefore potentially affect the interpretation of the analysis, should be considered when
choosing a regression formulation. In this section, we focus on statistical issues, and hence
statistical bias in the regression parameter estimates and/or the standard error estimates that is
specifically introduced by decisions concerning the statistical analyses. It should be noted,
however, that traditional epidemiologic biases, such as selection bias and confounding, also
require consideration.

Sample size
For clustered data, such as those in studies of mammography interpretive performance, one
can identify two sample sizes: the number of clusters (e.g., radiologists) and the number of
observations per cluster (e.g., mammography examinations). For estimation of marginal
regression parameters, standard error estimates from GEE have been shown to be
underestimated when the number of clusters is small (e.g., <50) (35,36). The impact is that
confidence intervals are too narrow, p-values are too small, and one will generally reject null
hypotheses more often than the nominal type I error rate (i.e., α level) would suggest. In such
settings, Mancl and DeRouen (36) proposed a simple correction that scales the variance by
N/N-P, where N is the number of clusters and P is the number of regression parameters. This
correction performs well as long as the number of clusters is not extremely small (say, <15 or
<20). Note that by default, the Stata statistical software scales the robust variance by N/N-1,
which may not provide a sufficient correction for regression models that include covariates
(37). For studies with a very small number of clusters, one should consider an approach other
than GEE to adjust for dependence within clusters.

Estimation of conditional parameters typically suffers less in the case of a small number of
clusters. Estimation of random effects models, for example, builds on the structure imposed
by assumptions concerning the distribution of the random effects, G(b), and, therefore, does
not suffer as much when the number of clusters is small. A challenge with this, however, is
that the model assumes the distribution of the random effects is correctly specified. If this is
not the case, bias can result, especially when the cluster sizes are small.

Additional consideration should be given in settings where the cluster size itself may be
correlated with the random effects (38-40). The assessment of interpretive volume is an
example of this, where one might hypothesize that radiologists with high volume (i.e., large
cluster sizes) have superior performance. Simulations have shown that the marginal intercept,
and hence the predicted values and group means, can be biased in this case, but any biases of
the odds ratios are small (38-40).

Distributional assumptions for cluster-specific effects
As noted above, conditional logistic regression does not rely on distributional assumptions
about radiologist-specific effects, bi; these effects are treated as fixed nuisance parameters and
are conditioned out of the likelihood. In contrast, random effects models rely on the correct
specification of the random effects distribution, G(b). While random effects are typically
assumed to be normally distributed, simulations have shown that if the shape of the true
underlying distribution does not follow that of a normal distribution (e.g., is not symmetric),
there is little bias in the estimated regression coefficients (21,41). It is also common to assume
a constant mean and variance across all clusters, after adjusting for covariates. However, if the
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mean and/or variance of the true underlying distribution depend on covariates, then bias in the
odds ratio estimates can result (40,41). The case of the random effect mean depending on
covariates is similar to the issue of confounding. High-volume radiologists may have better
performance if radiologists who are good at mammography tend to specialize in breast imaging
and interpret relatively large numbers of mammograms. In this case, estimates of within-
radiologist effects may more accurately reflect the effect of changing volume on an individual
radiologist’s performance (40); however, it may also be of scientific interest to determine
whether there are between-radiologist effects of volume on performance, even if these
differences are due to innate differences between radiologists who choose to interpret high
volumes of mammograms.

The assumption that variability of the random effects does not depend on covariates is
particularly important for our interests here, because it is reasonable to expect that radiologist
variability among radiologists in their performance could depend on their characteristics. For
example, we might expect more experienced radiologists to perform more similarly and thus
have smaller between-radiologist variability than less experienced radiologists. To illustrate
this, Figure 3 shows the variability in recall rate for mammograms interpreted in the BCSC
from 1996 to 2005 by 46 radiologists with ≤1 year of experience and 46 radiologists with 20
years of experience. Recall rates for more experienced radiologists are clearly less variable
that those for the less experienced radiologists. The variance of the radiologist-specific effect
distribution is double for radiologists with ≤1 year of experience than that for radiologists with
20 years of experience (0.56 vs. 0.29).

To relax the assumption of a constant variance, and reduce the potential for bias, it is possible
to extend the traditional random intercepts model to allow the standard deviation to depend on
covariates by including multiple random effects or by building a separate regression model for
the standard deviation. One approach is to model the random effect standard deviation as a
function of covariates using a log-link to constrain the standard deviation to be positive:

(10)

This model can be fit in SAS using PROC NLMIXED (SAS institute; Carey, NC).

Missing data
Full likelihood-based approaches such as random effects models typically provide valid
inference when observations are missing at random, i.e., the missing data mechanism is
conditionally independent of the unobserved data given the observed data (42). In other words,
likelihood-based procedures will typically provide valid inference even if the probability of an
observation missing an outcome or covariate values depends on either the observed outcomes,
such as the radiologist’s performance, or the observed covariates, such as the radiologists’
interpretive volume. However, GEE and conditional logistic regression require the more
stringent condition of data being missing completely at random, i.e., the probability of data
being missing does not depend on either the observed or missing outcomes or covariates. For
GEE, weighting may be used to correct for bias when data are missing at random, but this
requires determining the correct weights to use (43,44). Bias-correction methods have also
been proposed for conditional logistic regression (45).
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DISCUSSION AND RECOMMENDATIONS
We have reviewed commonly used approaches for analyzing clustered data and, in particular,
for estimating the influence of covariates such as radiologist interpretive volume on radiologist
performance. We emphasize three key points. First, for the analysis of clustered data, one
should consider whether the covariates of interests potentially vary within a radiologist,
between radiologists, or both. In settings where both types of variability occur, one should
consider whether or not the effects are the same, and model any differences appropriately.
Second, conditional (radiologist-specific) and marginal (population-averaged) statistical
modeling approaches answer different scientific questions, with the underlying parameters
potentially having different numerical values. Consequently, caution should be taken when
choosing a statistical methodology, and one should ensure that careful consideration of the
scientific objectives drives the choice. Last, modeling assumptions need to be considered
carefully because violations of assumptions that are likely to occur with radiologist
performance data may lead to clinically significant biases in results. These issues have
important implications for achieving consensus on the role of interpretive volume or the
influence of an intervention or new technology on radiologist interpretive performance.

The distinction in the interpretations of marginal and conditional parameters is closely related
to the notion of non-collapsibility of non-linear models (46). Non-collapsibility is most-often
encountered in settings where the estimate of a covariate effect changes with the inclusion of
an adjustment variable, and yet the adjustment variable is not a confounder. Therefore, the
difference in the values of the estimate cannot be attributed to confounding, and one must
acknowledge that the stratum-specific parameter (i.e., where one has included the adjustment
variable) has a different numerical value than the marginal parameter (i.e., where one does not
include the adjustment variable).

Despite the vast literature on the importance of taking clustering into account in statistical
analyses, naïve approaches are still commonly used in the analysis of radiologist performance.
For example, several recent papers published in the radiology literature used standard chi-
square tests to compare the interpretive performance of two groups of radiologists, ignoring
clustering among examinations interpreted by the same radiologist (47,48). In other words,
they analyzed the data as if each examination were interpreted by a different radiologist as
opposed to the small number (N=10) of radiologists in the study. Given that these studies made
between-radiologist comparisons based on a large number of mammography interpretations
for each radiologist, the naïve chi-square test is expected to be liberal, resulting in p-values
that are too small and possibly rejecting the null hypothesis too often.

Based on our review of the literature, we offer several recommendations. First, if interest lies
solely in the conditional effect of changing a covariate within radiologists, such as the effect
of an intervention, we recommend considering the use of conditional logistic regression,
because it relies on fewer model assumptions. However, in this case, one must take care to
ensure that variability of the response across radiologists does not depend on the predictor
under study. Second, if interest is in marginal effects, and the number of clusters is not small
(e.g., <20), an advantage of using GEE is that it is robust to misspecification of the covariance
matrix. However, for cluster sizes between 20 and 50, it is important to correct for potential
bias in the standard errors, which can be easily done by scaling the variance by N/N-P, where
N is the number of clusters and P is the number of regression parameters (36). For cases with
a small number of clusters, one could fit a random effects model and calculate the marginal
effect induced by that model or directly model the marginal effect using a likelihood-based
marginalized model (33,34,49,50). Another advantage of using likelihood-based marginalized
models is that their flexibility with respect to the random effect variance model permits an
exploration and assessment of the underlying mechanism that generated marginal effect. Last,
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random effects models are particularly useful in several settings: (i) to estimate the conditional
effect of a covariate that varies between radiologists, (ii) to quantify variation in mammography
performance, across radiologists, and (iii) to estimate or predict adjusted radiologist-specific
performance measures. However, we suggest exploring whether the variance of the random
effects depends on covariates of interest. Not taking into account any dependences could lead
to clinically meaningful bias in odds ratios estimates (41). In addition, we believe it is often of
scientific interest to understand whether covariates influence the variability in radiologist
performance. It is our hope that the careful consideration of the statistical issues discussed in
this paper will help studies with a common scientific goal, such as determining the influence
of interpretive volume on interpretive performance, achieve consensus.

Acknowledgements
This work was supported by the American Cancer Society (SIRSG-07-271-01, SIRSG-07-272-01, SIRSG-07-273-01,
SIRSG-07-274-01, SIRSG-07-275-01, SIRGS-06-281-01), the National Cancer Institute (1R01 CA107623), and the
National Cancer Institute Breast Cancer Surveillance Consortium (U01CA63740, U01CA86076, U01CA86082,
U01CA63736, U01CA70013, U01CA69976, U01CA63731, U01CA70040). We thank the BCSC investigators and
the participating mammography facilities and radiologists for providing the data for the examples. A list of the BCSC
investigators and procedures for requesting BCSC data for research purposes are provided at:
http://breastscreening.cancer.gov/.

References
1. Mammography Quality Standards Act of 1992 (MQSA) (Public Law 102-539) as amended by

Mammography Quality Standards Reauthorization Act of 1998 (Public Law 105-248). 1992
2. Institute of Medicine. Breast Imaging Quality Standards. Washington, D.C: The Natl Academies Press;

2005.
3. Elmore JG, Miglioretti DL, Reisch LM, et al. Screening mammograms by community radiologists:

variability in false-positive rates. J Natl Cancer Inst 2002;94(18):1373–80. [PubMed: 12237283]
4. Barlow WE, Chi C, Carney PA, et al. Accuracy of screening mammography interpretation by

characteristics of radiologists. J Natl Cancer Inst 2004;96(24):1840–50. [PubMed: 15601640]
5. Smith-Bindman R, Chu P, Miglioretti DL, et al. Physician predictors of mammographic accuracy. J

Natl Cancer Inst 2005;97(5):358–67. [PubMed: 15741572]
6. Miglioretti DL, Smith-Bindman R, Abraham L, et al. Radiologist Characteristics Associated with

Interpretive Performance of Diagnostic Mammography. JNCI 2007;99(24):1854–63. [PubMed:
18073379]

7. Taplin S, Abraham L, Barlow WE, et al. Mammography facility characteristics associated with
interpretive accuracy of screening mammography. JNCI 2008;100(12):876–87. [PubMed: 18544742]

8. Miglioretti DL, Heagerty PJ. Marginal modeling of nonnested multilevel data using standard software.
Am J Epidemiol 2007;165(4):453–63. [PubMed: 17121864]

9. Theberge I, Hebert-Croteau N, Langlois A, Major D, Brisson J. Volume of screening mammography
and performance in the Quebec population-based Breast Cancer Screening Program. CMAJ 2005;172
(2):195–9. [PubMed: 15655240]

10. Kan L, Olivotto IA, Warren Burhenne LJ, Sickles EA, Coldman AJ. Standardized abnormal
interpretation and cancer detection ratios to assess reading volume and reader performance in a breast
screening program. Radiology 2000;215(2):563–7. [PubMed: 10796940]

11. Coldman AJ, Major D, Doyle GP, et al. Organized breast screening programs in Canada: effect of
radiologist reading volumes on outcomes. Radiology 2006;238(3):809–15. [PubMed: 16424236]

12. Rickard M, Taylor R, Page A, Estoesta J. Cancer detection and mammogram volume of radiologists
in a population-based screening programme. Breast 2006;15(1):39–43. [PubMed: 16005226]

13. Ballard-Barbash R, Taplin SH, Yankaskas BC, et al. Breast Cancer Surveillance Consortium: a
national mammography screening and outcomes database. AJR Am J Roentgenol 1997;169(4):1001–
8. [PubMed: 9308451]

14. Carney PA, Geller BM, Moffett H, et al. Current medicolegal and confidentiality issues in large,
multicenter research programs. Am J Epidemiol 2000;152(4):371–8. [PubMed: 10968382]

Miglioretti et al. Page 13

Acad Radiol. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://breastscreening.cancer.gov/


15. American College of R. American College of Radiology (ACR) Breast Imaging Reporting and Data
System Atlas (BI-RADS Atlas). Reston, VA: Am Coll Radiol; 2003.

16. Neuhaus JM, Kalbfleisch JD. Between- and within-cluster covariate effects in the analysis of clustered
data. Biometrics 1998;54(2):638–45. [PubMed: 9629647]

17. Rosenberg RD, Yankaskas BC, Abraham LA, et al. Performance Benchmarks for Screening
Mammography. Radiology 2006;241(1):55–66. [PubMed: 16990671]

18. Sickles EA, Miglioretti DL, Ballard-Barbash R, et al. Performance benchmarks for diagnostic
mammography. Radiology 2005;235(3):775–90. [PubMed: 15914475]

19. Diggle, PJ.; Heagerty, P.; Liang, KY.; Zeger, SL. Analysis of Longitudinal Data. Atkinson, AC.;
Copas, JB.; Pierce, DA.; Schervish, MJ.; Titterington, DM.; Carroll, RJ., editors. New York: Oxford
University Press; 2002.

20. Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized estimating equation
approach. Biometrics 1988;44(4):1049–60. [PubMed: 3233245]

21. Neuhaus JM, Kalbfleisch JD, Hauck WW. A comparison of cluster-specific and population-averaged
approaches for analyzing correlated binary data. Int Stat Rev 1991;59(1):25–35.

22. McCullagh, P.; Nelder, JA. Generalized Linear Models. Vol. 2. London; New York: Chapman and
Hall; 1989.

23. Breslow, NE.; Day, NE. Statistical Methods in Cancer Research: Vol 1 The Analysis of Case-Control
Studies. Davis, W., editor. United Kingdom: International Agency for Research on Cancer; 1980. p.
5-338.

24. Obuchowski NA, Beiden SV, Berbaum KS, et al. Multireader, multicase receiver operating
characteristic analysis: an empirical comparison of five methods. Acad Radiol 2004;11(9):980–95.
[PubMed: 15350579]

25. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986;73
(1):13–22.

26. Miglioretti DL, Heagerty PJ. Marginal modeling of multilevel binary data with time varying
covariates. Biostatistics 2004;5(3):381–98. [PubMed: 15208201]

27. Dorfman DD, Berbaum KS, Metz CE. Receiver operating characteristic rating analysis.
Generalization to the population of readers and patients with the jackknife method. Invest Radiol
1992;27(9):723–31. [PubMed: 1399456]

28. Dorfman DD, Berbaum KS, Lenth RV, Chen YF, Donaghy BA. Monte Carlo validation of a
multireader method for receiver operating characteristic discrete rating data: factorial experimental
design. Acad Radiol 1998;5(9):591–602. [PubMed: 9750888]

29. Obuchowski NA, Rockette HE. Hypothesis testing of diagnostic accuracy for multiple readers and
multiple tests: an ANOVA approach with dependent observations. Communications in Statistics -
Simulations 1995;24:185–308.

30. Obuchowski NA. Rejoinder. Acad Radiol 1995;2(Supp 1):S79–80.
31. Obuchowski NA. Multireader, multimodality receiver operating characteristic curve studies:

hypothesis testing and sample size estimation using an analysis of variance approach with dependent
observations. Acad Radiol 1995;2(Suppl 1):S22–9. [PubMed: 9419702]discussion S57-64, S70-1
pas

32. Song X, Zhou XH. A marginal model approach for analysis of multi-reader multi-test receiver
operating characteristic (ROC) data. Biostatistics 2005;6(2):303–12. [PubMed: 15772108]

33. Wang Z, Louis TA. Matching conditional and marginal shapes in binary random intercept models
using a bridge distribution function. Biometrika 2003;90(4):765–75.

34. Wang Z, Louis TA. Marginalized binary mixed-effects models with covariate-dependent random
effects and likelihood inference. Biometrics 2004;60(4):884–91. [PubMed: 15606408]

35. Emrich LJ, Piedmonte MR. On some small sample properties of generalized estimating equation
estimates for multivariate dichotomous outcomes. J Stat Comput Simul 1992;41:19–29.

36. Mancl LA, DeRouen TA. A covariance estimator for GEE with improved small-sample properties.
Biometrics 2001;57(1):126–34. [PubMed: 11252587]

37. Hardin, J. STATA FAQs. College Station, TX: STATACorp LP; 1997. Stata’s implementation of
GEE.

Miglioretti et al. Page 14

Acad Radiol. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



38. Hoffman EB, Sen PK, Weinberg CR. Within-cluster resampling. Biometrika 2001;88(4):1121–34.
39. Williamson JM, Datta S, Satten GA. Marginal analyses of clustered data when cluster size is

informative. Biometrics 2003;59(1):36–42. [PubMed: 12762439]
40. Neuhaus JM, McCulloch CE. Separating between- and within-cluster covariate effects by using

conditional and partitioning methods. J R Statist Soc B 2006;68(Part 5):859–72.
41. Heagerty PJ, Kurland BF. Misspecified maximum likelihood estimates and generalised linear mixed

models. Biometrika 2001;88(4):973–85.
42. Little, JA.; Rubin, DB. Statistical Analysis With Missing Data. New York, NY: John Wiley & Sons,

Inc; 1987.
43. Laird NM. Missing data in longitudinal studies. Stat Med 1988;7(12):305–15. [PubMed: 3353609]
44. Robins J, rotnitzky A, Zhao LP. Analysis of semi-parametric regression models for repeated outcomes

in the presence of missing data. J Am Stat Assoc 1995;90:106–21.
45. Rathouz P. Fixed effects models for longitudinal binary data with drop-outs missing at random.

Statistica Sinica 2004;14:969–88.
46. Greenland S, Pearl J, Robins JM. Confounding and Collapsibility in Causal Inference. Stat Sci 1999;14

(1):29–46.
47. Sickles EA, Wolverton DE, Dee KE. Performance parameters for screening and diagnostic

mammography: specialist and general radiologists. Radiology 2002;224(3):861–9. [PubMed:
12202726]

48. Leung JW, Margolin FR, Dee KE, et al. Performance parameters for screening and diagnostic
mammography in a community practice: are there differences between specialists and general
radiologists? AJR Am J Roentgenol 2007;188(1):236–41. [PubMed: 17179372]

49. Heagerty PJ. Marginally specified logistic-normal models for longitudinal binary data. Biometrics
1999;55(3):688–98. [PubMed: 11314994]

50. Heagerty PJ, Zeger SL. Marginalized multilevel models and likelihood inference. Stat Sci 2000;15
(1):1–26.

Miglioretti et al. Page 15

Acad Radiol. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Annual interpretive volume from 1996 to 2005 for five radiologists who participate in the
Breast Cancer Surveillance Consortium.

Miglioretti et al. Page 16

Acad Radiol. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Hypothetical radiologist-specific (solid lines) and population-averaged (dashed line) curves
showing the effect of annual interpretive volume on sensitivity. The thick solid line is the
radiologist-specific sensitivity by volume for an average radiologist, i.e., a radiologist with a
random effect of zero. The thin solid lines are the radiologist-specific curves for radiologists
with random effects ranging from -1 to 1 standard deviation at increments of 0.25.
The dashed line is the population-averaged (marginal) sensitivity by volume, which represents
an averaging of the radiologist-specific curves over the random effect distribution. The odds
ratio measuring the effect of increasing volume by 2000 on the odds of an abnormal
mammogram among women with breast cancer is 2.0 for the conditional model and 1.5 for the
marginal model.
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Figure 3.
Variability in recall rate for mammograms interpreted in the BCSC from 1996-2005 by 46
radiologists with ≤1 year of experience and 46 radiologists with 20 years of experience. The
variance of the radiologist-specific effect distribution is 0.56 for radiologists with 1 or fewer
years experience and 0.29 for radiologists with 20 years of experience.
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