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Abstract

Eukaryotic cap-dependent mRNA translation is mediated by the initiation factor eIF4E, which binds mRNAs and stimulates
efficient translation initiation. eIF4E is often overexpressed in human cancers. To elucidate the molecular signature of eIF4E
target mRNAs, we analyzed sequence and structural properties of two independently derived polyribosome recruited mRNA
datasets. These datasets originate from studies of mRNAs that are actively being translated in response to cells over-
expressing eIF4E or cells with an activated oncogenic AKT: eIF4E signaling pathway, respectively. Comparison of eIF4E
target mRNAs to mRNAs insensitive to eIF4E-regulation has revealed surprising features in mRNA secondary structure,
length and microRNA-binding properties. Fold-changes (the relative change in recruitment of an mRNA to actively
translating polyribosomal complexes in response to eIF4E overexpression or AKT upregulation) are positively correlated
with mRNA G+C content and negatively correlated with total and 39UTR length of the mRNAs. A machine learning approach
for predicting the fold change was created. Interesting tendencies of secondary structure stability are found near the start
codon and at the beginning of the 39UTR region. Highly upregulated mRNAs show negative selection (site avoidance) for
binding sites of several microRNAs. These results are consistent with the emerging model of regulation of mRNA translation
through a dynamic balance between translation initiation at the 59UTR and microRNA binding at the 39UTR.
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Introduction

Aberrant translation of cap-dependent mRNAs encoding proteins

is important for tumorigenesis and tumor progression and is

frequently seen in human cancer. Deregulated signaling through

the oncogenic AKT pathway results in activation of the eukaryotic

translation initiation factor eIF4E. eIF4E itself has been recognized

as an oncoprotein implicated in tumor cell proliferation and tumor

progression in multiple cancer sites including breast and lung.

Targeting of eIF4E has shown therapeutic efficacy in animal models

[1] and is being explored for translation to human studies. Over-

activation of translation initiation appears to act in an mRNA-

specific manner [2,3]. While many of the mRNAs preferentially

regulated by eIF4E have been recently identified, the molecular

signatures in these mRNAs that allow them to specifically compete

for eIF4E protein binding are as yet unknown. This study is the first of

its kind to use computational analysis of mRNA structure to decipher

molecular signatures that identify an eIF4E target mRNA.

Specific recognition of the mRNA 59 cap by eukaryotic

initiation factor eIF4E is a rate-limiting step in translation

initiation [4]. In many cancers the levels of eIF4E are elevated

[5,6]. While the consequence of this upregulation might be

expected to be an increase in translation rates of all mRNAs, in

actuality the increase in these eIF4E levels results in preferential

increase in efficiency of translation of a select group of mRNAs

encoding proteins likely to be involved in tumorigenesis and tumor

progression [2,3,7]. Experimental evidence to explain this

preferential upregulation of translation is as yet missing. It has

been long known that certain mRNAs in the cell are less efficiently

translated than others. These weakly translated mRNAs demon-

strate deficient assembly of the eIF4F initiation complex and

subsequent inefficient ribosomal loading and translation initiation

and/or elongation [8]. The eIF4F complex consists of, in addition

to cap binding eIF4E, a scaffold eIF4G and an RNA helicase,

eIF4A [9]. Efficient eIF4F formation and unwinding of RNA

secondary structure by eIF4A are important for translation

initiation. While it is not readily clear why eIF4E binding to the

cap structure in these weakly translated mRNAs is inefficient,

some of these mRNAs appear to have an extensive 59UTR

secondary structure [10]. This observation has led to the
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speculation that this secondary structure in turn renders these

mRNAs dependent on efficient formation of the eIF4F complex, in

particular the RNA helicase activity of eIF4A [11]. In other words,

under conditions of limited eIF4E, weakly translated mRNAs

demonstrate weak eIF4F formation and low ribosomal loading

resulting in low translation initiation. However, neither the

consistent presence of complex 59UTR structure in eIF4E target

mRNAs nor the consistent absence of complex 59UTR structure

in non-target mRNAs has been demonstrated. Moreover, a similar

bias in eIF4E binding affinity to 7MeGpppG cap structure has also

not been demonstrated.

More recent observations implicate microRNAs (miRNAs) in

the regulation of translation initiation of many of the same

oncogenic mRNAs. MicroRNAs are noncoding RNAs that play a

key role in regulating protein expression [12] and can act as non-

coding tumor-suppressors [13,14] or oncogenes [15–17]. miRNAs

have been shown to interact with the translation initiation complex

[18]. It is, however, not clear if the predominant mechanism of

miRNA activity is through regulation of translation initiation,

elongation, co-translational protein degradation, competition for

the cap structure, inhibition of ribosomal subunit joining or

inhibition of mRNA circularization and stabilization [2,19,20].

Thus, while 59UTR structure in target mRNAs may represent one

mechanism for eIF4E specificity, other mechanisms may also be

important.

The present study is a novel, unbiased and comprehensive

computational approach to generate molecular signatures that

define eIF4E target mRNAs. Total length, 39UTR length and

G+C content emerged as predictive features, particularly when

considered in combination. The analysis also identified a miRNA

binding bias in eIF4E target mRNAs. These features were then

tested for their ability to predict fold change (i.e., the relative

change in recruitment of an mRNA to actively translating

polyribosomal complexes) in response to changes in eIF4E levels.

A combined classifier was also tested against a data set of mRNAs

regulated at the level of translation by the AKT signaling pathway.

Materials and Methods

We employed the two independent data sets described in some

detail below. These were derived from studies in which the

translational efficiency was altered by experimental manipulation

of either eIF4E protein levels or AKT-signaling. The AKT data

set was included to test some of the predictions obtained by

analyzing the eIF4E data set. It was expected that since AKT

signals through multiple molecules including eIF4E, the two data

sets would show partial but not complete concurrence with each

other.

Data preparation
eIF4E dataset. We used the data from the study by Larsson et

al. [3]. Briefly, immortalized human mammary epithelial cells

inducibly over-expressing the translation initiation factor eIF4E

were analyzed for change in translational efficiency. Each

microarray experiment was performed two or three times (see

the original publication Larsson et al. [3] for more information

regarding the number of replications per group). The dataset

contains 13770 mRNA identifiers annotated with a fold change in

the translational efficiency. For each mRNA, fold change is

defined as the relative change in recruitment of an mRNA to

actively translating polyribosomal complexes in cells with or

without eIF4E overexpression. Thus, fold change for a given

mRNA is the ratio of [polysomal mRNAeIF4E+/polysomal

mRNAcontrol] to [total mRNAeIF4E+/total mRNAcontrol]’’. The

data set was further refined to a subset of 11387 RefSeq annotated

human mRNA sequences whose 39UTR or 59UTR were not

shorter than 20 nt (Genbank). Of the 11387 Refseq mRNA

sequences, we used a subset of 1835 eIF4E upregulated mRNAs

and 679 downregulated mRNAs. These subsets of up- and

downregulated mRNAs are based on the set of eIF4E regulated

mRNAs provided in table 2 of the supplementary material of ref.

[3] and they correspond to mRNAs with fold changes greater than

1.4 or smaller than 0.63, respectively and with a false discovery

rate (FDR) of ,10%. A set of 3814 mRNAs (a subset of the 11387

mRNA set mentioned above) with a fold change between 1.2 and

1/1.2 was used as a set of eIF4E nonregulated mRNAs.

For most of the analysis reported in this study we used the above

data set. An exception was for the machine learning method. Since

sequence redundancy can lead to exaggerated prediction accura-

cy, we eliminated redundant sequences using the program

BLASTCLUST [21]. This narrowed the data set to a non-

redundant subset of 9629 mRNAs, whose pairwise sequence

similarity is not greater than 40% for more than 50% of the

39UTR. From this non-redundant set, we used 4000 mRNAs as a

training set and the rest, 5629 mRNAs as a test set for the machine

learning method. For the compute-intensive estimation of

microRNA binding site selection, we used sets of 40 highly

upregulated mRNAs (fold change greater 4.0) and 1200

nonregulated mRNAs with a fold change between 1.05 and 1/

1.05 for analysis.
AKT dataset. The AKT dataset is based on the microarray

data from the study by Rajasekhar et al. [7] in which mouse brain

progenitor cells selectively activated for AKT activity were

analyzed for changes in translational efficiency. We used a set of

7496 mRNAs that have the property of having a RefSeq

annotated 59UTR and 39UTR length of not less than 20 nt.

The fold changes were computed using the gcrma protocol [22,23]

within the R Bioconductor framework [24]. As in the case of the

eIF4E data (see above), for each mRNA, fold change is defined as

the change of the polyribosomal RNA signal relative to the total

RNA signal in cells with or without AKT overactivation.

Sequence alignments around cap-, start- and stop-region
Ideally one would like to be able to align the profiles of all

mRNAs. A general sequence/structure alignment is unrealistic

due to the diversity of sequences. Therefore, we generated three

non-gapped alignments of ‘‘anchor’’ regions relative to the cap site

(20 nt), start-codon (40 nt) and stop-codon (40 nt). These

alignments are used for computing a bias in sequence composition

as well as probabilities of base pairing with respect to fold change.

Similar non-gapped alignments around anchor regions have been

used by Shabalina et al. [25].

Statistics of non-parametric tests
We used standard non-parametric statistical tests calculated

using the R statistics software. All correlations were computed

using the Spearman correlation method [26]. Comparisons

between counts of two groups having two different outcomes

were obtained using the Fisher exact test [26]. Comparisons of

scores of two groups were performed using the Wilcoxon-Mann-

Whitney rank sum test (two-sample or one-sample test depending

on whether the two groups are unpaired or paired) [26]. The

Kruskal-Wallis test was used for comparisons involving more than

two groups [27].

Sequence composition bias
We developed a novel method to assess a position-specific bias

of sequence-composition with respect to fold change. Assessing a

Analysis of eIF4E Target mRNAs
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bias in the median fold change of 4 groups (corresponding to the

four nucleotides A,C,G,U) was performed using the Kruskal-

Wallis test. We computed the Kruskal-Wallis test for the 4 groups

at each position around the cap, start or stop flanking region. Each

group contained the fold changes of all sequences that have a

certain nucleotide at a specified position. Consequently, each

alignment column was assigned a p-value, which denotes the

probability that the fold changes of the four groups of sequences

(according to the four possible nucleotides at the specified position)

are from the same distribution.

Secondary structure predictions using RNAplfold and
RNALfold

For each individual complete mRNA, we generated secondary

structure profiles using the RNAplfold program [28]. The

program computes probabilities (averaged over 70 nt sequence

windows) of individual pairs of bases to form base pairings. We

used the maximum of these averaged probabilities with respect to

one base as an estimate of the chance that this base is part of a

base pair. In particular, we looked for regions that differ between

up-, non- and downregulated sequences. For computing the

number of stable local secondary structure elements within the

entire UTR regions we used the closely related RNALfold

program [29].

Machine learning using a Support Vector Machine
approach

We used the R implementation of libsvm as a library for support

vector machine based machine learning [30]. As input features we

used the logarithm of the total length, the logarithm of the 39UTR

length and the G+C content of the mRNA (scaled by a factor of

0.1). Using predicted microRNA binding sites as features for the

machine learning algorithm did not result in an increased

prediction accuracy (data not shown). The support vector machine

algorithm provided by the libsvm library was not used as a two-

class classifier, but instead was used to predict a real number, in

this case the logarithm of the fold-change values.

MicroRNA prediction using PITA
The microRNA–target predictions were performed using the

program PITA[31]. This program predicts potential microRNA

targets using an estimated free energy of binding. The secondary

structure of both the microRNA and the 39UTR of the mRNA is

explicitly taken into account by computing an estimated free

energy of unfolding and subtracting this unfolding energy from the

binding energy [31,32]. We chose the PITA program, because

unlike other approaches (miRanda, PicTar), PITA takes explicitly

the secondary structure context (i.e. 70 nt flanking regions) of the

microRNA target into account. The authors of the PITA program

show in their publication that the approach has for a set of 190

microRNA-target interactions an average accuracy (AUC) value of

0.79, which compares favorably with competing approaches. We

used a set of 470 human microRNAs obtained from miRBase

release 9.1 [33,34] and performed PITA predictions for the

39UTRs of the 40 upregulated and 1200 nonregulated mRNAs

described in the eIF4E dataset preparation section. The

considered predicted microRNA binding sites were required to

have a negative free energy of binding.

We assessed the positive and negative selection pressure of a

microRNA-target interaction by computing a total free energy of

binding as being the sum of the free energies of binding of the

different predicted binding sites of the microRNA and the mRNA

39UTR sequence. The total free energy of binding of a

microRNA-target pair was compared with the total free energy

of binding of that microRNA with randomly shuffled versions of

the mRNA 39UTR sequence. We created a program ALIGNE-

DIT that, among other things, can randomly shuffle nucleotide

sequences while preserving their dinucleotide content (this

program is available as part of the KNetFold software [35]).

The algorithm for sequence shuffling works as follows: two

different mono-nucleotides of a sequence are randomly chosen

and swapped. This swapping step is only accepted, if none of the

16 possible dinucleotide content values differs by more than 1%

from its original value. Five rounds of shuffling are performed on

each sequence where each round ensures that each nucleotide

position is subject to at least one swapping operation.

We computed for each microRNA-mRNA pair a z-score from

the total free energy of binding of the microRNA and the native

39UTR sequence and the total free energies of binding of the

microRNA with 20 shuffled versions of the same 39UTR

sequence. The z-score for each microRNA was used to compute

a Fisher exact test based on the counts of positive and negative z-

scores in upregulated or nonregulated mRNAs. Since the total free

binding energy of a 39UTR was compared with its dinucleotide

shuffled counterparts, the results obtained did not need to be

normalized or corrected for length or G+C content effects.

This methodology is similar but not identical to the approach

described by Stark et al. [36], where it is demonstrated that the

often overlooked negative selection of microRNA-target interac-

tions (the avoidance of microRNA binding sites on the 39UTR)

can provide important insights into microRNA function. Note that

comparing total free energies of binding can pick up smaller

differences (e.g. strength of binding) between two microRNA-

target sequence pairs than simply comparing counts of predicted

binding sites.

Results

Region specific sequence composition influences eIF4E
responsiveness

We applied the Kruskal-Wallis test in order to find statistically

significant position-specific correlations between the nucleotide

content and the observed eIF4E-dependent polyribosomal recruit-

ment (fold change) (see Materials and Methods). The results are

shown in Figures 1a–1f. Shown is the median fold change for each

nucleotide at each position near the a) cap site b) start site or c)

stop site. Comparison of Figures 1a) and c), reveals that at the

beginning of the 39UTR the median fold change is highest for

sequences that have G or C at those positions. Near the cap region

the discrepancy between fold changes of G/C versus A/U

nucleotides is smaller. The p-value of the Kruskal-Wallis test

indicates the importance of the nucleotide at each position

(Figure 1d–1f). The periodic peaks in terms of codon triplets at the

beginning and at the end of the coding region are as per previous

reports [25]. This corresponds to the wobble base of a codon

triplet that appears to correlate with enhanced RNA secondary

structure at the third base of a codon. Regardless, at almost all

positions the median fold changes are higher for sequences that

have a G or C at the respective positions. The differences are

largest for the beginning of the 39UTR as well as the end of the

59UTR followed by the coding region. The sequence composition

differences are the smallest for the beginning of the 59UTR with

marginal statistical significance.

Applying the same method to the AKT data set we find roughly

comparable tendencies. The corresponding p-values are, however,

at only 3 positions smaller than 0.0001 (positions 218 and 19, 20

with position 1 being the first nucleotide after the stop codon), thus

Analysis of eIF4E Target mRNAs
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indicating a position-specific sequence dependence of the AKT

fold change that is weaker compared to the eIF4E case (data not

shown).

Secondary structure in 59UTR and 39UTR shows positive
correlation with eIF4E-dependent regulation

The base pairing probability profiles (generated using RNApl-

fold as described in the Materials and Methods section) of the start

and stop region are shown in Figures 2a and 2b for up-, down- and

nonregulated mRNAs. We used for each alignment position a

Wilcoxon-Mann-Whitney two-sample rank sum test to ascertain

whether the sequences of one set have on average a different

probability of base pairing at that position with respect to another

set. We performed three sequence set comparisons of up- versus

nonregulated sequences, down- versus nonregulated sequences

and up- versus down-regulated sequences. The average base

pairing probabilities as well as the p-values comparing up- and

down-regulated sequences for the regions around the start and the

stop codons are plotted in Figures 2a and 2b, respectively.

General features of the average secondary structure of mRNAs

around the start and stop codon have been observed by Shabalina

et al. [25]. For example, on average the probability of base pairing

is lower around the start and the stop codons compared to the rest

of the mRNA. This can be rationalized by noting that the

sequences of the start and stop-codons are under stronger

evolutionary constraints. Because the start and stop codons are

functionally important sequences less structure around these

codons might correlate with the ribosome complex recognizing

these parts of the mRNA with greater reliability.

39UTR region and stop codon. Surprisingly, the most

prominent structural difference between upregulated and

downregulated mRNAs is not in the 59UTR but in 39UTR

(positions +1,+2,+3 after the stop-codon, see Figure 2b. This

observation points to the 39 UTR rather than the 59UTR structure

as a more influential factor for eIF4E-dependent regulation. At

indicated positions, the probability of base pairing is on average

more pronounced in the upregulated sequences compared to the

downregulated sequences (p = 2.0?1026, p = 2.7?1027 and

p = 2?1024 for positions 1, 2 and 3 of the 39UTR respectively;

Wilcoxon-Mann-Whitney two-sample rank sum test). The average

probability of base pairing for the nonregulated sequences around

the stop codon are intermediate between those of the up- and

downregulated sequence set (lower with respect to the upregulated

sequences and higher with respect to the downregulated

sequences). If one assumes a statistical independence between

the positions of the anchored alignment, this leads to a highly

significant bias towards a positive correlation between the

probabilities of base pairing and the eIF4E induced shift into

polysomes. At the first twenty positions of the 39UTR region,

eIF4E upregulated sequences are significantly more structured (i.e.

have a higher probability of base pairing) compared to

downregulated sequences (p = 1.9?1026; up- versus nonregulated

sequences: p = 0.02; down- versus nonregulated sequences:

p = 0.0006; Wilcoxon-Mann-Whitney one-sample rank sum test).

59UTR and start codon. The average probabilities of base

pairing around the start codon are shown in Figure 2a. In the

59UTR region (indicated as positions 219 to 0) the secondary

structure is at most positions more pronounced in the eIF4E

upregulated than in the downregulated sequences with the

nonregulated sequences being intermediate. eIF4E upregulated

mRNAs are more structured at the end of the 59UTR region

(positions 219 to 0) compared to downregulated sequences

(p = 0.0004, upregulated versus nonregulated sequences:

p = 0.06, down- versus nonregulated sequences: p = 0.006;

Figure 1. Sequence composition influences eIF4E responsiveness. Top row: median fold change of four groups of sequences corresponding
to the four possible nucleotides at each position in the alignment around a) cap region (nt 1–20), b) start region (positions 219…20 with position 1
being the first nt of the coding region), c) stop region (positions 219…20 with position 1 being the first nt of the 39UTR). Blue: A, red: C, green: G,
black: U. Bottom row: Negative decadic logarithm of the Kruskal-Wallis test p-value as a function of the sequence position. The statistical test is
applied at each alignment column to the fold change values of the four groups mention above. Note that because the Kruskal-Wallis test is not
defined for completely conserved alignment columns, the start and stop codon regions are skipped (Figures a)–c)). The eIF4E overexpression data set
consisting of 11387 mRNAs was used to generate the plots (see Materials and Methods).
doi:10.1371/journal.pone.0004868.g001
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Wilcoxon-Mann-Whitney one-sample rank sum test). This small

but statistically significant bias of eIF4E upregulated sequences

towards a more stable secondary structure near the end of the

59UTR region is consistent with a model of ribosomal scanning

and unwinding of secondary structure with the eIF4A helicase

[8,37]. Interestingly, this secondary structure tendency is reversed

at the first position of the start codon. At that position

(corresponding to the nucleotide A in all sequences) the eIF4E

upregulated sequences have on average a less pronounced

secondary structure compared to the downregulated and

nonregulated sequences (p = 1.8?1025 and p = 9.3?1025

respectively; Wilcoxon-Mann-Whitney two-sample rank sum test).

Coding region. Figure 2a shows (among other things)

tendencies of the probabilities of base pairing corresponding to

the 20 nt flanking the start codon. Similarly, Figure 2b shows the

corresponding values for the 20 nt flanking the stop codon. The

probabilities of base pairing show in the coding region oscillatory

behavior in terms of nucleotide triplets. This was previously

observed by Shabalina et al. [25].

The tendencies of secondary structure stability appear to be

different for the beginning and the end of the coding region. At the

beginning of the coding region (first 17 positions, excluding start

codon), the structural differences are marginal or non significant

(Figure 2a). The upregulated sequences appear to be slightly less

structured than the downregulated sequences (p-value 0.02; no

significant difference between up- and non-regulated sequences).

At the 39end of the coding region (Figure 2b), the upregulated

sequences show for the last 17 positions (not including stop codon)

higher probabilities of base pairing compared to the downregu-

lated sequences (p = 0.005, Wilcoxon-Mann-Whitney one-sample

rank sum test) and nonregulated sequences (p = 3.1?1025). This

bias towards more stable structure near the end of the coding

region of eIF4E upregulated sequences may indicate a role for

secondary structure ‘‘unwinding’’ activity or some other function

still to be determined.

Amount of locally stable secondary structure elements in
39UTR regions correlates with eIF4E responsiveness

In order to analyze secondary structure content within the

entire 39UTR regions (so not be restricted to the vicinity of either

cap-, start- or stop-site), we applied the local secondary structure

folding program RNALfold [29]. We found a weak but significant

correlation between the eIF4E fold change and the number of

local secondary structure elements observed per sequence length

for 39UTR sequences (Spearman correlation; p,2.2?10216,

correlation coefficient 0.102). The corresponding result for the

complete 59UTR shows a weaker, but still significant correlation

(p = 8.6?1027, correlation coefficient 0.046). Using different energy

cutoffs for counting local secondary structure elements resulted in

only minor changes to the found correlations (data not shown).

G+C content is moderately correlated with regulation by
eIF4E and AKT

G+C content, especially in RNA stem structures is negatively

correlated with translation efficiency (Tsien RY., RNA 2006). If

the effects of eIF4E overexpression are mediated through

increased eIF4F activity, then it is expected that mRNAs

responsive to eIF4E levels may contain higher G+C content

compared to unresponsive mRNAs.

We computed the correlation between the G+C content of

mRNAs and their fold change in response to eIF4E overexpres-

sion. This was analyzed with respect to the total length (LT) of the

mRNA as well as by 59UTR (L5), coding or 39UTR(L3) regions.

These results are shown in Table 1. It is obvious that the G+C

content is correlated with the eIF4E and AKT fold changes. The

correlation coefficients are all positive; this means that higher G+C

content is associated with a greater shift into polysomes. The

correlation coefficients corresponding to total mRNA length, the

39UTR region length and the coding region length are all positive

and of comparable size. However, the correlation coefficients

corresponding to the 59UTR region are notably lower. This

suggests that interactions involving the 59UTR may be less

important than previously thought in eIF4E mediated translation

regulation.

eIF4E target mRNAs have on average shorter 39 UTRs
We analyzed the lengths of the mRNAs with respect to fold

change (the relative change in recruitment of an mRNA to actively

translating polyribosomal complexes in response to eIF4E

overexpression). Total length as well as 59UTR, 39UTR and

coding region lengths were analyzed. We looked for statistically

significant differences in sequence lengths with respect to eIF4E or

AKT regulation. The results are shown in Table 2. Using the

Spearman correlation coefficient, we computed the correlation

between the length of an mRNA (total length or length of 59UTR,

coding or 39UTR region) and its fold change with respect to the

polysome shift induced by eIF4E over-expression or AKT

activation. The correlations that emerged showed significant p-

values (p,2.2?10216), but moderate or weak correlation coeffi-

cients. For example, the eIF4E correlation coefficient was about

Figure 2. Probability of base pairing is greater for upregulated
mRNAs at the regions just upstream of the start codon and
flanking the stop codon. Secondary structure profiles of mRNA
regions. Red, black, green: average secondary structure probability for
upregulated, un-regulated or downregulated mRNAs respectively; blue:
p-value of the Wilcoxon-Mann-Whitney two-sample rank sum test using
logarithmic scale shown on the right y-axis. a) start codon (positions
219…20 with position 1 being the first nt of the coding region), b) stop
codon (positions 219…20 with position 1 being the first nt of the
39UTR).The positions of start and stop codon are indicated in red. The
used subsets of the eIF4E overexpression data consists of 1835
upregulated mRNAs, 679 downregulated mRNAs and 3814 nonregu-
lated mRNAs (see Material and Methods).
doi:10.1371/journal.pone.0004868.g002

Analysis of eIF4E Target mRNAs
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20.4 with respect to coding region length or total length, about

20.2 with respect to 39 UTR length and 20.07 with respect to

59UTR length. Since all correlation coefficients were negative, the

shorter sequences are more likely to be responsive to eIF4E

regulation than longer sequences. One probable explanation for

this trend is that longer sequences have more alternative

regulatory mechanisms (such as miRNA binding) that are

associated with the mRNA translation process. The amount of

eIF4E induced upregulation should therefore be lower for mRNAs

with longer sequences.

Length of the 39UTR regions can be suggestive indicators of the

amount of miRNA regulation of these mRNAs[38]. Upon visual

inspection of the eIF4E dataset, we observed that the fold change

is close to 1.0 in the extremes of 39UTR length (smaller than 30 nt

or larger than 6000 nt). One plausible explanation for this

observation could be the higher degree of miRNA regulation for

mRNAs with 39UTR lengths greater than 6000 nt. Reciprocally,

all mRNAs with a fold change greater than 6.0 have 39UTR

lengths of less than 900 nt. This suggests that highly upregulated

genes cannot be under tight microRNA control, which in turn is

related to the length of the 39UTR regions [38].

The Support Vector Machine shows high correlation to
fold shift for combinations of total mRNA length with
39UTR length, G+C content or both

As described in the Methods section, we used the libsvm

package to train a support vector machine with features of the

mRNA: total length, 39UTR length and G+C content. The

support vector machine was used to predict a real-valued number

instead of a Boolean two-class classification result. Using these

features, the support vector machine prediction compared with the

logarithm of the fold changes yielded a Spearman correlation

coefficient of 0.55 (Table 3 and Figure 3). Note that the use of the

support vector machine (Table 3) leads to higher correlation

coefficients compared to the results of the individual features

(Tables 1 and 2). The prediction accuracy without the G+C

content feature has a correlation coefficient of 0.43. Applying the

support vector machine trained on the eIF4E overexpression

dataset to the AKT activation dataset, we found that the support

vector machine can predict the AKT fold change with a Spearman

correlation coefficient of 0.15. This suggests commonalities (as well

as differences) between genes differentially expressed due to eIF4E

overexpression or AKT activation. 79% percent of the mRNAs

that shifted in response to eIF4E were predicted, while 62%

percent of those that did not shift were predicted. This result

indicates a high degree of accuracy for the support vector machine

(Table 4).

Presence of miRNA binding sites is negatively correlated
with eIF4E upregulation

PITA (see Materials and Methods) was used to predict mRNA –

miRNA interactions using 470 human miRNA sequences

available from miRBase [34]. As before, we are especially

interested in differences between eIF4E upregulated and eIF4E

nonregulated mRNAs. Results of the miRNA-target predictions

are shown in Tables 5 and 6. Table 5 lists miRNAs whose binding

sites are underrepresented in 39UTRs of eIF4E upregulated

mRNAs. Column 2 and 3 show for each miRNA the number of

highly upregulated mRNAs for which the total binding energy is

lower (upreg+) or higher (upreg 2) than the average of the total

Table 1. G+C content shows correlation with polysome shift for total mRNA, coding and 39UTR but not for 59UTR sequence.

eIF4E AKT

p-Value Correlation Coefficient p-Value Correlation Coefficient

Total mRNA ,2.2?10216 0.3848 ,2.2?10216 0.2141

59UTR ,2.2?10216 0.1196 8.47?10212 0.0788

Coding ,2.2?10216 0.3535 ,2.2?10216 0.1677

39UTR ,2.2?10216 0.3232 ,2.2?10216 0.1691

Table shows G+C content of mRNA (total mRNA or 59UTR, coding, 39UTR) as a function of fold change. P-values and correlation coefficients are computed according to
the Spearman correlation for the eIF4E overexpression data set (11387 mRNAs) and the AKT activation data set (7496 mRNAs).
doi:10.1371/journal.pone.0004868.t001

Table 2. Length correlates with fold shift for total, coding
and 39UTR but not 59UTR of target mRNAs.

eIF4E AKT

p-Value
Correlation-
Coeff p-Value

Correlation-
Coeff

Total length ,2.2?10216 20.4317 ,2.2?10216 20.1951

59UTR region 3.07?10214 20.0711 3.36?10210 20.0725

Coding region ,2.2?10216 20.4138 ,2.2?10216 20.1373

39UTR region ,2.2?10216 20.2485 ,2.2?10216 20.1463

Table of correlations between length of mRNA (total mRNA, 59UTR, coding,
39UTR) and the eIF4E fold change for the eIF4E dataset. P-values and correlation
coefficient are computed according to the Spearman correlation for the eIF4E
overexpression data set (11387 mRNAs) and the AKT activation data set (7496
mRNAs).
doi:10.1371/journal.pone.0004868.t002

Table 3. The support vector machine shows high correlation
for combinations of total length with 39UTR length and/or
G+C content.

Spearman Matthews

LT+L3+GC 0.547 0.419

LT+GC 0.517 0.412

LT+L3 0.431 0.306

LT+L3+GC (AKT) 0.146 0.089

Result of support vector machine. Shown is the Spearman correlation
coefficient as well as the Matthews correlation coefficient of the predicted fold
change versus the actual fold change using different feature combinations. LT:
total length; L3: length of 39UTR region; GC: G+C content.
doi:10.1371/journal.pone.0004868.t003
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binding energies of the randomly shuffled sequences. Columns 4

and 5 show the corresponding information for the eIF4E

nonregulated mRNAs. MicroRNA let-7i binding sites were

positively selected in 6 eIF4E upregulated mRNAs and negatively

selected in 34 upregulated mRNAs (negative selection in 85% of

mRNAs). The corresponding counts for the eIF4E nonregulated

mRNAs are 494 mRNAs with positive selection and 706 mRNAs

with negative selection. This corresponds to 59% mRNAs with

negative selection (p = 0.00081, Fisher exact test). The function of

many of the listed miRNAs is not yet known. It is noticeable,

however, that the let-7 family of miRNAs (let-7 a, b, c, d, f, g, i,

mir-98 but not let-7e) is present in Table 5. Mathonnet et al. show,

that the let-7 family of miRNAs can act as an inhibitor of

translation initiation [18]. The let-7 miRNA family has also been

implicated in the suppression of non-small cell lung tumor

development [13] and colon cancer [13,39].

We also identified miRNAs whose binding sites are over-

represented in eIF4E upregulated mRNAs (Table 6). Upregulated

mRNAs show global preferences for less miRNA binding because

of their on average shorter 39UTR length and higher G+C

content. Even though the results were intrinsically normalized for

39UTR length and nucleotide composition (because they were

generated using shuffled 39UTR sequences, see Materials and

Methods), we were still able to identify a number of miRNAs that

exhibit negative selection on highly upregulated mRNAs.

Search for other sequence features
Using pattern-matching, we did find a weak correlation with the

presence of the TOP motif [40] and eIF4E fold change. Sequences

that start with a TOP motif have a higher median fold change

(median: 1.2) than those without (median: 1.03) (p = 0.00002,

Table 4. Confusion matrix of support vector machine for
combination of total length with 39UTR length and G+C
content.

Fold change.1 Fold change#1

Predicted fold change.1 2385 1006

Predicted fold change#1 618 1620

Results of the support vector machine (corresponding to first row in Table 3)
applied as a two-class predictor. The used eIF4E overexpression dataset consists
of 4000 mRNAs for training and 5629 mRNAs for testing the classifier (see
Materials and Methods).
doi:10.1371/journal.pone.0004868.t004

Figure 3. Support vector machine classifier effectively predicts
fold change. Log-log plot of the eIF4E dataset fold change plotted
with the corresponding support vector machine classifier results. The
used eIF4E overexpression dataset consists of 4000 mRNAs for training
and 5629 mRNAs for testing the classifier (see Materials and Methods).
doi:10.1371/journal.pone.0004868.g003

Table 5. Highly upregulated mRNAs show mostly negative
selection (site avoidance) for miRNA binding sites.

Name upreg+ upreg2 nonreg+ nonreg2 p-value ratio

miR-589 9 31 651 549 0.00008 0.41

miR-507 3 37 373 827 0.00070 0.24

let-7i 6 34 494 706 0.00082 0.36

miR-571 4 36 408 792 0.00095 0.29

miR-647 8 32 549 651 0.00109 0.44

miR-766 13 27 706 494 0.00162 0.55

miR-18b 7 33 507 693 0.00164 0.41

miR-644 9 31 572 628 0.00188 0.47

miR-622 10 30 601 599 0.00197 0.50

let-7g 7 33 487 713 0.00286 0.43

miR-363* 7 33 484 716 0.00296 0.43

miR-452* 9 31 559 641 0.00320 0.48

miR-18a 8 32 516 684 0.00326 0.47

miR-27b 10 30 585 615 0.00341 0.51

miR-550 5 35 409 791 0.00341 0.37

let-7f 7 33 481 719 0.00454 0.44

miR-98 7 33 469 731 0.00482 0.45

miR-636 9 31 532 668 0.00574 0.51

miR-502 10 30 568 632 0.00575 0.53

miR-642 13 27 658 542 0.00590 0.59

miR-330 12 28 629 571 0.00591 0.57

miR-379 4 36 346 854 0.00704 0.35

miR-30e-3p 8 32 494 706 0.00809 0.49

let-7d 8 32 493 707 0.00812 0.49

let-7b 8 32 486 714 0.00848 0.49

miR-27a 10 30 554 646 0.00922 0.54

miR-331 6 34 417 783 0.01010 0.43

miR-488 6 34 413 787 0.01019 0.44

let-7a 8 32 476 724 0.01283 0.50

let-7c 8 32 476 724 0.01283 0.50

miR-30a-3p 9 31 507 693 0.01383 0.53

miR-335 9 31 507 693 0.01383 0.53

miR-652 6 34 400 800 0.01563 0.45

miR-93 14 26 654 546 0.01588 0.64

miR-489 8 32 468 732 0.01950 0.51

miR-199a* 8 32 461 739 0.01965 0.52

List of miRNAs with negative selection (avoidance of binding sites) among 40
highly eIF4E upregulated mRNAs (fold change greater 4.0) and 1200
nonregulated mRNAs (fold change between 1.05 and 1.0/1.05). upreg+: number
of upregulated mRNAs that show positive selection with respect to the
specified miRNA, upreg2: number of upregulated mRNAs with negative
selection, nonreg+: number of nonregulated mRNAs with positive selection of
miRNA-target binding sites; nonreg2: number of nonregulated mRNAs with
negative selection. P-values are computed according using a Fisher exact test,
all entries with a p-value smaller than 0.02 are listed. Ratio: (upreg+/
(upreg++upreg2))/(nonreg+/(nonreg++nonreg2)).
doi:10.1371/journal.pone.0004868.t005
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Wilcoxon-Mann-Whitney two-sample rank sum test). The

pattern matching was performed by filtering 59UTR sequences

with the Unix grep program and the pattern descriptor

‘‘‘C(C|U){4,14}(A|G)’’, which indicates that a TOP motif ‘‘starts

with a C residue at the cap side, which is followed by an

uninterrupted stretch of 4–14 pyrimidines’’ [40]. Note that the

definition of the TOP motif allows for variable lengths, which is

not examined in typical motif search programs.

We performed analysis of 59UTR sequences with respect to a

55mer secondary structure motif [41]. Using the program

RNAMotif [42], we did not identify a correlation between the

number of occurrences of the 55mer motif and the eIF4E or AKT

fold change. The absence of correlation might be attributable to

differences in study designs as well as cell type and cell state

differences.

Discussion

The hypothesis of this study is that inherent sequence and

structural signatures in cellular mRNAs determine their sensitivity

to cap-binding protein eIF4E-mediated increase in translation

efficiency. This hypothesis was based on several studies demon-

strating that only a select set of cellular mRNAs were preferentially

recruited to actively translating polysomes as a consequence of

eIF4E overexpression. While prior studies have attempted to

identify these signatures, they have been limited in their

approaches because either a) they analyzed only the eIF4E

sensitive mRNAs and ignored the negative control i.e., eIF4E

insensitive mRNAs, b) they concentrated only on either the

59UTR or the 39UTR of these mRNAs, or c) their datasets were

smaller. Our study is the first of its kind to overcome all of the

above obstacles. While our results validate some of the previous

results, we were also able to identify novel molecular signatures

that define eIF4E sensitive mRNAs.

Results for correlations between fold change and mRNA length

as well as G+C content are similar for the AKT activation dataset

and the eIF4E overexpression dataset (compare Tables 1 and 2).

This is the likely explanation for why the classifier trained on the

eIF4E dataset is still somewhat predictive for AKT fold change

(Spearman correlation coefficient 0.23). A difference between the

data sets is not entirely surprising, because AKT operates

significantly up-stream compared to eIF4E on the protein

interaction cascade leading to translation initiation.

Importance of molecular signatures in the 39UTR
Although our analysis found on average higher probabilities of

RNA base pairing at the 39 end of the 59UTR region in the eIF4E

responsive mRNAs, this effect is not as strong as we initially

expected. Previous studies indicate that eIF4E mediated increased

translation of select mRNAs through a 59UTR struc-

ture[11,43,44].The modest influence of the 59UTR suggests that

the eIF4E sensitivity of these mRNAs may not depend solely on

the efficiency of formation of the eIF4F initiation complex or on

eIF4A helicase activity in particular. Thus, our results suggest that

studies in the future should include both the 59UTR and 39UTR

of an mRNA when analyzing eIF4E responsiveness.

The most striking molecular signatures of eIF4E sensitivity

apparently reside in the 39UTR region. Firstly, eIF4E upregulated

mRNAs possess higher G+C content in the 39UTR. An

interpretation of that result is that a higher amount of G+C in

the 39UTR content leads to greater stability of mRNA internal

secondary structure, which weakens the potential binding of

translational regulatory factors such as microRNAs. Thus, a lower

amount of miRNA regulation may lead to a greater response to

eIF4E regulation.

This observation regarding higher G+C content is consistent

with our second finding that the influence of the secondary

structure on the eIF4E regulated expression is greater near the

stop codon than near the start codon. The larger amount of

structure in the 39UTR may lead to less stable binding of miRNAs,

resulting in reduced miRNA interference with translation. Kertesz

et al. showed that pronounced secondary structure in the 39UTR

weakens microRNA target interactions and that microRNAs

preferentially bind to the 39UTR of the target mRNA at

‘‘accessible sites’’ which are less structured regions [31].

Conversely, if an mRNA is less repressed by binding micro-

RNAs, it should be more responsive to an increased availability of

the translation initiation complex. Hence, the greater the G+C

content and structure in the 39UTR region, the stronger will be

the effect of eIF4E overexpression. The observation of higher

probability on average of base pairing at the first three positions of

the 39UTR of upregulated sequences is to the best of our

knowledge a novel finding. A probable mechanistic explanation

for this observed 39 secondary structure would be that this

structure, either through a direct or indirect interaction with the

ribosome, mediates a more efficient ribosome drop-off after the

mRNA translation is completed. This might lead to a more

efficient ribosomal recycling and enhanced translation initiation at

the 59end of the mRNA. The above scenarios are not mutually

exclusive and may contribute in varying degrees to the overall

phenomena. For example, the 39UTR secondary structure may

influence the binding of regulatory factors other than or in

addition to microRNAs.

These findings suggest that eIF4E upregulated genes are so

responsive because their 39UTR sequences avoid binding to

miRNAs that are involved in negative regulation of cell growth

and proliferation. A general miRNA avoidance has been indicated

in previous studies [2] in which transcripts carrying microRNA

binding sites were found to be enriched among mRNAs that were

translationally silenced upon eIF4E overexpression.

Table 6. A few upregulated mRNAs show positive selection
for miRNA binding sites.

Name upreg+ upreg2 nonreg+ nonreg2 p-value ratio

miR-217 25 15 383 817 0.00011 1.96

miR-656 26 14 406 794 0.00013 1.92

miR-375 22 18 366 834 0.00162 1.80

miR-126* 20 20 316 884 0.00178 1.90

miR-545 25 15 459 741 0.00271 1.63

miR-607 25 15 460 740 0.00275 1.63

miR-194 26 14 483 717 0.00280 1.61

miR-374 22 18 401 799 0.00631 1.65

miR-598 22 18 405 795 0.00677 1.63

miR-220 20 20 347 853 0.00730 1.73

miR-631 22 18 413 787 0.01069 1.60

miR-325 16 24 266 934 0.01207 1.80

miR-802 24 16 474 726 0.01304 1.52

List of miRNAs with positive selection (accumulation of binding sites) among 40
highly eIF4E upregulated mRNAs (fold change greater 4.0) and 1200
nonregulated mRNAs (fold change between 1.05 and 1.0/1.05). See caption of
Table 5 for an explanation of table columns.
doi:10.1371/journal.pone.0004868.t006
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Binding sites for many of the microRNAs reported to have

tumor suppressive effects are more likely to be under-represented

in the mRNAs most sensitive to eIF4E-dependent translational

upregulation. For example, upregulated mRNAs showed under-

represented binding for the tumor suppressive let-7 miRNA family

and for the metastasis repressor miR-335. Another miRNA whose

binding sites are underrepresented on eIF4E responsive mRNAs is

miR-27b that is often decreased in breast cancer tissues and

functions as a negative regulator of CYP1B1, a protein whose

genotype correlates with prostate cancer risk [45]. These results

lend independent support to a recent report where a global

analysis of alternative 39UTR isoforms of an mRNA in activated T

cells was conducted [46]. A positive correlation between the

occurrence of mRNAs with shorter 39UTR isoforms and cell

proliferation was found. This correlation was attributed to fewer

miRNA binding sites in the shorter 39UTR isoforms of an mRNA

leading to higher mRNA stability and expression.

Models for microRNA mediated translational regulation
While this manuscript was in preparation, Eulalio et al. [19]

published an overview of miRNA mediated translational regula-

tion. Of the 6 proposed mechanisms for microRNA-mediated

translational inhibition, all involve the mRNA cap region, and 5 of

the 6 mechanisms involve eIF4E specifically. This indicates more

interaction between translation initiation and miRNA-mediated

translational inhibition than previously anticipated. Some of the

model scenarios presented in the Eulalio et al. review are more

compatible than others with the computational results obtained in

this study. All models have in common that miRNA binding has

an inhibitory effect on translation initiation. Thus one expects a

significant negative correlation between 39UTR length and

miRNA binding with fold change in translational activation due

to eIF4E overexpression.

In addition to being compatible with our observed miRNA site

exclusion and short 39UTRs, two models discussed below would

also be compatible with the observed shorter coding region and

lesser influence of the 59UTR. Model 1 postulates that miRNA-

binding to the 39UTR results in a reduced translation elongation

rate. According to this scenario, eIF4E sensitive mRNAs should

possess short coding regions since the inhibitory effect would be

less relevant to these mRNAs. Hence, a long coding region would

correspond to eIF4E nonregulated mRNAs. In addition, the

correlation of the 59UTR length with the eIF4E regulation should

be much weaker or non-existent. Thus, this model is consistent

with the data shown in Table 2.

In model 2, the nascent protein chain is degraded co-

translationally through proteases recruited by or provided by the

miRNA complex [47]. The length of the coding region could play

a role: longer coding regions correspond to longer protein chains

and a longer translation time, thus leading to a greater chance of a

proteolytic event. This would mean that longer coding regions

correspond to higher miRNA control and less eIF4E regulation.

As per this model, the 59UTR length should not be significantly

correlated with translation efficiency. Our results regarding the

length and fold change correlations are consistent with the

contention of the model of co-translational proteolysis (Table 2).

Model 1 (inhibition of translation elongation) and model 2 (co-

translational protein degradation) are most consistent with the

observed length dependence of eIF4E overexpression or AKT

activation. It is of course possible that more than one of the

microRNA-translation initiation interaction scenarios may occur

in parallel or sequentially in a given cell type or physiological state.

In summary, contrary to initial expectations the 39UTR

emerges as a more significant factor than the 59UTR in

determining the eIF4E responsiveness. The eIF4E upregulated

mRNAs are distinguished by shorter length of the 39UTR and

coding regions and higher G+C content of the 39UTR. Moreover

there is a statistically significant bias towards higher probabilities of

RNA base pairing just upstream of the start codon and flanking

the stop codon. Negative selection (site avoidance) was found for

several microRNAs including the let-7 microRNA family thought

to act as tumor suppressors. These results point towards several

translational regulatory mechanisms acting in parallel, particularly

miRNA regulation and ribosome processivity modulation by

mRNA secondary structure. Clearly, the models discussed need to

be experimentally evaluated. Our study has made this possible by

identifying the molecular signature of the eIF4E regulated mRNAs

and also by revealing the relative importance of these classifiers for

eIF4E-selective response.
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