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Abstract
The family of bile acids includes a group of molecular 
species of acidic steroids with very peculiar physical-
chemical and biological characteristics. They are 
synthesized by the liver from cholesterol through 
several complementary pathways that are controlled 
by mechanisms involving fine-tuning by the levels 
of certain bile acid species. Although their best-
known role is their participation in the digestion and 
absorption of fat, they also play an important role in 
several other physiological processes. Thus, genetic 
abnormalities accounting for alterations in their 
synthesis, biotransformation and/or transport may 
result in severe alterations, even leading to lethal 
situations for which the sole therapeutic option may 
be liver transplantation. Moreover, the increased levels 
of bile acids reached during cholestatic liver diseases 
are known to induce oxidative stress and apoptosis, 
resulting in damage to the liver parenchyma and, 
eventually, extrahepatic tissues. When this occurs 
during pregnancy, the outcome of gestation may be 
challenged. In contrast, the physical-chemical and 
biological properties of these compounds have been 
used as the bases for the development of drugs and as 
pharmaceutical tools for the delivery of active agents. 
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INTRODUCTION
Over the last decades the interest of  hepatologists 
in bile acids has grown markedly[1]. The reason has 
been the discovery of  the role of  these acidic steroids 
in many different physiological processes, which has 
important implications from the point of  view of  liver 
and intestinal pathology and pharmacology. Moreover, 
in recent years their use in supramolecular chemistry, 
materials chemistry and nanotechnology has been the 
focus of  intensive research[2]. Bile acids include a group 
of  molecular species with similar, but not identical, 
chemical structures. Surprisingly, they exhibit diverse 
physical properties and even more divergent biological 
characteristics. Although their best-known role is their 
participation in the digestion and absorption of  fat, they 
play an important role in several other functions. In the 
present review, these roles will only be mentioned briefly 
because they are addressed in depth in other reviews 
of  this series. The relevance of  their physiological roles 
explains why genetic abnormalities accounting for 
alterations in their synthesis, biotransformation and/or 
transport may result in severe alterations, even leading to 
lethal situations, for which, in pediatric patients, the sole 
therapeutic option may be liver transplantation.

Moreover, the increased levels of  bile acids that may 
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be reached during cholestatic liver diseases are known 
to induce oxidative stress and apoptosis that results 
in damage to the liver parenchyma and, eventually, 
extrahepatic tissues. When this occurs during gestation, 
such as in women suffering from intrahepatic cholestasis 
of  pregnancy, the outcome of  the gestational process 
and/or the health of  the fetus may be challenged. These 
aspects will be also be considered in depth in a separate 
review of  this series.

In contrast to the involvement of  bile acids in 
the etiology and pathogenesis of  several diseases, the 
physical-chemical and biological properties of  these 
compounds have permitted them to be used in the 
development of  drugs and as pharmaceutical tools for 
the delivery of  active agents, as will be commented 
below.

PHYSICAL-CHEMICAL 
CHARACTERISTICS OF BILE ACIDS
Chemical structure
In the common biomedical literature, the terms “bile 
acids” or “bile salts” are generally used to denote the so-
called “modern” bile acids[3]. They have 24 carbon atoms 
and are abbreviated as C24 bile acids, in contraposition to 
“primitive” bile acids, which have 25-27 carbon atoms 
(C27, C26, C25 bile acids) and are present in the bile acid 
pool of  primitive (e.g. coelacanth and sharks) and less 
primitive (e.g. reptiles and amphibians) vertebrates. The 
structures of  some of  the most abundant bile acids in 
humans are depicted in Figure 1. In higher vertebrates, 
C24 bile acids constitute a major part of  the bile[4], and 
in human bile, these compounds are almost completely 
in conjugated form with either glycine (75%) or taurine 
(25%)[5]. Under physiological conditions, conjugation 
increases their water-solubility. 

Bile salts have a unique and fascinating molecular 
structure derived from a saturated tetracyclic hydrocarbon 
perhydrocyclopentanophenanthrene system, usually 
known as the steroid nucleus. The steroid nucleus is 
also the main carbon skeleton of  other families of  
compounds such as brassinosteroids, ubiquitously 
distributed throughout the plant kingdom[6], hopanoids, 
commonly used as biomarkers in organic geochemistry[7], 
triterpenoids[8], and hormones.

The steroid nucleus consists of  three six-member 
rings (A, B and C) and a five-member ring (D), with a 
curved (beaked) or flat structure (depending on a cis- or 
trans-fused configuration between the A and B rings). 
In mammals, the nucleus is almost invariably 5β (A/B 
junction in cis configuration), while in lower vertebrates, 
some bile acids, known as allo-bile acids, exhibit an A/B 
trans-fusion. There are 11 chiral carbon atoms. Bile acid 
molecules are approximately 20 Å long, with an average 
radius of  about 3.5 Å (Figure 2).

As early as the 1960s, Haslewood had noticed the 
biological significance of  chemical differences in bile 
salts[9] and that the chemical nature of  the bile salts 
of  more primitive animals clearly indicates that an 

evolution from C27, 5α-alcohol sulfates to C24, 5β-acids 
has taken place[10]. Bile acids from different species 
differ chemically in three structural aspects: (1) side-
chain structure; (2) stereochemistry of  the A/B ring 
fusion (as mentioned above); and (3) the distribution of  
the number, position and stereochemistry of  hydroxyl 
groups in the steroid nucleus. Nearly all primary bile 
acids and bile alcohols, which occur in the less evolved 
forms of  life, have a 7α-hydroxyl group; ursodeoxycholic 
acid (UDCA) being a notable exception. Most evolved 
mammalian bile acids have a 5β-configuration with 
hydroxyl groups at 3α, 7α and 12α, whereas C27 bile 
alcohol sulfates (which increases water solubility) are 
widespread in nature. These latter are the dominant bile 
salts of  ancient mammalian species, cartilaginous fishes, 
and some amphibians. The West Indian manatee was 
the first mammal found to lack bile acids, presumably 
because it lacks the enzymes required for oxidation of  
the 26-hydroxy group to a carboxylic acid[11].

Physical characteristics
The presence in bile acid molecules of  chemically “non-
equivalent” hydroxyl groups (in mammals, commonly 
at positions 3, 7 and/or 12) and the side chain structure 
supporting a carboxylic acid group confer them peculiar 
physical-chemical characteristics, which has made them 
very attractive building blocks, with repercussions in 
the design of  novel antibiotics[12-14], chiral templates[15], 
new soft mater ia ls [16,17], cat ion[18] and anion[19,20] 
receptors, artificial ion channels[21], drug targeting 
vehicles[22], dendrons[23], molecular baskets[24], scaffolds 
for combinatorial chemistry[25], new surfactants[26], and 
others[27,28].

Among the most important physiological properties 
of  bile salts, lipid transport by solubilization and the 
excretion of  cholesterol into the intestinal tract, from 
which it is poorly absorbed, can be mentioned. These 
properties are related to their amphipathic nature, which 
is due to the existence of  a hydrophilic side (α-face, 
concave lower side) and a hydrophobic side (β-face, 
convex upper side). The hydroxyl groups, oriented 
towards the α-side (with the exception of  the naturally 
occurring UDCA), and the carboxylic side chain afford 
them their hydrophilic character. The hydrophobic 
methyl groups (at C-18 and C-19) are oriented towards 
the β-side (Figure 1)[29]. As a consequence, they exhibit 
a great surface activity and in aqueous solutions, they 
form small aggregates or micelles of  usually less than 
10 monomers, as long as their concentrations are above 
a critical value, generally called the critical micellar 
concentration (CMC). Below the CMC, bile salts behave 
as 1:1 strong electrolytes, as has been demonstrated from 
freezing-point measurements[30,31].

The balance between hydrophobic and hydrophilic 
characters differs markedly among the several molecular 
species of  bile salts. Differences in this balance might 
account for differences in how bile salts interact 
with other substances such as, for instance, in the 
solubilization of  phospholipids, cholesterol and other 
lipids. Over 50 methods have been employed in the 
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literature to determine the CMC (or pseudo-cmc) values 
of  bile salt solutions, such as the HPLC retention 
time[32], which accounts in part for the wide range of  
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Figure 1  Structures of the most abundant bile acids in humans, and their glycine and taurine conjugates.
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Figure 2  Stereostructure of cholic acid. A: Space-filling model; B: Calculated 
molecular lipophilic potential[147]. Blue colour shows polar surface and red colour 
shows apolar surface; C: Cartoon representation (as introduced by Small[148]). 

published values for the CMC[33,34]. The hydrophilicity of  
the common free and conjugated bile salts decreases in 
the order UDCA > cholic acid (CA) > chenodeoxycholic 
acid (CDCA) > deoxycholic acid (DCA) > lithocholic 
acid (LCA), and taurine-conjugated > glycine-conjugated 
> free species[35].

These values have been used to predict the cholesterol-
solubilizing capacity of  all bile salt species, but other 
physical-chemical and biological properties of  individual 
bile salts also may reflect their hydrophilic-hydrophobic 
balance[36]. The degree of  calcium binding follows the 
order UDCA < CA < CDCA < DCA < LCA, and 
taurine-conjugated < glycine-conjugated < free bile 
salts[35]. In model biles with added gallstones, gallstone 
masses decrease by addition of  bile acids in different 
degrees, depending on bile acid hydrophobicity (TUDCA 
> TCA > TCDCA)[37]. However, as noted by Heuman[36], 
the application of  the hydrophilic-hydrophobic balance 
to determine the physiological properties of  bile acids 
is still an area of  controversy. In this respect, Heuman 
defined a hydrophobic index and extended the method 
to mixed bile salt solutions[36].

Natalini et al[38] have correlated CMC values with 
hydrophobicity indices, which were determined 
chromatographically by extrapolating the retention 
factors back to a virtual pure water-containing mobile 
phase. Computational methods can also be employed 
to predict the hydrophobic/hydrophilic balance of  
bile salts[39]. This balance can be modified by attaching 
appropriate substituents that enhance either the 
hydrophilicity or the hydrophobicity of  the bile acid, 
depending on the nature of  the organic group. These 
modifications may be of  biological importance. For 
instance, a series of  hydroxycholan-24-amines have been 
synthesized by modification of  the carboxyl group of  
unconjugated bile acids into a basic moiety[40]. These 
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compounds show differential antimicrobial activity 
against several strains and against fungi[41]. Table 1  
summarises the lowest and highest values of  CMC 
reported for the most common bile acids in human 
bile[33].

PHYSIOLOGY OF BILE ACIDS
Biological functions
Traditionally considered as digestive molecules whose 
main function is to help in the emulsion and absorption 
of  dietary fats and liposoluble vitamins, bile acids are 
beginning to be considered more versatile molecules 
than previously believed. Recent findings have suggested 
the participation of  bile acids in many different 
functions.

The secretion of  bile acids into bile canaliculi 
generates an osmotic pressure that accounts for the 
so-called bile-acid-dependent fraction of  bile flow[42]. 
Bile acids stimulate biliary lipid secretion[43] and, due 
to their physical-chemical properties, are able to form 
mixed micelles together with biliary phospholipids, 
which allows the solubilization in bile of  cholesterol 
and other lipohilic compounds. Mixed micelles also 
account for the emulsion of  dietary fat and liposoluble 
vitamins in the gut, thus helping their absorption. Bile 
acids also facilitate intestinal calcium absorption[44]. At 
the intestinal level, bile acids are known to modulate 
pancreatic enzyme secretion and cholecystokinin 
release[45]. Moreover, they are potent antimicrobial agents 
that prevent bacterial over-growth in the small bowel[46].

In the last decade, with the discovery of  a specific 
nuclear receptor able to respond to bile acids, such as the 
“farnesoid X receptor” (FXR)[47-49], and more recently 
of  their membrane receptor TGR5[50,51], the role of  bile 
acids as signaling molecules with important paracrine 
and endocrine functions has become evident[52]. Apart 
from the regulation of  their own hepatic synthesis and 
hepatic and intestinal transport, bile acids are involved in 
triggering the adaptive response to cholestasis and other 
insults to the liver[53-55]. Finally, their role in the control of  
general energy-related metabolism, and more precisely in 
hepatic glucose handling, has been reported[56].

Synthesis
Bile acids are synthesized from cholesterol (Figure 3). 
Two main biosynthetic pathways, the so-called “classical” 
and “alternative” pathways, account for bile acid 

formation, although several other minor routes have 
been described, which in some species and situations 
may also have relevance[57].

The classical pathway, also known as the “neutral” 
pathway because its intermediate metabolites are neutral 
sterols, is present only in the liver and synthesizes the two 
primary bile acids in humans: CA and CDCA. This route 
consists of  a cascade of  reactions catalyzed by enzymes 
located at the cytosol, microsomes, mitochondria, and 
peroxisomes (Figure 3). Extensive descriptions of  these 
reactions and enzymes can be found in several recent 
reviews[58,59].

In the neutral pathway, the modification of  the sterol 
nucleus of  cholesterol precedes the oxidative cleavage 
of  its side chain. It begins with the hydroxylation of  
cholesterol at C-7, catalyzed by microsomal cholesterol 
7α-hydroxylase (CYP7A1), the rate-limiting enzyme of  the 
pathway, a cytochrome P450 enzyme localized exclusively 
in the liver. The resulting 7α-hydroxycholesterol 
is converted to 7α-hydroxy-4 cholesten-3-one by 
3β-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase 
(HSD3B7), which is also microsomal. The synthesis 
of  CA requires the hydroxylation of  7α-hydroxy-4-
cholesten-3-one at the C-12 position, performed by sterol 
12α-hydroxylase (CYP8B1), another highly regulated 
microsomal enzyme[60].
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Bile acid Minimum CMC Maximum CMC

Cholic acid 2.5    29.3
Deoxycholic acid 0.8 70
Chenodeoxycholic acid 3.0 30
Taurocholic acid 1.5 12
Taurodeoxycholic acid 0.6 12
Taurochenodeoxycholic acid   1.25   8

Table 1  Minimum and maximum values of CMC in water at 
37℃ (in mmol/L) for the sodium salts of major bile acids
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The next steps are catalyzed by two cytosolic 
enzymes, Δ4–3-oxosteroid-5β-reductase (AKR1D1) 
and 3α-hydroxysteroid dehydrogenase (AKR1C4), that 
carry out the reduction of  the double bond to obtain 
5β-cholestan-3α,7α-diol or 5β-cholestan-3α,7α,12α-
triol, the precursors of  CDCA and CA, respectively. 
Mitochondrial sterol 27-hydroxylase (CYP27A1) 
then oxidizes the side-chain of  these precursors by 
introducing a hydroxyl group to the C-27 position, 
which is subsequently oxidized to an aldehyde and then 
to a carboxylic acid. The products, 3α,7α-dihydroxy-5β-
cholestanoic acid (DHCA) and 3α,7α,12α-trihydroxy-
5β-cholestanoic acid (THCA), respect ively, are 
activated to their coenzyme A-esters by either bile acid 
CoA synthetase (BACS) or very long chain acyl CoA 
synthetase (VLCS), both localized at the endoplasmic 
reticulum. The resulting cholestanoyl-CoAs are then 
transported into peroxisomes where the side-chain is 
shortened by β-oxidation, a process that involves the 
action of  four peroxisomal enzymes (Figure 3).

The final step in bi le acid synthesis involves 
conjugation of  the terminal side-chain carboxylic acid 
with the amino acids glycine or taurine, carried out by 
the enzyme bile acid CoA: amino acid N-acyltransferase 
(BAAT). BAAT has been reported to be localized both 
in peroxisomes and in the cytosol[61], suggesting that 
peroxisomal BAAT is responsible for conjugation of  the 
newly formed primary bile acids within the peroxisome, 
while cytosolic BAAT may be involved in the re-
conjugation of  recycled primary and secondary bile acids 
previously deconjugated by intestinal bacteria. However, 
recent studies support the notion that BAAT is mainly a 
peroxisomal enzyme present in undetectable amounts in 
the cytosol, and hence deconjugated bile acids returning 
to the liver need to shuttle to the peroxisome to be re-
conjugated[62].

In the alternative biosynthetic pathway for bile acids, 
side-chain oxidation of  cholesterol precedes steroid 
ring modification. Thus, acidic intermediate metabolites 
are formed and this pathway is also known as the 
“acidic” pathway. The first step involves the oxidation 
of  cholesterol to 27-hydroxycholesterol by sterol 
27-hydroxylase (CYP27A1), followed by conversion into 
7α,27-dihydroxycholesterol by oxysterol 7α-hydroxylase 
(CYP7B1), a microsomal enzyme specific for this 
acidic pathway. Since both CYP27A1 and CYP7B1 are 
expressed in various tissues, and because only the liver 
has all the required enzymes to accomplish bile acid 
biosynthesis, these oxidized sterols must be transported 
to the liver in order to be converted to bile acids. In 
this pathway, CDCA is the main bile acid formed. The 
relative contribution of  the alternative pathway to overall 
bile acid synthesis depends on the species considered. 
In humans, it contributes little to the restitution of  
daily loss of  bile acid (approximately 10%) under 
normal conditions, but may become the major bile acid 
biosynthetic pathway in patients with liver diseases[63].

Cholesterol can also be oxidized to 25-hydroxy-
cholesterol and 24-hydroxycholesterol, mainly in 

extrahepatic tissues such as the brain, an organ with 
a very high expression of  sterol 24-hydroxylase 
(CYP46A1) [64]. The contribution of  these other 
hydroxylase pathways to overall bile acid synthesis is 
minor. However, biologically active oxysterols are potent 
regulators of  cholesterol metabolism via their nuclear 
receptor; i.e. the liver X receptor (LXR)[65].

Regulation of bile acid synthesis
Bile acids exert a negative feedback regulation on their 
own synthesis, in particular by inhibiting CYP7A1 
activity[66] and expression[67]. In fact, the cytochrome P450 
enzymes CYP7A1, CYP8B1 and CYP27A1 involved 
in bile acid synthesis are subject to negative feedback 
regulation by bile acids, which is mainly mediated through 
the nuclear bile acid receptor FXR. Upon activation by 
hydrophobic bile acids such as CDCA[68], FXR induces 
the expression of  the small heterodimer partner (SHP) 
transcriptional repressor. SHP in turn negatively interacts 
with other transcription factors, liver receptor homolog-1 
(LRH-1) and hepatocyte nuclear factor-4α (HNF-4α), 
that bind to the bile-acid response elements (BAREs) 
located within the promoter region of  the CYP7A1 and 
CYP8B1 genes[69,70], thus resulting in repression of  bile 
acid synthesis[71,72]. Another FXR-dependent but SHP-
independent mechanism for bile acid-induced CYP7A1 
down-regulation has been described, involving the 
secreted fibroblast growth factor 19 (FGF-19) and its 
receptor FGFR4[73]. Recent studies using liver-specific 
knock-out mice for FXR and LRH-1 provide strong 
evidence regarding the importance of  the FGF-19/
FGFR4 pathway in the control of  bile acid synthesis[74,75].

Cholesterol modulates its own catabolism to bile 
acids, mostly at the transcriptional level. Thus, oxysterols 
activate LXR, which in turn up-regulates CYP7A1 
expression in rat hepatocytes. However, LXR has little 
or no effect on human CYP7A1[76,77] owing to the lack 
of  an LXR-response element in the promoter of  the 
human CYP7A1 gene.

Hormones and exogenous compounds may also 
affect bile acid synthesis. Insulin down-regulates several 
enzymes of  the biosynthetic pathway, such as CYP7A1 
and CYP27A1, in different animal species[78], although a 
dual effect has been described in human hepatocytes[79]. 
Thyroid hormones induce CYP7A1 gene transcription 
in rats[80], but the effect of  thyroid hormones on the 
regulation of  CYP7A1 in humans is still controversial[81]. 
Regarding the effects of  drugs on bile acid synthesis, 
both phenobarbital, acting through the nuclear receptor 
constitutive androstane receptor (CAR)[82], and the 
antibiotic rifampicin, acting through the pregnane X 
receptor (PXR)[83], have recently been shown to repress 
CYP7A1 transcription.

Finally, the activity of  CYP7A1 undergoes diurnal 
variations, paralleled by variations in protein and mRNA 
levels[84]. Recently, it has been shown that HNF-4α is 
essential for the maintenance of  the diurnal variations 
in CYP7A1 expression[85]. Also, the circulating levels of  
FGF-19, which participates in the negative regulation 
of  CYP7A1 expression, show a pronounced diurnal 
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variation in marked synchronicity with the changes in 
CYP7A1 activity[86].

Biotransformation
During their intestinal transit, bile acid molecules 
undergo modifications due to the action of  intestinal 
bacteria. The bile acid metabolism by small intestine 
microbes consists mainly of  de-conjugation and hydroxyl 
group oxidation. Although ileal bile acid absorption 
is a very efficient process, some of  these molecules 
(< 1 g/d) escape it and enter the large bowel. The 
major bile acid modifications in human colon include 
7α-dehydroxylation, deconjugation, and oxidation/
epimerization of  hydroxyl groups at C-3, C-7 and C-12. 
The deconjugation and oxidation reactions are carried 
out by a broad spectrum of  intestinal anaerobic bacteria. 
In contrast, bile acid 7α-dehydroxylation is restricted 
to a limited number of  anaerobes representing a small 
fraction of  the total colonic flora[87].

Dehydroxylation at position C-7 is quantitatively the 
most important bacterial bile acid biotransformation 
event occur r ing in the human colon. Bacter ia l 
dehydratases of  the anaerobic flora from this region 
attack and remove the hydroxyl group to form 7-deoxy 
bile acids. Thus, the secondary bile acids DCA (3α,12α-
dihydroxy-5β-cholanoic acid) and LCA (3α-hydroxy-
5β-cholanoic acid) are formed from CA and CDCA, 
respectively.

On their side chain, bile acids undergo deconjugation, 
i.e. enzymatic hydrolysis of  the C-24 N-acyl amide bond 
linking bile acids to their amino acid conjugates. Bile salt 
hydrolases (BSHs) from the choloylglycine hydrolase 
family form unconjugated bile acids and free glycine 
or taurine. Some of  these molecules of  unconjugated 
bile acids are taken up by the intestine and return to 
the liver via the portal vein, where they are efficiently 
taken up and reconjugated during their transit across the 
hepatocytes toward the bile.

The oxidation and epimerization of  the 3-, 7- or 
12-hydroxyl groups of  bile acids are carried out by the 
hydroxysteroid dehydrogenases (HSDHs) of  intestinal 
bacteria. Epimerization of  bile acid hydroxyl groups is a 
reversible change in stereochemistry from the α to the 
β configuration (or vice versa), with the generation of  a 
stable oxo-bile acid intermediate. The epimerization of  
CDCA is the origin of  the UDCA (3α,7β-dihydroxy-5β-
cholanoic acid) present in the human bile acid pool.

Un l i ke b i l e a c id ox ida t ion/e p imer i z a t ion , 
7α-dehydroxylation appears to be restricted to free 
bile acids. The removal of  glycine/taurine by BSHs 
is a prerequisite for 7α-dehydroxylation by intestinal 
bacteria[88]. The deconjugation and 7α-dehydroxylation of  
bile acids increase their pKa and hydrophobicity, allowing 
a certain degree of  recovery by passive absorption 
across the colonic epithelium. However, their increased 
hydrophobicity is also associated with increased toxicity. 
High concentrations of  secondary bile acids in feces, 
blood, and bile have been linked to the pathogenesis of  
cholesterol gallstone disease and colon cancer[89].

Enterohepatic circulation
The interactions of  bile acids with the intestine, 
including ileal bile acid transport and its regulation, 
have been reviewed in a separate paper of  this series[90]. 
Here we shall briefly comment on the major points of  
this aspect of  bile acid physiology. Bile acid molecules 
are mostly confined to the territories of  the so-called 
enterohepatic circulation, which includes the liver, the 
biliary tree, the intestine and the portal blood with which 
bile acids are returned to the liver. Upon completion 
of  their digestive tasks, most intestinal bile acids (95%) 
are recovered by active transport in the intestine, mainly 
in the ileum. Active uptake of  bile acids at the apical 
membrane of  intestinal epithelial cells is performed by 
the apical sodium-dependent bile acid transporter (ASBT, 
gene symbol SLC10A2). This carrier is a symporter 
able to co-transport two sodium ions together with one 
molecule of  bile acid[91]. For a long time, the efflux of  
bile acids from intestinal cells across the basal membrane 
has been a matter of  controversy. The currently accepted 
concept is that this process is mainly accounted for by 
the heterodimeric organic solute transporter alpha and 
beta (OSTα-OSTβ)[92].

Albumin-bound bile acids that reach the liver 
mainly via the portal blood but also, although to a lesser 
extent, via the hepatic artery, are efficiently removed by 
transport proteins located at the sinusoidal membrane 
of  hepatocytes. The first-pass extraction fraction 
ranges from 50% to 90%, depending on the bile acid 
structure[93]. The uptake of  conjugated bile acids is 
largely sodium-dependent and is performed by the Na-
taurocholate co-transport polypeptide (NTCP, SLC10A1 
gene)[94]. Sinusoidal sodium-independent bile acid uptake 
also occurs. This process is carried out by members of  
the family of  organic anion transporting polypeptides 
(OATP), mainly the OATP1B1 and OATP1B3 isoforms[95]. 
In the overall process of  bile acid transport from blood 
to bile, canalicular secretion is the limiting step. This 
transport for monoanionic amidated bile acids, which 
constitute the majority of  secreted bile acids, is ATP-
dependent and is mainly performed by the bile salt 
export pump (BSEP, gene symbol ABCB11)[96]. Highly 
hydrophobic bile acids, such as LCA, can be sulfated in 
human hepatocytes as a means of  reducing its toxicity 
by increasing its water-solubility. Bile acids conjugated 
with sulfate or glucuronic acid are dianionic and are 
transported by other canalicular pumps, such as MRP2 
(ABCC2 gene)[97] and BCRP (ABCG2 gene)[98].

The high specificity of  these hepatic and intestinal 
carrier proteins for bile acids accounts for the low levels 
of  these compounds in peripheral blood, commonly 
below 10 µmol/L in healthy subjects[99].

PATHOPHYSIOLOGY OF BILE ACIDS
Defects in bile acid synthesis
Defects in bile acid synthesis are uncommon genetic 
disorders that account for approximately 1%-2% of  
cholestatic disorders in children[100]. The inheritance of  
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these defects is autosomal and recessive. The resulting 
liver diseases vary from mild to severe, depending 
on the par t icular alterat ion. The most common 
clinical presentation is progressive cholestasis of  
infancy, although other clinical manifestations, such 
as advanced liver disease at birth, neonatal hepatitis or 
the development of  liver disease in later childhood, 
can also occur. When the enzymatic defect results 
in an accumulat ion of  toxic monohydroxylated  
and/or unsaturated oxo-bile acids, many of  which are 
cholestatic[101], the progression of  liver disease is usually 
rapid. Recent evidence suggests that certain cholestatic 
liver diseases in adults may also be due to an inherited 
defect in bile acid biosynthesis[102].

Diagnosis is accomplished by analysis of  the 
profile of  bile acid species and their precursors and/or 
metabolites in body fluids, using laboratory techniques 
such as fast atom bombardment-mass spectroscopy and 
gas chromatography-mass spectroscopy. Early diagnosis 
is critical for these patients, because several of  these 
disorders can be successfully treated with the dietary 
addition of  bile acids. This has a dual purpose: first, 
to replace the essential primary bile acids absent, and 
second, to down-regulate bile acid synthesis by negative 
feedback inhibition, thus reducing the production of  
abnormal toxic intermediate metabolites by hepatocytes 
bearing the defect. 

As will be commented below in detail, inborn 
errors affecting the enzymes involved both in the 
modification of  the sterol nucleus and the side-chain, 
as well as in side-chain amidation, have been identified 
(Table 2). Moreover, the absence or impaired function 
of  peroxisomes also results in alterations in bile acid 
metabolism that accompany the other signs characterizing 
each syndrome (Table 2).

Defects in the modification of the sterol nucleus
At least four inborn errors affecting enzymes that 
modify the sterol rings have been identified. Three of  
them are associated with progressive liver disease.

Defect in cholesterol 7α-hydroxylase: The defect 
in the key enzyme of  the classical pathway of  bile acid 
synthesis, cholesterol 7α-hydroxylase (CYP7A1), has 
been associated with a decrease in bile acid production 
via the classical pathway, which is compensated by 
activation of  the alternative acidic pathway[103]. In these 
individuals, hepatic cholesterol contents are increased 
and, in adults, LDL hypercholesterolemia and cholesterol 
gallstones are commonly present. However, usually there 
is no evidence of  liver disease.

Defect in oxysterol 7α-hydroxylase: A defect in 
the conversion of  27-hydroxy-cholesterol to 7α,27-
dihydroxy-cholesterol due to a deficiency in oxysterol 
7α-hydroxylase (CYP7B1), an enzyme specifically 
involved in the acidic pathway, causes severe neonatal 
l iver disease. This is probably due in part to the 
accumulation of  monohydroxyl bile acid species, with 
marked cholestatic and hepatotoxic capabilities[104]. This 
defect, resulting from a mutation in the gene, reveals 
the importance in humans of  this alternative pathway in 
early life.

Defect in 3β-hydroxy-C27-steroid dehydrogenase/
isomerase: This enzyme catalyzes the oxido-reduction 
of  the 3β-hydroxyl group of  7α-hydroxycholesterol. 
Its deficiency is the most common defect in bile acid 
synthesis[105,106]. Individuals with autosomal recessive 
mutations in the encoding gene, HSD3B7 , fail to 

Table 2  Inborn defects in bile acid synthesis and biotransformation

Impaired process Defect localization Consequences

Sterol ring modification Cholesterol 7α-hydroxylase (CYP7A1) Increased hepatic cholesterol. In adults, LDL hypercholesterolemia and 
cholesterol gallstones 

Oxysterol 7α-hydroxylase (CYP7B1) Accumulation of monohydroxyl bile acid species with marked cholestatic 
and hepatotoxic capabilities. Severe neonatal liver disease

3β-Hydroxy-C27-steroid dehydrogenase/
somerase (HSD3B7)

Cholestatic jaundice and malabsorption of lipids and lipid-soluble vitamins

δ-4-3-Oxosteroid 5β-reductase (AKR1D1) Accumulation of δ-4-3-oxo- and allo(5α-H)-bile acids. Liver disease rapidly 
progressing to liver failure

Side-chain modification 27-Hydroxylase (CYP27A1) Cerebrotendinous xanthomatosis
25-Hydroxylase (CH25H) Low levels of primary bile acids in serum and increased urinary 

excretion of typical bile alcohols
α-Methylacyl-CoA racemase (AMACR) High concentrations of (25R) trihydroxy-cholestanoic acid in urine, bile, and 

serum
Complete or partial absence of peroxisomes Zellweger syndrome

Infantile Refsum disease
Neonatal adrenoleukodystrophy
Hyperpipecolic acidemia

Altered peroxisomal enzymes Pseudo-Zellweger syndrome
Pseudo-neonatal adrenoleukodystrophy
X-linked adrenoleukodystrophy

Bile acid amidation Bile acid acyltransferase (BAAT) Absence of taurine or glycine conjugates. Enhanced proportion of sulfate and 
glucuronide conjugates 

Bile acid-CoA ligase? Absence of taurine or glycine conjugates. Enhanced proportion of sulfate and 
glucuronide conjugates
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synthesize bile acids normally and develop a form of  
progressive liver disease characterized by cholestatic 
jaundice and malabsorption of  lipids and lipid-soluble 
vitamins.

Defect in δ-4-3-oxosteroid 5β-reductase: The absence 
of  this cytosolic enzyme results in a lack of  the ability 
to reduce the double bond between C-4 and C-5 of  the 
sterol A-ring, and thus to convert 3-oxo intermediates 
into the corresponding 3α-hydroxyl products, an 
essential step in major bile acid synthesis. This defect 
results in a markedly reduced primary bile acid synthesis 
and a concomitant accumulation of  δ-4-3-oxo- and 
allo(5α-H)-bile acids[107]. A clinical presentation 
resembling that of  neonatal hepatitis is typical, together 
with rapidly progressive liver disease and liver failure in 
infancy. Treatment with bile acid replacement therapy 
provides beneficial results.

Defects in the modification of the side-chain
Several inborn errors affecting single enzymes involved 
in the modification of  the cholesterol side-chain to 
produce C24 bile acids have been identified. Additionally, 
because β-oxidation of  the side-chain occurs in 
peroxisomes, peroxisomal disorders can also affect 
bile acid synthesis, accompanying other manifestations 
typical of  each syndrome[108].

Defect in sterol 27-hydroxylase: A mitochondrial 
sterol 27-hydroxylase (CYP27A1) deficiency accounts 
for the development of  so-called cerebrotendinous 
xanthomatosis (CTX)[109]. Regarding the biosynthesis 
of  bile acids, this defect specifically interferes with 
the initial modifications of  the cholesterol side-chain, 
resulting in downstream production of  bile alcohols 
and a decreased synthesis of  primary bile acids[110,111]. 
In general, CTX must be considered a progressive lipid 
storage disease characterized by diarrhea (the earliest 
clinical manifestation, affecting approximately 75% of  
affected infants), cataract (appearing in the first decade 
of  life), tendon xanthomas (adolescent- to young adult-
onset), and neurologic alterations, such as dementia, 
psychiatric disturbances, pyramidal and/or cerebellar 
signs, and seizures (adult-onset). Owing to the formation 
of  deposits of  cholesterol and cholestanol, xanthomas 
appear on the Achilles tendon, the extensor tendons of  
the elbow and hand, the patellar tendon, and the neck 
tendons, but also in the lung, bones, and central nervous 
system.

Defect in 25-hydroxylase: An inborn error in sterol 
25-hydroxylase (CH25H), which is involved in the 
alternative pathway for bile acid side-chain synthesis, has 
been suggested to account for the bile acid profile that 
is found in some cases of  neonatal hepatitis syndrome. 
This is characterized by the presence of  low levels of  
normal primary bile acids in serum and increased urinary 
excretion of  typical bile alcohols[112].

Defect in alpha methylacyl-CoA racemase: Alpha 

methylacyl-CoA racemase (AMACR) deficiency is 
a recently described defect in bile acid side-chain 
oxidation[113,114]. This peroxisomal enzyme catalyzes 
the conversion of  (25R) trihydroxy-cholestanoic acid 
(THCA) to its 25S isomer, a step that is essential for the 
subsequent peroxisomal β-oxidation to primary bile acids 
to be initiated. High concentrations of  (25R) THCA are 
found in the urine, bile and serum of  these patients.

Peroxisomal defects: Disorders in peroxisomal 
biogenesis (absence or diminished numbers of  
peroxisomes) and specif ic enzymatic defects in 
peroxisome-based lipid oxidation include a group of  
diseases (Table 2) that present an important phenotypical 
overlap, with variability in the type of  liver disease 
developed[115]. Altered serum bile acids in patients with 
peroxisomal disorders have been described[116]. The 
cerebro-hepato-renal syndrome of  Zellweger is probably 
the condition in which hepatic function is most affected; 
atypical mono-, di- and tri- hydroxy C-27 bile acids with 
low amounts of  primary bile acids are present in this 
disease[117,118].

Apart from AMACR, other peroxisomal enzymes 
involved in the beta-oxidation of  the bile acid side-chain 
are branched-chain acyl-CoA oxidase, D-bifunctional 
protein and sterol carrier protein X (SCPx). Deficiencies 
in these enzymes, associated with abnormalities in bile 
acid synthesis, have also been reported[108].

Defects in bile acid amidation
Defective bile acid conjugation, which is characterized 
by a complete absence of  glycine and taurine conjugates 
of  bile acids in biological fluids and a predominance 
of  unconjugated CA, with small proportions of  sulfate 
and glucuronide conjugates, has been reported[119]. 
Fat-soluble vitamin deficiency is severe. The authors 
proposed a defect in bile acid-CoA ligase, because no 
CA-CoA derivatives were detected in any biological 
fluids, although no genetic analyses were performed 
in that study. Until now, alterations in SLC27A5 gene 
encoding for VLCS or bile acid-CoA ligase have not 
been described in humans, therefore deficiency of  this 
enzyme remains a hypothetical disorder. However, 
as mice with deleted SLC27A5 do have the expected 
phenotype[120], the possibility of  the existence of  the 
corresponding metabolic disorder in humans can be 
expected.

More recently, a similar biochemical phenotype caused 
by a homozygous mutation in BAAT has been reported 
in Amish individuals with familial hypercholanemia, 
pruritus, and fat malabsorption[121].

Defects in bile acid transport
Progressive familial intrahepatic cholestasis (PFIC) type 1  
(Byler disease), type 2 and type 3 are genetic disorders of  
bile secretion in which the fundamental abnormality is 
the direct or indirect defective hepatobilary transport of  
bile acids and/or phospholipids. Inborn errors of  biliary 
canalicular transport systems will be the subject of  a 
separate paper of  this series and have been previously 
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reviewed by others[122,123].
Among these diseases, PFIC type 2 is due to 

primarily impaired bile acid transport. In these patients, 
high levels of  serum bile acids, together with severe 
progressive liver disease, are found. PFIC type 2 is 
caused by a mutation in the bile salt export pump (BSEP, 
gene symbol ABCB11)[124,125], the main agent responsible 
for the ATP-dependent secretion of  monoanionic bile 
acids across the canalicular membrane[96].

The less severe variant of  PFIC type 2 is benign 
recurrent intrahepatic cholestasis (BRIC) type 2. This is 
a mild condition characterized by intermittent crises of  
cholestasis without permanent liver damage. BRIC type 
2 is also caused by mutations in ABCB11[126].

Mutat ions in the BSEP gene have a lso been 
related to the aetiology of  intrahepatic cholestasis of  
pregnancy[127,128].

BILE ACIDS IN PATHOLOGY
Bile acids as deleterious agents
Owing to their amphipathic characteristics, bile acids 
may behave as detergent molecules, which in many cases 
is the primary cause of  bile acid-induced damage when 
they accumulate in the liver and other organs[129]. In the 
cholestatic condition known as PFIC type 3, a defect 
in MDR3 (gene symbol ABCB4) occurs. MDR3 is the 
flopase involved in the translocation of  phospholipids, 
mainly phosphatidylcholine, from the inner to the outer 
leaflet of  the canalicular membrane[130]. The presence in 
the biliary lumen of  bile acids, whose detergent ability is 
not buffered by phosphatidylcholine, causes attack and 
disruption by solubilizing the lipidic components of  the 
apical membranes in hepatocytes and biliary epithelial 
cells. As a side effect, this results in an increased release 
of  gamma-glutamyltranspeptidase, whose serum levels 
are higher than normal.

Elevated intracellular concentrations of  bile acids, 
such as those attained in cholestasis, have been related to 
oxidative stress[131] and apoptosis, both in adult and fetal 
liver[132]. Bile acids may induce apoptosis both by directly 
activating the Fas death receptor[133] and by inducing 
oxidative damage that causes mitochondrial dysfunction, 
which in turn may trigger apoptosis[134,135].

Finally, a relationship between bile acids and cell 
proliferation also exists. Some bile acid species have 
been shown to modulate DNA synthesis during liver 
regeneration after partial hepatectomy in rodents[136,137], 
and the regenerative process is dependent on bile 
acid signaling through the nuclear receptor FXR[138]. 
Teratogenic[139] and carcinogenic[140] effects of  the more 
hydrophobic bile acids have been reported. Thus, a 
role of  bile acids in the etiology of  cancer at different 
sites - colon, esophagus, or even non-digestive tissues 
such as breast - has been suggested[141,142]. Moreover, 
it has recently been shown that mice lacking FXR 
spontaneously develop liver tumours[143,144].

Secondary alterations in bile acid homeostasis
The normal hepatic synthesis and enterohepatic 

circulation of  bile acids are altered in some pathological 
conditions. This can indeed be expected in chronic liver 
diseases such as hepatitis or cirrhosis, which indirectly 
impair bile secretion, but this is also the case in other 
pathologies that do not directly affect hepatocyte 
secretory function, but in which changes in bile acid 
metabolism secondary to the primary disease have 
been described. This group of  diseases includes cystic 
fibrosis[145] and diabetes mellitus[146].

CONCLUSION
From the results obtained over the past three decades, 
it is becoming evident that bile acids can no longer 
be considered as simple detergent compounds that 
are useful in digestive processes. The list of  their 
physiological roles, as well as that of  the pathological 
processes in which they are involved either as etiological 
agents, mediators of  the pathogenic process, or simply 
affected by disease-induced changes in the liver or 
the intestinal handling of  these steroids, is long and 
still not complete. Moreover, owing to their peculiar 
physical-chemical and biological characteristics, the huge 
potential usefulness of  bile acids in the development 
of  pharmaceutical approaches as well as their use 
as natural drugs or as the basis for the synthesis 
of  novel semisynthetic drugs is encouraging many 
different groups worldwide to invest efforts in this 
direction. There is no doubt that many new concepts, 
pharmaceutical tools and pharmacological uses of  bile 
acids and their derivatives will emerge in the near future.
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