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Diet and epigenetics in colon cancer

Minna Nyström, Marja Mutanen

Online Submissions: wjg.wjgnet.com                   			                     World J Gastroenterol  2009 January 21; 15(3): 257-263
wjg@wjgnet.com                                                                                               World Journal of Gastroenterology  ISSN 1007-9327
doi:10.3748/wjg.15.257                                                                                             © 2009 The WJG Press and Baishideng. All rights reserved.

Minna Nyström, Department of Biological and Environmental 
Sciences, Genetics, University of Helsinki, FI-00014 Helsinki, 
Finland
Marja Mutanen, Department of Applied Chemistry and 
Microbiology, Division of Nutrition, University of Helsinki, 
FI-00014 Helsinki, Finland
Supported by Finnish Cancer Organisations, Biocentrum 
Helsinki, Finland; the Ministry of Agriculture and Forestry, the 
Innovation in Food Programme of the National Technology 
Agency of Finland, and University of Helsinki, Finland
Author contributions: All of the authors contributed to the 
manuscript writing.
Correspondence to: Minna Nyström, Department of 
Biological and Environmental Sciences, Genetics, Viikinkaari 
5, University of Helsinki, FI-00014 Helsinki, 
Finland. minna.nystrom@helsinki.fi
Telephone: +358-9-19159073   Fax: +358-9-19159079
Received: September 26, 2008  Revised: November 1, 2008
Accepted: November 8, 2008
Published online: January 21, 2009

Abstract
Over the past few years, evidence has accumulated 
indicating that apart from genetic alterations, epigenetic 
alterations, through e.g. aberrant promoter methylation, 
play a major role in the initiation and progression 
of colorectal cancer (CRC). Even in the hereditary 
colon cancer syndromes, in which the susceptibility 
is inherited dominantly, cancer develops only as the 
result of the progressive accumulation of genetic and 
epigenetic alterations. Diet can both prevent and 
induce colon carcinogenesis, for instance, through 
epigenetic changes, which regulate the homeostasis 
of the intestinal mucosa. Food-derived compounds 
are constantly present in the intestine and may shift 
cellular balance toward harmful outcomes, such as 
increased susceptibility to mutations. There is strong 
evidence that a major component of cancer risk may 
involve epigenetic changes in normal cells that increase 
the probability of cancer after genetic mutation. The 
recognition of epigenetic changes as a driving force 
in colorectal neoplasia would open new areas of 
research in disease epidemiology, risk assessment, and 
treatment, especially in mutation carriers who already 
have an inherited predisposition to cancer.
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INTRODUCTION
The incidence of  colorectal cancer (CRC) varies up 
to 25-fold between countries. Highest rates are found 
in Westernized societies, such as the USA, Australia 
and New Zealand and lowest rates are found in Africa 
and India. Evidence that causes of  CRC are largely 
environmental comes from studies where people who 
migrate from low- to high-risk areas of  the world reach 
the incidence of  cancer in a high-risk country even over 
one or two generations. In these migration studies the 
main characteristic has been a change from a prudent 
diet to a Westernized diet with higher intake of  energy 
dense foods and lowered physical activity.

It has been speculated that epigenetic changes in the 
genome might explain these ecological findings. Epi-
genetics are related to the inheritance of  information 
based on gene expression levels, as opposed to genetics, 
which refers to information transmitted on the basis of  
gene sequence. In recent years, evidence has accumulat-
ed indicating that apart from genetic changes, epigenetic 
alterations play a major role in the initiation and progres-
sion of  CRC[1,2].

Different environmental conditions may confer 
different activity to the same genes. Epigenetic processes 
are essential in normal development and differentiation 
but may sometimes be misdirected and predispose to 
cancer. Epigenetic events, such as altered methylation 
patterns (hypermethylation and hypomethylation), post-
translational modifications of  histones, and chromatin 
remodeling, can lead to inactivation of  tumor suppressor 
genes, activation of  oncogenes, or altered imprinting 
patterns. The best-known epigenetic marker is DNA 
methylation, described to occur in complex chromatin 
networks and is influenced by the modifications in 
histone structure that are commonly disrupted in cancer 
cells[3,4]. Diet is a major aspect of  the environment which 
may influence DNA methylation thus providing an 
important common link between cancer and nutrition[5].
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COLORECTAL CANCER 
CRC is the second most common cause of  cancer-
related deaths in the Western world although a worlwide 
population-based study has shown that 5-year relative 
survival for CRC seems to be generally higher in high-
income countries[6]. Approximately 50% of  the popula-
tion in Western countries will develop adenomatous 
lesions of  the colon, but only a minor proportion will 
develop cancer[7]. CRCs are mainly sporadic, and inher-
ited factors have been estimated to be of  importance in 
about 30% of  all CRCs[8]. While many inherited predis-
posing factors are still unidentified, 13% of  CRCs have 
been reported to occur in association with the two most 
common inherited colon cancer-predisposition syn-
dromes, i.e. hereditary non-polyposis colorectal cancer 
(HNPCC) and familial adenomatous polyposis (FAP), 
which are caused by germline mutations in DNA mis-
match repair (MMR) genes and the adenomatous polyp-
osis coli (APC) tumor suppressor gene, respectively[7,9]. 
Susceptibility to HNPCC and FAP is inherited in an 
autosomal dominant manner. At the cellular level, these 
genes act recessively, i.e. inactivation of  the wild-type 
allele (loss-of-function) is required for an altered cell 
phenotype[10]. The lifetime risk of  cancer for individuals 
carrying an inherited germline mutation in a MMR gene 
or APC is high, but cancer develops only as the result 
of  the progressive accumulation of  somatic genetic and 
epigenetic alterations in several other genes involved in 
various cellular pathways.

MAJOR PATHWAYS OF COLORECTAL 
CARCINOGENESIS
Analyses of  tumors associated with FAP and HNPCC 
have helped to understand many details of  the 
molecular pathogenesis of  CRC in general[11]. The 
development of  CRC is a multi-step process beginning 
with the transformation of  normal colonic epithelium, 
first to benign adenomatous polyps and eventually 
to invasive carcinoma, and finally metastasis[7,12]. 
Mutational inactivation of  APC plays a rate-limiting 
role in about 70% of  sporadic CRCs[13]. Epigenetic 
silencing of APC through promoter hypermethylation 
has also been reported in a number of  sporadic 
colorectal adenomas and carcinomas[14]. The principal 
tumor promoting character of  inactivated APC is the 
insufficient degradation of  β-catenin, a key mediator 
of  the Wnt signaling pathway. Consequently, more 
β-catenin enters the nucleus and overactivates Wnt 
signaling, resulting in transcriptional activation of  Wnt/
TCF4 (T-cell factor 4) target genes (e.g. c-myc and cyclin 
D1), initiating transformation of  intestinal epithelial 
cells[15,16]. Physiologically, the Wnt pathway is essential 
for the maintenance of  intestinal crypt progenitor 
compartments [17].  Tumors associated with APC 
mutations are characterized by chromosomal instability 
(CIN)[11].

Another pathway of  carcinogenesis involves the 

cellular DNA MMR system. Cells defective in MMR 
are characterized by microsatellite instability (MSI) 
phenotype. MMR deficiency results in activation of  the 
mutator pathway which creates accumulating frameshift 
mutations in many growth-regulatory genes with coding 
microsatellites, thus promoting genome-wide genetic 
instability[18]. Many of  these affected genes are general 
tumor suppressor genes, as well as genes that function 
in DNA mismatch repair, Wnt signaling, and apoptotic 
pathways. MMR deficiency thus promotes the activation 
of  many pathways, which lead to the expression of  
genes that favor cell growth[11]. Compared to CIN, MSI is 
a feature of  a smaller subset of  cancers; it is a hallmark 
for HNPCC tumors and is reported in approximately 
15%-25% of  all CRCs and 10%-20% of  all endometrial 
and gastric cancers[7,19]. In HNPCC, most tumors are 
due to germline mutations in the MMR genes MLH1, 
MSH2, and MSH6 (http://www.insight-group.org/). 
However, most sporadic MSI tumors are associated with 
epigenetic silencing (hypermethylation) of  the MLH1 
promoter[20,21].

EPIGENETICS IN COLON CANCER
Epigenetics is defined as heritable changes in gene 
expression that are not due to any alteration in the DNA 
sequence[22]. It has been proposed that heritable changes 
in gene activity due to DNA modification should be 
referred to as epimutations to distinguish them from 
classical gene mutations. As DNA methylation is 
known to be essential for the normal control of  gene 
activity during development, defects in methylation 
may have severe phenotypic consequences. Recently, 
considerable attention has been focused on the role of  
CpG islands (CGI) hypermethylation in the molecular 
pathogenesis of  CRC. These islands are usually not 
methylated in normal cells[23,24]. The finding of  aberrant 
MLH1 promoter hypermethylation in sporadic MSI 
CRCs dramatically illustrated the role of  epigenetic 
changes as potential pathogenetic alterations in cancer. 
Furthermore, in cell lines, reversion of  the methylation 
using demethylating agents frequently restores expression 
of  MLH1, demonstrating that methylation in fact 
induces gene silencing. These data strongly suggested 
that such aberrant MLH1 promoter methylation is a 
cause of  colon carcinogenesis[20]. The role of  aberrant 
CGI hypermethylation in colon carcinogenesis was later 
demonstrated in animal studies, where overexpression of  
de novo DNA methyltransferase DNMT3b accelerated 
tumor formation[25], whereas chronic administration 
of  an oral inhibitor of  DNA methylation dramatically 
reduced tumor formation in the mucosa[26].

To date, several hypermethylated genes are associated 
with colorectal neoplasia, including tumor suppressor, 
DNA repair, and cell cycle regulatory genes (e.g. APC, 
CDH13, CHFR, MLH1, BRCA1, p14, p16, RARB2, 
SFRP1, WRN, RASSF1A, MGMT, and TIMP3)[2,27]. 
These genes are being explored as biomarkers in clinical 
use for preventive and therapeutic interventions. Of  

258     ISSN 1007-9327     CN 14-1219/R      World J Gastroenterol      January 21, 2009     Volume 15     Number 3



www.wjgnet.com

these, promoter hypermethylation of  p16INK4A, MGMT, 
and MLH1 have been suggested to be useful markers 
for risk assessment and hypermethylation of  APC in the 
detection of  colorectal carcinoma[27,28]. Hypermethylation 
of  MLH1 may also serve as a second “hit” inactivating 
the wild type copy of  the gene in HNPCC-associated 
tumorigenesis[29].

Hypermethylation occurs at different cancer stages 
and can be associated with either of  the two major 
pathways of  colorectal carcinogenesis. For a panel of  
genes, the expression profiles measured in histologically 
normal mucosa have been reported to differ significantly 
between patients with and without colorectal cancers[30]. 
Moreover, different epigenetic phenotypes have been 
found to distinguish the colonic mucosa in individuals 
who develop sporadic MSI-positive and MSI-negative 
colorectal tumors[31]. These methylation phenotypes may 
underlie different developmental pathways that occur in 
these tumors. Recently, inactivation of  tumor suppressor 
genes by promoter methylation was further shown to 
follow patterns characteristic of  tumor type (CRC versus 
endometrial carcinomas) and family category (familial 
CRC versus sporadic) and was strongly influenced by 
MLH1 promoter methylation status in all categories[32]. 
A phenomenon called CpG island methylator phenotype 
(CIMP) has been described in a subgroup of  colorectal 
adenomas and carcinomas[33,34]. In CIMP tumors, 
multiple tumor suppressor genes are inactivated by 
promoter hypermethylation[35], and CIMP has been 
suggested to provide an alternative pathway to promote 
colon cancer resembling in many features MSI tumors, 
although they are microsatellite stable[36,37].

DIET AND COLON CANCER
Colorectal cancer is a disease associated with increasing 
age and there is strong evidence that the risk of  CRC can 

be modified by lifestyle and environmental factors[38,39]. 
It has been demonstrated that diet may account for or 
prevent as much as 80% of  CRC incidence[40]. Diet may 
affect gut mucosa either directly from the luminal side 
or indirectly through whole-body metabolism. Food-
derived compounds that are constantly present in the 
intestine, or the blood content of  nutrients, hormones 
and growth factors, may shift cellular balance toward 
harmful outcomes, such as increased susceptibility for 
genetic and epigenetic changes in a genome.

There is a strong assumption that diet, especially 
Western-type diet, contributes to the development of  
CRC. In 2007, the World Cancer Research Fund and the 
American Institute for Cancer Research published their 
2nd comprehensive review entitled ‘Food, Nutrition, 
Physical Activity and the Prevention of  Cancer; a 
Global Perspective’ (http://www.dietandcancerreport.
org) supporting this belief. Based on mainly prospective 
cohort studies it was concluded that there is convincing 
evidence that red and processed meat, substantial 
consumption of  alcoholic drinks, body fat and 
abdominal fatness, and the factors that lead to greater 
adult attained height or its consequences are causes of  
CRC. In addition, foods containing dietary fiber, garlic, 
milk and calcium probably protect against this cancer. 
Moreover, non-starchy vegetables, fruits, fish, foods 
containing folate, vitamin D, or selenium may protect 
against CRC, and foods containing animal fats or sugar 
may cause CRC. In a recent study, CRC re-occurrence 
was also shown to be significantly higher in subjects 
consuming the most Westernized diet compared to diets 
with more fiber and less fat and sugar[41].

The complex interactions of  dietary components 
with each other and with metabolism make it difficult 
for epidemiological methods to specifically identify 
the components which might induce or prevent CRC  
(Figure 1). Murine models such as Min/+ mice, which 
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Figure 1  Folate, in the form of methyltetrahydrofolate (methyl-THF), is involved in remethylation of homocysteine to methionine, which is a precursor of 
SAM, the primary methyl group donor for most biological methylation reactions, also in DNA[64]. Folate deficiency may thus enhance CRC through an induction 
of genomic DNA hypomethylation. Expression of several enzymes (GHMT, MTHFR, BHMT, MAT, SAHH, CBS) involved in methyl metabolism can be regulated by diet 
such as availability of nutrients including essential amino acids, vitamins B2, B6 and B12, and Zinc (Zn).
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is the best-characterized mouse colonic neoplasia 
model and analogous to the human FAP syndrome[42] 
have provided a valuable tool, allowing thorough 
dissection of  the effects of  specifically controlled diets. 
A comprehensive list of  compounds that have been 
tested for CRC promotion or prevention in this animal 
model can be found on Corpets website at http://
www.inra.fr/reseau-nacre/sci-memb/corpet/Data/ 
table.php?file=Min-mice.txt. Min (multiple intestinal 
neoplasia) is an autosomal dominant trait involving 
a nonsense mutation in codon 850 of  the murine 
APC gene. As in humans, the mutation predisposes 
to intestinal tumorigenesis. In both Min/+ mice and 
healthy rats, different types of  diet have been shown to 
cause considerable changes in intestinal cell signalling 
pathways (PKC, NF-κB, β-catenin and COX-2, cyclin 
D1, E-cadherin, and p53) both in tumor tissue and also 
in the surrounding mucosa[43-46]. In particular, red meat[47] 
and a Western-type diet with low levels of  calcium and 
cholecalciferol and high levels of  n-6 polyunsaturated 
fatty acids[48,49] were shown to have unfavorable effects 
on tumor formation. These results are in line with the 
epidemiological evidence on the effect of  red meat 
on CRC. Inadequate dietary folate has been shown 
to impair DNA excision repair in the rat colon in the 
absence of  any chemical carcinogen, and increased folate 
supplementation inhibited intestinal polyp formation in 
Min/+ mice[50,51]. Moreover, wild-type mice have been 
shown to develop colon adenomas and an early invasive 
carcinoma in long-term diet experiments with a Western-
type diet containing reduced calcium, vitamin D, folic 
acid and increased fat content, but without carcinogen 
exposure[52].

Experimental work has indeed shown that due to 
the heterozygous nature of  fiber or fiber-rich foods, it 
is very difficult to draw firm conclusions on the effects 
of  fiber on CRC. It is evident that different fiber types 
(soluble vs insoluble) and sources (grain, vegetables and 
fruits) may act in totally opposite ways in CRC[53]. In 
addition, fibers and fatty acids in the diet interact with 
each other and affect outcome[54]. The same is probably 
true with fiber and red meat, since odds ratios for CRC 
were substantially reduced in subjects who had a high 
level of  red meat in their diet but who also consumed 
high levels of  fiber when compared to subjects with 
low fiber intake[55]. Phenolic compounds from fruits and 
berries[56,57], curcumin from tumeric[58,59], epicallocatechin 
from green tea[60], and n-3 fatty acids from fish[61] have 
been widely studied as possible chemopreventive agents 
and have been shown to regulate different cell signaling 
pathways[62]. Moreover, the effect of  polyphenols on 
DNA methylation is under active investigation[63-65].

DIET AND EPIGENETICS
The elucidation of  the effects of  diets on epigenetic 
changes in the intestinal mucosa is of  great importance, 
as aberrantly methylated genes may have the potential 
to be early-detection and prognostic markers for colon 
cancer. Unlike genetic changes in cancer, epigenetic 

changes, such as alterations in methylation, are 
potentially reversible and, therefore, provide promising 
targets for preventive and therapeutic interventions. Diet 
is a major aspect of  the environment that may influence 
DNA methylation, and studies on the role of  specific 
foods, diet-derived compounds and different types of  
dietary patterns on cellular mechanisms and epigenetics 
in CRC are increasing. Especially interesting are 
nutrients, which are needed for nucleic acid and DNA 
synthesis and for the enzymes regulating their syntheses, 
e.g. essential amino acids, zinc, folate, and vitamins 
B-6 and B-12[66] (Figure 1). The most studied nutrient 
in this area is folate, and the portfolio of  evidence 
from animal, human, and in vitro studies suggest that 
the effects of  folate deficiency and supplementation 
on DNA methylation are gene- and site-specific, and 
appear to depend on cell type, target organ, stage of  
transformation, and the degree and duration of  folate 
depletion[67].

As in the classical experiment of  agouti mice, in 
which maternal diet, high in folates, choline and vitamin 
B-12 shifted the coat color of  the offspring[68,69], diet may 
also induce epimutations detectable in the phenotype 
later in life in humans. Monozygotic twins have been 
shown to be epigenetically indistinguishable during 
the early years of  life, while older monozygotic twins 
exhibited remarkable differences in their overall content 
and genomic distribution of  5-methylcytosine DNA 
and histone acetylation[70]. Using the obesity-discordant 
monozygotic twins, Pietiläinen et al[71] have shown several 
changes in the transcription profiles of  adipose tissue 
between the twins. The results showed the effects of  
acquired human obesity, which is independent of  genetic 
factors, but may be related to epigenetic modulation of  
the genome.

A new and fascinating area in “diet and cancer” 
studies is the so called “fetal programming”. In 1989, 
Barker et al [72] reported on an inverse relationship 
between birth weight and later glucose intolerance, 
hypertension, and hyperlipidemia and finally ischemic 
heart disease mortality in men born in England in the early 
1900’s. The hypothesis behind this relationship was that 
genes were epigenetically programmed in a way which 
favored energy storage in an energy poor environment 
and thus, later in an ‘obesinogenic’ or ‘Western-type’ 
environment, these same genes would lead to chronic 
diseases[73]. Genetic and early life environmental factors, 
even before birth, have also been shown to be important 
in adult height determination. Moreover, it has been 
suggested that the ‘fetal programming’ hypothesis or 
factors that promote linear growth in childhood might 
explain the epidemiological evidence on the clear dose-
response relationship between greater adult height and 
a risk for CRC (http://www.dietandcancerreport.org). 
As has indeed been indicated by an animal model[74,75], 
the underlying mechanisms might include epigenetic 
modulation of  growth hormone, insulin-like growth 
factors and sex hormone binding protein expression, all 
of  which have an impact on height and growth and can 
be modulated by dietary means.
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CONCLUSION
Epigenetic changes, such as alterations in methylation, 
may occur in normal cells, but may prime the mucosa 
for cancer progression. However, unlike genetic changes 
in cancer, these epigenetic changes are potentially 
reversible. The elucidation of  the effects of  food-derived 
compounds on epigenetic changes in intestinal mucosa 
is thus of  great importance and will provide promising 
targets for preventive and therapeutic interventions. 
The identification of  “methylation biomarkers” that are 
specific for colorectal tumorigenesis would be useful 
for risk assessment, especially in individuals who have 
an inherited susceptibility for CRC. Furthermore, those 
biomarkers required for the malignant phenotype would 
identify pathways important as therapeutic targets. In 
summary, the recognition of  epigenetic changes as a 
driving force in colorectal neoplasia opens new areas 
of  research in disease epidemiology, risk assessment, 
prevention, and treatment.
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