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    I N T R O D U C T I O N 

 Inward rectifi er potassium (Kir) channels are important 

for regulating excitability in numerous cell types ( Nichols 

and Lopatin, 1997 ;  Ashcroft, 2005 ;  Dhamoon and Jalife, 

2005 ;  Flagg and Nichols, 2005 ;  Miki and Seino, 2005 ; 

 Butt and Kalsi, 2006 ). Among eukaryotes, they are en-

coded by the KCNJ gene family. These channels are 

inward rectifi ers in that their conductance increases 

with hyperpolarization and decreases with depolariza-

tion, an effect that results, physiologically, from voltage-

dependent block by Mg 2+  and polyamines ( Nichols and 

Lopatin, 1997 ). The strength of inward rectifi cation is 

dependent on the presence of a negatively charged resi-

due in the pore-lining M2 helix called the  “ rectifi cation 

controller, ”  amino acid D172 in the strong inward recti-

fi er, Kir2.1 ( Lu and MacKinnon, 1994 ;  Stanfi eld et al., 

1994 ;  Wible et al., 1994 ). Mutation of the rectifi cation 

controller residue to aspartate in the weakly inward rec-

tifying channels Kir1.1 (N171D) and Kir6.2 (N160D) 

confers strong sensitivity to polyamine block ( Lu and 

MacKinnon, 1994 ;  Shyng et al., 1997 ). These Kir cha n-

nels, particularly Kir2.1 and Kir6.2 (N160D), have ser-

ved as models to further explore the molecular basis of 

inward rectifi cation. For example, they have been used 

to gain insight into the mechanism of steeply voltage-
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 Abbreviations used in this paper: Kir, inward rectifi er potassium; 

MTSET, [2-(trimethylammonium)ethyl] methanethiosulfonate; WT, 

wild-type.  

dependent polyamine block ( Pearson and Nichols, 1998 ; 

 Spassova and Lu, 1998 ;  Lu, 2004 ) and the location of 

the polyamine binding site ( Guo et al., 2003 ;  Guo and Lu, 

2003 ;  Kurata et al., 2004, 2006 ). 

 Since the discovery of KirBac, a family of prokaryotic 

genes homologous to eukaryotic Kirs ( Durell and Guy, 

2001 ), KirBac1.1, KirBac3.1, and more recently, a 

KirBac3.1/Kir3.1 chimera, have been crystallized, re-

vealing transmembrane structures that resemble the 

prototypical potassium channel, KcsA ( Kuo et al., 2003, 

2005 ;  Nishida et al., 2007 ). Importantly, these structures 

also show a large cytoplasmic pore-forming domain and 

an N-terminal interfacial helix. Attempts to model li-

gand interactions and molecular dynamics in eukary-

otic Kir channels have relied on generating homology 

models based on the KirBac structures ( Antcliff et al., 

2005 ;  Haider et al., 2007a,b ). Although the predictions 

of these models are largely consistent with functional 

data, functional studies of KirBac1.1 itself are essential 

to make such structural inferences by homology. We 

have successfully used a liposome  86 Rb +  uptake assay to 

demonstrate that KirBac1.1 generates a potassium-

selective permeability that can be inhibited by Ba 2+ , Ca 2+ , 

and by acidic conditions ( Enkvetchakul et al., 2004 ). 

 KirBac1.1: It ’ s an Inward Rectifying Potassium Channel 

  Wayland W.L.   Cheng ,  1    Decha   Enkvetchakul ,  2   and  Colin G.   Nichols   1   

  1 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 
  2 Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104 

     KirBac1.1 is a prokaryotic homologue of eukaryotic inward rectifi er potassium (Kir) channels. The crystal struc-
ture of KirBac1.1 and related KirBac3.1 have now been used extensively to generate in silico models of eukaryotic 
Kir channels, but functional analysis has been limited to  86 Rb +  fl ux experiments and bacteria or yeast complemen-
tation screens, and no voltage clamp analysis has been available. We have expressed pure full-length His-tagged 
KirBac1.1 protein in  Escherichia coli  and obtained voltage clamp recordings of recombinant channel activity in ex-
cised membrane patches from giant liposomes. Macroscopic currents of wild-type KirBac1.1 are K +  selective and 
spermine insensitive, but blocked by Ba 2+ , similar to  “ weakly rectifying ”  eukaryotic Kir1.1 and Kir6.2 channels. The 
introduction of a negative charge at a pore-lining residue, I138D, generates high spermine sensitivity, similar to 
that resulting from the introduction of a negative charge at the equivalent position in Kir1.1 or Kir6.2. KirBac1.1 
currents are also inhibited by PIP 2 , consistent with  86 Rb +  fl ux experiments, and reversibly inhibited by short-chain 
di-c8-PIP 2 . At the single-channel level, KirBac1.1 channels show numerous conductance states with two predomi-
nant conductances (15 pS and 32 pS at  � 100 mV) and marked variability in gating kinetics, similar to the behavior 
of KcsA in recombinant liposomes. The successful patch clamping of KirBac1.1 confi rms that this prokaryotic 
channel behaves as a bona fi de Kir channel and opens the way for combined biochemical, structural, and electro-
physiological analysis of a tractable model Kir channel, as has been successfully achieved for the archetypal K +  
channel KcsA. 
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domallei  by PCR and subcloned into the pQE60 vector (QIAGEN) 
with a C-terminal 6-His tag. Mutations were made with the Quik-
change Site-Directed Mutagenesis kit (Agilent Technologies) 
and confi rmed by DNA sequencing. For protein purifi cation, 
BL21* (DE3) cells were transformed with KirBac1.1 in pQE60 
and induced with isopropyl  � -d-thiogalactopyranoside. The bacte-
ria were lysed by freeze-thaw, solubilized for 2 h in 30 mM decyl-
maltoside (Anatrace), and centrifuged at 30,000  g  for 30 min. 
The supernatant was incubated for 1 h with cobalt beads 
( � 0.2 ml/L bacteria), washed with 40 bed volumes of wash buffer 
(50 mM Tris-HCl, pH 8.0, 150 mM KCl, 10 mM imidazole, and 
5 mM decylmaltoside), and eluted with 1 – 2 bed volumes of wash 
buffer with 500 mM imidazole. 

  86 Rb +  Flux Assay 
 POPE (1-palmitoyl-2-oleoyl-3-phosphatidylethanolamine) and 
POPG (1-palmitoyl-2-oleoyl-3-phosphatidylglycerol; Avanti Polar 
Lipids, Inc.) were solubilized in buffer A (450 mM KCl, 10 mM 
HEPES, and 4 mM NMG, pH 7) with 35 mM CHAPS, mixed at a 
3:1 ratio, and incubated at room temperature for 2 h. Polystyrene 
columns (Thermo Fisher Scientifi c) were packed with Sephadex 
G-50 beads, presoaked overnight in buffer A, and spun at 1,500  g  
on a Beckman TJ6 centrifuge (3,000 rpm). For each sample, 6  μ g 
of protein was added to 100  μ l of lipid (1 mg) and incubated for 
20 min. Liposomes were formed by adding the protein/lipid sam-
ple to the partially dehydrated columns and spinning at 1,000  g . 
The extraliposomal solution was exchanged by spinning the sam-
ple at 1,000  g  in partially dehydrated columns, now containing 
beads soaked in buffer B (450 mM sorbitol, 10 mM HEPES, and 
4 mM NMG, pH 7). Uptake was initiated by adding 400  μ l buffer 
C with 1 – 5  μ l  86 Rb +  and varying concentrations of spermine. At 
various time points, aliquots were fl owed through 0.5-ml Dowex 
cation exchange columns in the NMGH +  form to remove extrali-
posomal  86 Rb + . These aliquots were then mixed with scintillation 
fl uid and counted in a liquid scintillation counter. 

 Liposome Patch Clamp 
 POPE and POPG were solubilized in K-MOPS buffer (10 mM 
MOPS acid, pH 7.4, 158 mM KCl, and 35 mM CHAPS) and mixed 
at a 3:1 ratio (a total of 4 mg). Purifi ed KirBac1.1 protein was added 
to the lipids at lipid to protein mass ratios ranging from 200:1 
(single-channel recordings) to 20:1 (macroscopic recordings) and 

In contrast to all eukaryotic Kir channels, KirBac1.1 ac-

tivity is inhibited by phosphatidylinositol phosphates, 

such as PIP 2  ( Enkvetchakul et al., 2005 ). 

 Until now, functional studies of KirBac1.1 have been 

limited to such  86 Rb +  flux assays of proteoliposomes 

as well as bacteria or yeast complementation screens 

( Enkvetchakul et al., 2004 ;  Sun et al., 2006 ), and no 

voltage clamp analysis has been reported. Here, we 

present the fi rst electrophysiological evidence that Kir-

Bac1.1 generates functional, potassium-selective chan-

nels that exhibit the same key features of rectifi cation 

found in eukaryotic Kir channels. Wild-type (WT) Kir-

Bac1.1 is blocked strongly by barium but only weakly by 

spermine. However, just as in Kir6.2 (N160D) and Kir1.1 

(N171D), mutation of the equivalent pore-lining recti-

fi cation controller residue in KirBac1.1 to aspartate 

(I138D) introduces steeply voltage-dependent rectifi ca-

tion in spermine. Consistent with  86 Rb +  flux experi-

ments, KirBac1.1 currents are inhibited by PIP 2 . At the 

single-channel level, WT and mutant KirBac1.1 chan-

nels show multiple conductance states and variable 

open probability and intraburst kinetics. Lastly, we show 

by voltage clamp recording that R49C, an inactive mu-

tant, can be rescued by [2-(trimethylammonium)ethyl] 

methanethiosulfonate (MTSET) modifi cation. The re-

sults confi rm that KirBac1.1 is a bona fi de Kir channel 

in which we now have the unique capability to study us-

ing electrophysiology in addition to biochemical and 

structural techniques. 

 M AT E R I A L S  A N D  M E T H O D S 

 Molecular Biology and Protein Purifi cation 
 The methods used were described previously ( Enkvetchakul 
et al., 2004 ). In brief, KirBac1.1 was cloned from  Burkholderia   pseu-

 Figure 1.   KirBac1.1 voltage-clamped currents are 
potassium selective and blocked by barium. Inside-
out patches were excised from giant liposomes recon-
stituted with (A) no protein or (B) WT KirBac1.1. 
(A) Representative currents from an inside-out patch 
from giant liposomes without KirBac1.1 protein. 
The pipette was fi lled with 158 mM K +  and the bath 
with the indicated solutions. The voltage was held at 
 � 50 mV and then stepped from  � 100 to +100 mV 
at 10-mV increments. (B) Representative currents 
from giant liposomes reconstituted with KirBac1.1 
as in A. (C) Plot of normalized current versus voltage 
for WT KirBac1.1 in the solutions shown in B ( n  = 6 
 ±  SEM). (D) Relative conductance versus voltage 
plot of KirBac1.1 block in 1 mM Ba 2+  ( n  = 6  ±  SEM). 
Fitting with a Boltzmann function gives the follow-
ing parameter values: V 1/2  = 25 mV,  � z = 1.5, residual 
G REL  = 0.08, scaling factor = 0.9.   
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side of the membrane, KirBac1.1 inhibition should be 

dependent on channel orientation. The fact that PIP 2  

inhibits almost all the current in a patch suggests that 

most KirBac1.1 channels reconstituted in giant lipo-

somes are oriented with their intracellular domain to-

ward the inside of the liposome and exposed to bath 

solution in inside-out patch (see Discussion). Inhibition 

by long-chain micellar PIP 2  from porcine brain extract 

was irreversible during the time scale of the recording 

( Fig. 2, A and C ). However, di-C8-PIP 2 , a synthetic water-

soluble dioctanoyl form of PIP 2 , causes reversible inhi-

bition of KirBac1.1 ( Fig. 2, B and C ), washing out with a 

time constant of 27  ±  5 s ( n  = 3). This is consistent with 

incubated at room temperature for 30 min. Liposomes were 
formed by detergent removal with Bio-Beads SM-2 Adsorbent 
(Bio-Rad Laboratories) and centrifuged at 100,000  g  for 1 h at 
4 ° C (TL-100; Beckman Coulter). The liposome pellet was resus-
pended in 20  μ l K-MOPS buffer and dried in a desiccator as 
3 – 5- μ l spots on a clean microscope slide for  � 1 h or until com-
pletely dried. These spots were then rehydrated with 20  μ l 
K-MOPS buffer overnight at 4 ° C. Rehydration at room tempera-
ture for  � 2 h the next day was suffi cient to form giant liposomes. 

 For patch clamping, a glass coverslip was coated overnight 
with 1 mg/ml polylysine. The giant proteo-liposomes were pipet-
ted onto the polylysine-coated coverslip in an oil-gate chamber 
( Lederer and Nichols, 1989 ) and allowed to settle for  � 5 min 
before starting the solution exchange to wash away debris. Un-
less indicated, patch clamp recordings were performed in sym-
metrical conditions of K-MOPS buffer. PIP 2  from porcine brain 
extract and synthetic Di-C8-PIP 2  were purchased from Avanti Po-
lar Lipids, Inc. Membrane patches were voltage clamped using a 
CV-4 headstage, an Axopatch 1-D amplifi er, and a Digidata 1322A 
digitizer board (MDS Analytical Technologies). Patch pipettes 
were pulled from soda lime glass microhematocrit tubes (Kim-
ble) to a resistance of  � 2 – 3 M Ω . The voltage step protocol for 
blocking measurements stepped from  � 100 to +100 mV at 
10-mV increments, holding at  � 50 mV briefl y before each step. 
Single-channel data were digitized at a sampling rate of 3 kHz, 
and a low-pass analogue fi lter was set to 1 kHz. Idealization of 
single-channel data and generation of amplitude histograms were 
performed using the pClamp 9.2 software suite (MDS Analytical 
Technologies). The remaining data analysis was performed using 
Excel (Microsoft). 

 R E S U LT S 

 Electrical Characterization of KirBac1.1 
 Excised patch clamp experiments were performed us-

ing giant liposomes reconstituted with or without Kir-

Bac1.1 in symmetrical, 158-mM KCl except as indicated 

( Fig. 1 A ).  Patches from liposomes without protein 

yielded minimal currents. In contrast, recordings from 

liposomes reconstituted with KirBac1.1 show signifi cant 

current with a near linear voltage – current relationship 

in symmetrical K +  conditions. When bath K +  is lowered 

to 28 mM, there is a +31  ±  1 mV ( n  = 6; SEM) shift in the 

reversal potential. The largest shift observed was +34 mV, 

indicating a minimum K + /Na +  permeability ratio of 10:1. 

Current at positive voltages is blocked by 1 mM Ba 2+  

( Fig. 1 B ), with a V 1/2  of 25 mV and a z �  of 1.5 ( Fig. 1 C ). 

The data indicate that these currents are due to func-

tional potassium-selective channels. 

 We have previously shown by  86 Rb +  fl ux experiments 

that, unlike eukaryotic Kir channels, KirBac1.1 activity 

is inhibited by PIP 2  ( Enkvetchakul et al., 2005 ). This 

behavior is recapitulated in voltage clamp recordings 

( Fig. 2 A ) with almost complete channel inhibition by 

5  μ M PIP 2  (94  ±  3% inhibition;  n  = 5; SEM).  This method 

of applying micellar PIP 2  to excised membrane patches 

has been widely used for eukaryotic Kir channels, which 

are activated by incorporation of PIP 2  in the inner leaf-

let of the membrane ( Fan and Makielski, 1997 ;  Shyng 

et al., 2000 ). If micellar PIP 2  incorporates into only one 

 Figure 2.   KirBac1.1 currents are inhibited by PIP 2 . (A) Continu-
ous recording of potassium-selective and barium-sensitive Kir-
Bac1.1 current alternating between +100 and  � 100 mV clamp. 
The patch was moved into a 5- μ M PIP 2  buffer where indicated. 
The gain on the amplifi er was increased by 100 ×  where indicated. 
(B) Continuous recording of KirBac1.1 current held at  � 100 mV. 
50  μ M diC8-PIP 2  was applied where indicated. (C) Data from re-
cordings for PIP 2  ( n  = 5) and diC8-PIP 2  ( n  = 3) inhibition. Cur-
rents in PIP 2 , diC8-PIP 2 , and after 2 min of washout (post-ctrl) are 
normalized to the initial current (prectrl).   
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I131C/I138D, and with channels being bi-directionally 

oriented (see Discussion). 

 I131C/I138D also produces K + -selective and Ba 2+ -

sensitive currents by patch clamp ( Fig. 4 ).  WT currents, 

as well as I131C currents (not depicted), are blocked by 

1 mM Ba 2+  but are essentially insensitive to spermine 

( Fig. 4 A ), whereas I131C/I138D currents are potently 

blocked by spermine ( Fig. 4 B ), with steep voltage de-

pendence (for Ba 2+ , a V 1/2  of  � 8 mV and a z �  of 1.2; for 

spermine, a V 1/2  of  � 20 mV and a z �  of 2.5). V 1/2  varies 

with blocker concentration and is an indication of 

blocker affi nity, whereas z �  does not change with blocker 

concentration and is likely a refl ection, in part, of the 

blocker forcing permeant ions across the membrane 

electric fi eld ( Pearson and Nichols, 1998 ;  Spassova and 

Lu, 1998 ). It is notable that, in contrast to the  � 50% 

high affi nity spermine inhibition in the liposome fl ux 

assay, 80 – 90% of WT and I131C/I138D currents are 

consistently blocked with a single voltage-dependent 

component by Ba 2+  (WT and I131C/I138D) and sperm-

ine (I131C/I138D), which suggests that the channels 

are not bi-directionally oriented (50:50) in the excised 

patches from giant liposomes as they are in the smaller 

liposomes used for the  86 Rb +  fl ux assay (see Discussion). 

I131C/I138D also shows stronger block by 1 mM Ba 2+  

(V 1/2  =  � 8 mV) compared with WT (V 1/2  = 25 mV) or 

I131C (V 1/2  = 21 mV), with a partial block of current that 

appears voltage independent, at least up to  � 100 mV. 

In summary, introduction of I138D, the rectifi cation 

controller position in KirBac1.1, on the I131C back-

ground produces functional channels that exhibit steep 

voltage-dependent block by spermine. 

 Complex Single-Channel Properties: Multiple 
Conductances and Gating Heterogeneity 
 Patch clamp recordings that resolve single-channel open-

ings are readily obtained by reconstituting liposomes 

with smaller amounts of protein.  Fig. 5  shows recordings 

previously reported reversible activation of eukaryotic Kir 

channels by this synthetic short acyl-chain lipid ( Rohacs 

et al., 1999, 2002 ). This suggests that the dependence of 

the kinetics of KirBac1.1 inhibition on the hydrocarbon 

chains of phosphotidylinositol phosphates is similar to 

that of activation in eukaryotic Kirs, and argues that in-

hibition and activation occur by a similar mechanism 

involving partitioning into the membrane and direct in-

teraction with the channel. 

 Strong Rectifi cation in KirBac1.1 I131C/I138D 
 WT KirBac1.1 behaves as a weak inward rectifi er and is 

insensitive to block by spermine in both patch clamp 

and  86 Rb +  fl ux assays ( Figs. 3 B and 4 A ).  We hypothe-

sized that mutation of I138, which is equivalent to the 

rectifi cation controller residue in eukaryotic Kir chan-

nels, to an aspartate would confer sensitivity to poly-

amines just as in Kir1.1 (N171D) and Kir6.2 (N160D; 

 Fig. 3 A , red). However, multiple preparations of I138D 

mutant KirBac1.1 were inactive when tested by the 

 86 Rb +  fl ux assay (not depicted). We have found that mu-

tation of residue 131 (located in the upper region of 

TM2, adjacent to the base of the pore helix and near 

the selectivity fi lter;  Fig. 3 A , blue) from isoleucine to 

cysteine stabilizes the channel tetramer in SDS-PAGE 

( Wang et al., 2008 ). On the I131C background, the 

I138D mutant generated functional channels assessed 

by  86 Rb +  fl ux ( Fig. 3 B ).  86 Rb +  fl ux assays of WT and 

I131C/I138D in different concentrations of sper-

mine illustrate that the double mutant, I131C/I138D, is 

st rongly inhibited by spermine, and the concentration 

dependence of inhibition shows two distinct compo-

nents. The I131C/I138D data can be fi t with the sum of 

two Hill equations (K 1/2  = 1  μ M and 15 mM), and the 

WT data with a single Hill equation (K 1/2  = 0.8 mM). 

The fact that only 50% of  86 Rb +  uptake is inhibited with 

high affi nity is consistent with the generation of high 

affi nity block only to internal/cytoplasmic spermine in 

 Figure 3.   The I131C/I138D mutant is 
more sensitive to spermine inhibition than 
WT. (A) Structure of two opposing sub-
units of KirBac1.1 highlighting the residues 
I131 (blue) and I138 (red) that were mu-
tated to cysteine and asparate, respectively. 
R49 is also highlighted in yellow. Muta tion 
of this residue to a cysteine renders an 
inactive channel that can be rescued by 
MTSET modifi cation. (B) Plot of relative 
 86 Rb +  uptake of WT and I131C/I138D in 
liposomes at different concentrations of 
externally applied spermine, normalized 
to uptake without spermine ( n  = 9  ±  SEM). 
The I131C/I138D data are fi t with the sum 
of two Hill functions (K 1/2  = 1  μ M, H = 1; 
K 1/2  = 15 mM, H = 0.8), and the WT data 
with one (K 1/2  = 0.8 mM, H = 0.6).   
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 Single-channel currents of KirBac1.1 also show 

complex properties, most obviously multiple conduc-

tance states.  Fig. 6 A  shows representative channel 

openings from two individual patches of WT and 

I131C/I138D.  Both exhibit at least fi ve conductance 

states. All-points histograms of all channel openings 

of WT, I131C/I138D, and I131C with variable numbers 

of channels in a patch held at +100 mV.  At single-channel 

resolution, WT and I131C activity are blocked by 1 mM 

Ba 2+  but insensitive to 0.1 mM spermine, whereas I131C/

I138D is potently blocked by spermine, consistent with 

the macroscopic data. 

 Figure 4.   I131C/I138D is blocked by 
spermine with strong voltage dependence. 
Voltage step recordings are presented, as 
in  Fig. 1 , of (A) WT KirBac1.1 and (B) 
I131C/I138D in the indicated solutions. 
(A) Representative recordings of WT 
KirBac1.1 and its corresponding I-V and 
G REL -V curves. (B) Representative record-
ings of I131C/I138D and its correspond-
ing I-V and G REL -V curves ( n  = 4  ±  SEM). 
The relative conductance curves are fi t 
with Boltzmann functions with the follow-
ing parameter values: for 1 mM Ba 2+ : V 1/2  = 
 � 8 mV,  � z = 1.2, scaling factor = 0.5, and 
residual G REL  = 0.1; for 0.1 mM spermine: 
V 1/2  =  � 21 mV,  � z = 2.5, scaling factor = 
0.9, and residual G REL  = 0.1.   

 Figure 5.   Currents from WT, I131C/I138D, 
and I131C that resolve single-channel open-
ings are consistent with fi ndings from macro-
scopic recordings. Shown here are segments 
from recordings of WT, I131C/I138D, and 
I131C at +100 mV with the indicated solutions 
in the bath.   
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a WT patch, with representative traces from the re-

cording shown above.  The red dotted lines in the 

traces indicate the current levels that correspond 

with the peaks in the histograms. The two predomi-

nant conductance peaks shift to a lower amplitude at 

+100 mV compared with  � 100 mV, and stepping from 

 � 100 to +100 mV during a single-channel burst shows 

that the  � 32-pS conductance state at  � 100 mV corre-

sponds to a conductance of  � 21 pS at +100 mV ( Fig. 7 B ). 

All-points histograms were used to determine the ma-

jor single-channel amplitudes over a range of volt-

ages. Plots of single-channel amplitude versus voltage 

show that the two major conductance states exhibit a 

mild intrinsic inward rectifi cation in WT and I131C/

I138D ( Fig. 7 C ;  n  = 4). 

in these two recordings show that smaller cond uc-

tance states predominate ( Fig. 6 B ). During bursts of 

smaller amplitude openings, short transitions to 

larger conductance states are typically present. The 

largest single-channel amplitude observed for WT 

had a conductance of  � 46 pS (chord conductance at 

 � 100 mV), and for I131C/I138D,  � 56 pS. However, 

all single-channel recordings primarily showed two 

smaller conductance states: the most prevalent at 

 � 15 pS, and a larger opening at  � 32 pS, measured at 

 � 100 mV ( Fig. 6 C ). These histograms only include 

channel openings; the area of the baseline peak ( Fig. 6 C  

shows only one in gray) gives no indication of open 

probability.  Fig. 7 A  shows all-points histograms of all 

single-channel openings at +100 and  � 100 mV from 

 Figure 6.   Single-channel openings of KirBac1.1 
show multiple conductance levels. (A) The currents 
shown are representative single-channel openings 
at  � 100 mV at all amplitude levels from a patch of 
WT and I131C/I138D. (B) All-points histograms 
of all channel openings from each recording. (C) 
A compilation of all-points histograms of channel 
openings from WT ( n  = 4; black) and I131C/I138D 
( n  = 3; blue) recordings. The baseline (zero-channel 
current) peak is included for one histogram only 
(gray), and each histogram is scaled, for the sake of 
comparison, by dividing the bin values by the total 
number of points in each respective histogram.   
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potassium channels in cellular membranes, but similar be-

haviors have been reported for KcsA reconstituted in lipo-

somes ( Chakrapani et al., 2007b ). 

 One-sided Activation of R49C 
 In a prior study, using the  86 Rb +  fl ux assay, we showed 

that cysteine mutants of KirBac1.1 in the slide helix can 

be activated by modifi cation with MTS reagents. In par-

ticular, the mutations R49C or K57C render the chan-

nel inactive, but can be rescued by MTSEA or MTSET 

modifi cation ( Enkvetchakul et al., 2007 ). KirBac1.1 chan-

nels reconstituted in giant liposomes are not necessarily 

oriented in the same direction as eukaryotic channels 

expressed in cell membranes. Because R49 is located in 

the slide helix ( Fig. 3 A , yellow), application of MTSET 

in the bath can only activate those channels in which 

the  “ cytoplasmic ”  end is also facing the bath.  Fig. 9  shows 

a continuous recording of R49C single-channel activity 

after activation by MTSET.  The currents behave exactly 

as WT: they are inhibited by 1 mM Ba 2+  but insensitive to 

0.1 mM spermine. Amplitude histograms as well as the 

 Single-channel gating kinetics of KirBac1.1 are also com-

plex. Open probability varies signifi cantly from patch to 

patch.  Fig. 8 A  shows two WT recordings with contrasting 

open probabilities. Open probability also tends to be 

higher at positive voltages than negative voltages, as seen 

in  Fig. 8 B .  This may explain why, although WT macro-

scopic currents show a near linear current – voltage rela-

tionship ( Fig. 1 ), single-channel amplitudes exhibit inward 

rectifi cation ( Fig. 7 C ). Detailed inspection of these re-

cordings reveals variations in intraburst gating kinetics at 

negative voltages ( Fig. 8 C ). Single-channel bursts at  � 100 

mV were individually idealized using a  “ 50% threshold ”  

criterion based on their respective amplitudes determined 

from all-point histograms (red dashed lines in  Fig. 8 C ), 

and the idealized data were used to calculate intraburst 

open probability. A plot of the intraburst open probability 

for all bursts in patches of WT and I131C/I138D show at 

least two gating modes at  � 100 mV. Generally, most open-

ings have a high P (o) of  � 0.9, but occasionally, openings 

will switch to a fl icker mode where P (o) is  � 0.65. Such 

gating heterogeneities are uncommon among eukaryotic 

 Figure 7.   Single-channel amplitudes of KirBac1.1 show 
two predominant conductance levels and inward recti-
fi cation. (A) Representative traces from a WT single-
channel recording at +100 and  � 100 mV. The red 
dashed lines indicate the current amplitudes of the 
single-channel openings and correspond with the peaks 
in the histograms. Below are all-points histograms 
of all channel openings from the entire recording. 
(B) Single-channel opening from the same record-
ing as in A showing the current amplitude of a single 
opening/conductance state at  � 100 and +100 mV. (C) 
Averaged I-V plots of single-channel amplitudes for WT 
and I131C/I138D ( n  = 4  ±  SEM; the error bars are too 
small to be seen). The data points show only the two 
most prevalent conductance states (for WT, 15 and 32 
pS at  � 100 mV, 12 and 22 pS at +100 mV). The solid 
lines have no theoretical meaning.   
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ture strong inward rectifi cation as in Kir1.1 and Kir6.2. 

These fi ndings confi rm that KirBac1.1 is a bona fi de Kir 

channel and strengthen the validity of structural homol-

ogy models of eukaryotic Kirs generated using the Kir-

Bac1.1 structure. Such homology models will be useful 

in understanding interactions of polyamines and other 

blockers within the pore of Kirs. 

 Multiple Single-Channel Conductances in KirBac1.1 
 Single-channel analyses of KcsA have revealed unusual 

features, such as prominent subconductance states and 

variable gating kinetics, which are rarely seen among 

eukaryotic channels ( Schrempf et al., 1995 ;  Cuello et al., 

1998 ;  Meuser et al., 1999 ;  Splitt et al., 2000 ;  Cordero-

Morales et al., 2006 ;  Molina et al., 2006 ;  Chakrapani et al., 

2007b ). Interestingly, we show in this study that Kir-

Bac1.1 exhibits many of the same features seen in KcsA, 

which leads us to speculate whether these differences 

are attributed to the protein and lipid environment of 

these prokaryotic channels reconstituted in liposomes 

compared with that of eukaryotic channels expressed in 

cell membranes. In deed, pioneering electrophysiologi-

cal data for KcsA showed signifi cant differences in chan-

nel function, such as single-channel subconductances, 

between KcsA in giant liposome-protoplast vesicles 

general appearance of channel gating at +100 mV com-

pared with  � 100 mV are similar to WT and I131C/

I138D ( Figs. 7, 8, and 9 ). The fact that WT and I131C/

I138D exhibit similar single-channel amplitudes and 

gating behavior as activated R49C is consistent with most 

of the reconstituted channels being oriented with their 

cytoplasmic end facing the bath in an inside-out patch. 

 D I S C U S S I O N 

 Validation of KirBac1.1 as a Kir Channel 
 The prokaryotic potassium channel, KcsA, has been 

widely used as a model channel to investigate mecha-

nisms of ion permeation, selectivity, and gating. Other 

prokaryotic potassium channels, such as MthK and KvAP, 

have followed suit in becoming the subject of numerous 

structural and electrophysiological studies. Since the 

structure was solved, however, functional studies of Kir-

Bac1.1 have been limited to  86 Rb +  fl ux assays and bacte-

ria or yeast complementation screens ( Enkvetchakul 

et al., 2004, 2005, 2007 ;  Sun et al., 2006 ). Here, we dem-

onstrate by patch clamping giant liposomes that Kir-

Bac1.1 is a functional potassium channel and that the 

mutation I138D, equivalent to the rectifi cation control-

ler residue in eukaryotic Kir channels, confers the signa-

 Figure 8.   Single-channel recordings show signifi cant 
gating heterogeneity. (A) Two continuous recordings 
of WT single channels at  � 100 mV showing low open 
probability (top) and high open probability (bot-
tom) currents. (B) A continuous recording of WT 
single channels at the indicated voltages. (C) Plots of 
intraburst open probability for every channel burst in 
a patch of WT and I131C/I138D. The currents above 
show two bursts at  � 100 mV with contrasting open 
probabilities that correspond to the data points in-
dicated by the arrows. Open probability and current 
amplitude are shown above each burst.   
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ductances, has been reported in the Kir channel, Kir6.2 

( Loussouarn et al., 2001 ). It is possible that the rapid 

transitions to and from larger openings observed in the 

single-channel currents of KirBac1.1 are due, in part, to 

protonatable residues such as H117, H124, H210, and 

H219 that produce reversible positive charges near the 

channel pore. 

 Orientation of KirBac1.1 Reconstituted in Giant Liposomes 
 The fi rst electrophysiological studies of KcsA were per-

formed using planar lipid bilayers, and it was quickly rec-

ognized that channels could conceivably insert in either 

orientation ( Cuello et al., 1998 ;  Heginbotham et al., 1999 ; 

 LeMasurier et al., 2001 ). These studies demonstrated that 

KcsA is oriented predominantly in one direction in a re-

constituted lipid bilayer, which corresponds to the C termi-

nus of the channel facing the bath in an excised patch 

( Chakrapani et al., 2007a ). Several observations from the 

present study suggest that KirBac1.1 reconstituted in giant 

liposomes has a similar preference for this orientation. 

First, Ba 2+  and spermine block consistently show a single 

component, leaving  � 10% residual current, some of 

which could be accounted for by leak ( Fig. 4 ). If channel 

orientation were 50:50, one would expect to see half the 

current blocked with one affi nity and half with another 

because the binding sites for intracellular and extracellu-

lar spermine are predicted to be different. This, in fact, is 

what is seen with spermine inhibition in the smaller pro-

teoliposomes using the Rb +  fl ux assay ( Fig. 3 B ). The data 

in  Fig. 3 B  can also be explained by the presence of two 

channel conformations with differing affi nities for sperm-

ine. However, the monophasic and near-complete block 

by spermine in I131C/I138D observed by patch clamp 

from  Streptomyces   lividans  and purifi ed KcsA reconsti-

tuted in lipid bilayers ( Schrempf et al., 1995 ). 

 Several studies have reported multi-conductance be-

havior in steady-state single-channel recordings of other 

K +  channels. For example, Kir2.1 single-channel cur-

rents can show multiple levels due to block by micro-

molar concentrations of cations like Ca 2+  and Mg 2+  

( Mazzanti et al., 1996 ;  Oishi et al., 1998 ). Such behavior 

is unlikely to underlie multiple conductances in the 

present case because the addition of 1 mM EDTA to the 

recording solutions does not alter the multi-conduc-

tance behavior of KirBac1.1 (not depicted). In KcsA, 

multiple current levels have been attributed to coupled 

gating from clusters of channels ( Molina et al., 2006 ). 

Although the current levels from  Fig. 6  are not all obvi-

ous multiples of a unit conductance, some are approxi-

mately multiples of 1.5 (1.5, 3.2, and 4.6 pA in WT), 

such that we cannot rule out this possibility. 

 The multi-conductance behavior of KirBac1.1 could 

also result from permeant ion interactions with the 

pore. Studies of single-channel properties of Kir2.1, 

with mutations in the selectivity fi lter or in the presence 

of permeant ions other than K + , reveal complex subcon-

ductance behaviors similar to those observed in this study 

( Lu et al., 2001a,b ). One interesting possibility arises 

from a series of studies where protonatable residues such 

as lysine, arginine, and histidine were systematically en-

gineered along the M1 and M2 transmembrane helices of 

the nicotinic acetylcholine receptor, resulting in two fl uc-

tuating conductance levels that correspond to the pro-

tonated and deprotonated states ( Cymes et al., 2005 ; 

 Cymes and Grosman, 2008 ). A similar mechanism, where 

positively charged moieties in the pore cause subcon-

 Figure 9.   Continuous recording of R49C 
held at +100 and  � 100 mV. 0.1 mM MT-
SET solution was applied as shown by the 
arrow, and solution changes were made at 
the indicated bars. Below are all-points his-
tograms of the recording above with rep-
resentative traces at +100 and  � 100 mV. 
The red dashed lines indicate current am-
plitudes that correspond with peaks in the 
histograms.   
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( Cordero-Morales et al., 2006 ;  Ader et al., 2008 ). It is now 

possible to take a similar approach in a model Kir chan-

nel and to develop more detailed molecular models of 

permeation, gating, and strong inward rectifi cation. 
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rules out biphasic block under these conditions and is in-

stead consistent with: (1) the I138D mutation generating a 

single high affi nity intracellular spermine binding site and 

(2) most of the channels oriented with their  “ intracellular ”  

end facing the bath in the excised patch confi guration. In-

tuitively, this difference in channel orientation between 

the smaller liposomes used for the  86 Rb +  fl ux assay and gi-

ant liposomes used for patch clamp seems possible be-

cause the formation of giant liposomes involves an extra 

dehydration/rehydration step that could alter orientation 

(see Materials and methods). 

 A second observation is that PIP 2  applied in the bath 

inhibits most KirBac1.1 currents ( Fig. 2 ). Overwhelming 

evidence from eukaryotic Kir channels indicate that PIP 2  

activation occurs by interaction with the cytoplasmic end 

of the channel at the inner leafl et of the membrane ( Fan 

and Makielski, 1997 ;  Shyng et al., 2000 ;  Cukras et al., 

2002 ;  Haider et al., 2007b ). PIP 2  inhibition of KirBac1.1 

also has a similar dependence on the number of phos-

phate groups (greater inhibition with more negative 

charges in the head group) and the length of the lipid 

tail (short-chain PIP 2  inhibition is reversible), as eukary-

otic Kirs ( Enkvetchakul et al., 2005 ). Assuming a similar 

interaction of PIP 2  with KirBac1.1 as with eukaryotic Kirs, 

and assuming that PIP 2  partitions into only one side of 

the membrane leafl et, most of the channels, again, must 

be oriented with their intracellular end facing the bath. 

Similar to the spermine block results, extraliposomal ap-

plication of PIP 2  in the  86 Rb +  fl ux assay causes only  � 50% 

inhibition, suggesting a 50:50 orientation in these smaller 

liposomes ( Enkvetchakul et al., 2005 ). 

 Lastly, all single-channel recordings consistently show 

the same amplitude – voltage relationship (inward rectifi -

cation) and gating pattern, suggesting a preferential 

channel orientation. Indeed, single-channel currents of 

MTSET-activated R49C, which requires that the channels 

be oriented with their cytoplasmic end facing the bath, 

resemble those of WT and I131C/I138D ( Fig. 9 ). Future 

electrophysiological studies of KirBac1.1 should focus on 

resolving this uncertainty about channel sidedness. Cyste-

ine mutants such as R49C and K57C that require MTSET 

modifi cation for activity should provide a useful tool for 

isolating channels of a single orientation. 

 Conclusion 
 The KirBac1.1 and KirBac3.1 crystal structures have been 

used extensively in several molecular modeling studies 

( Grottesi et al., 2005 ;  Domene et al., 2006, 2008 ;  Hellgren 

et al., 2006 ;  Vemparala et al., 2008 ). Until now, no electro-

physiological data has been available to supplement these 

computational studies. We report voltage clamp record-

ings of KirBac1.1 currents and confi rm that this prokary-

otic protein behaves functionally as a Kir channel. Recent 

studies of KcsA have been a testament to the power of 

combining structural and biochemical information with 

electrophysiology in understanding channel function 
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