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Abstract
Previously, we have proposed a method for three-class receiver operating characteristic (ROC)
analysis based on decision theory. In this method, the volume under a three-class ROC surface
(VUS) serves as a figure-of-merit (FOM) and measures three-class task performance. The
proposed three-class ROC analysis method was demonstrated to be optimal under decision theory
according to several decision criteria. Further, an optimal three-class linear observer was proposed
to simultaneously maximize the signal-to-noise ratio (SNR) between the test statistics of each pair
of the classes provided certain data linearity condition. Applicability of this three-class ROC
analysis method would be further enhanced by the development of an intuitive meaning of the
VUS and a more general method to calculate the VUS that provides an estimate of its standard
error. In this paper, we investigated the general meaning and usage of VUS as a FOM for three-
class classification task performance. We showed that the VUS value, which is obtained from a
rating procedure, equals the percent correct in a corresponding categorization procedure for
continuous rating data. The significance of this relationship goes beyond providing another
theoretical basis for three-class ROC analysis—it enables statistical analysis of the VUS value.
Based on this relationship, we developed and tested algorithms for calculating the VUS and its
variance. Finally, we reviewed the current status of the proposed three-class ROC analysis
methodology, and concluded that it extends and unifies decision theoretic, linear discriminant
analysis, and psychophysical foundations of binary ROC analysis in a three-class paradigm.
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I. Introduction
PREVIOUSLY, we have developed a three-class decision model which produces a 2-D
receiver operating characteristic (ROC) surface in a 3-D ROC space. The volume under the
three-class ROC surface (VUS) was proved to be a figure-of-merit (FOM) for three-class
task performance [1]. Having explored the decision theoretic and linear discriminant
analysis (LDA) foundations of three-class ROC analysis [2], [3], this paper aims at
exploring the psychophysical foundation of this proposed three-class ROC analysis, which is
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inspired by the two-alternative forced-choice (2AFC) procedure and its relationship to
binary ROC analysis [4], [5]. This relationship provides the psychophysical foundation for
binary ROC analysis, and will be extended in a three-class paradigm in the present paper.
The significance of the extension of this relationship goes beyond providing another
theoretical basis for three-class ROC analysis—it enables statistical analysis of VUS value.
We present and test algorithms for calculating VUS and its variance. At the end of this
paper, we provide a short discussion of the current status of the proposed three-class ROC
methodology.

II. Background
As a method to evaluate binary classification task performance, conventional ROC analysis
has been extensively studied [4]-[11]. A binary classification task can be performed using
two procedures: a rating procedure, whose performance is described by area under an ROC
curve (AUC), or a 2AFC procedure, whose performance is described by the percent correct.
We briefly introduce these two procedures and their relationship.

A medical diagnostic task is often modeled as a classification task using a rating procedure.
In such a procedure, the observer is presented with one of two mutually exclusive
alternatives (e.g., signal-present image versus signal-absent image) at one time. In other
words, the rating procedure has one observation interval [5]. The observer is then asked to
rate his confidence level of which alternative is presented. Any number of responses may be
used to rate the confidence level. For example, in a human observer signal detection task, a
set of five confidence level responses is often used. Alternatively, an observer might be
asked to use a continuous rating scale. An ROC curve is then traced out by calculating the
sensitivity/specificity (TPF/TNF) pair for each confidence level. The area under this ROC
curve gives the AUC value, which serves as a figure-of-merit for describing the task
performance using a rating procedure.

A forced-choice design is a psychophysical procedure that can be used to avoid the problem
of determining the observer's criterion (or confidence level) [5]. In a 2AFC procedure, two
observation intervals are provided, i.e., two images, one from each alternative, are shown at
the same time, e.g., a signal-absent image and a signal present image. The observer is
instructed to categorize one of the images as signal-present and the other as signal absent.
Note that since there are only two classes, this is equivalent to selecting which of the images
has the signal present. The probability of correctly identifying which of the two stimuli is
“signal-present” and which is “signal-absent” is defined as the percent correct.

In a binary classification task, Green and Swets showed the percent correct of a forced-
choice procedure equals the AUC value in a rating procedure [5], [6]. This equivalence is of
particular importance in binary ROC analysis [4]. It indicates that, for a given data source,
the performance of a binary classification task could be identically determined using either a
rating procedure or a 2AFC procedure. Further, both procedures result in the same scalar
value that summarizes classification performance. In particular, when an investigator
calculates the AUC value from a rating procedure, “he is in fact, or at least in mathematical
fact, reconstructing random pairs of images, one from a diseased subject and one from a
normal subject, and using the reader's separate ratings of these two images to simulate what
the reader would have decided if theses two images had in fact been presented together as a
pair in a 2AFC experiment” [4]. Bamber showed that this “probability of correctly ranking a
(normal, abnormal)” pair is connected with the quantity calculated in the Wilcoxon or
Mann–Whitney (M-W) statistical test [6]. As a result, the extensively-studied properties of
M-W test can be used to predict the statistical properties of the area under a ROC curve.
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Furthermore, this relationship enables us to study the AUC value and its properties without
assumptions either on the distributions of the data or on the properties of the decision
variable. Therefore, the AUC value obtained from a nonideal and non-Hotelling observer,
e.g., a human observer, is interpretable in the sense of 2AFC.

III. Theory
Scurfield has previously investigated “n-event, m-dimensional” forced-choice tasks [12]. In
that work, Scurfield first reformulated the two-class decision rules by introducing, for
mathematical convenience, two dummy parameters which do not play a role in the
observer's decision. As a natural extension of the reformulated two-class decision rules, a
three-class decision rule was introduced which also added dummy parameters that do not
play a role in the observer's decision. The resulting decision space is 2-D, and the decision
structure has the same shape as the decision structure we derived under the ideal observer
framework [1]. Scurfield proved that the volume under a 123-ROC surface (i.e., a surface in
the 3-D space with axes T1F, T2F, and T3F, where TiF is the probability of correctly
classifying the ith class, or the sensitivity of the ith class) equals the percent correct of an
I3A6 (three interval, six-alternative) task. Since Scurfield's decision structure is identical to
the decision-theory based one we have previously proposed, Scurfield's proof can be applied
readily to this work. However, Scurfield's proof is very hard to follow, and it is not couched
in terms that are familiar to the imaging community.

In the following, we first define a forced-choice procedure in a three-class paradigm; we
then introduce the three-class decision model that has been proved to extend and unify the
decision theoretic and LDA foundations of binary ROC analysis [1]-[3]. Next, we elaborate
on the underlying connections between the proposed decision model and a three-class
categorization procedure, and prove the equivalence of the percent correct and VUS in a
different, and, we believe, more easily understood way. Based on this relationship, we
propose methods and algorithms for calculating the VUS value and its standard deviation.

In the following, scalar variables are denoted with italic fonts, and functions are in regular
fonts. For example, in T1F = T1F (x, y), T1F is a variable, and T1F is a function.

A. Definition of the Three-Class Categorization Procedure
We now define a three-class categorization procedure that is analogous to the 2AFC
procedure. In this procedure, three randomly sampled objects, one from each of the three
distinct classes, are presented to the observer simultaneously. The observer's task is to
categorize the three objects into each of the three hypotheses. The observer is said to make a
correct decision when, and only when, all three objects are correctly categorized.

B. Decision Model for Three-Class ROC Analysis
We have derived the optimal decision variables and decision rules for practical three-class

ROC analysis using a rating procedure [1]. For a given data vector , two decision variables
(rating values), LR13, and LR23, are computed, i.e.,

and

He and Frey Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(1)

where Hi (i = 1, 2, 3) denotes the ith hypothesis,  is the data vector, and  is the

likelihood of the data vector  under the ith hypothesis, Hi. To make a decision, a pair of
ratings are calculated and compared to a decision structure centered on a critical point,
which is determined by prior information (i.e., the decision utilities and prior probabilities of
the classes, or predetermined sensitivity pairs). Fig. 1(a) shows the three-class decision plane
and decision structure that was proved to be optimal under certain decision criteria in two
previous papers [1], [2].

In order to relate the decision model to a corresponding categorization procedure, where any
pairs of decision variables might be used, we provide the following mathematical treatment
for the decision model. Since the result to be presented in this paper does not depend on the
use of the decision variables, we replace log LR13 and log LR23 with a pair of general
decision variables, x and y, as shown in Fig. 1(b). The general decision variables, (x, y),
might be any pair of possible decision variables representing a pair of ratings assigned to
each object. Note that for the same classification problem, if the decision variables that span
the decision plane are different, the distributions on the decision plane would also be
different.

The rating pair distributions of the three classes on this general decision plane can thus be
represented by f1(x, y), f2(x, y), and f3(x, y), respectively. Fig. 1(c) shows a typical ROC
surface. The volume under the ROC surface is given by

(2)

where TiF(i = 1, 2, 3) is the probability that class i can be correctly classified. It can be seen
that TiF is a function of x and y, i.e.,

(3)

C. Mathematical Treatment of the Three-Class Categorization Procedure
In order to relate the three-class categorization procedure to the rating procedure described
above, we now analyze the categorization procedure mathematically as a three-step process.

Step 1) Present a triplet of randomly grouped class 1, class 2, and class 3 objects to the
observer.

Step 2) Rate each object independently as in a rating procedure, resulting in a rating
pair, (x, y), for each object as in the rating procedure.

Step 3) Test the three rating pairs associated with each object to see if the differences
among the rating pairs lead to them being correctly categorized according to the
decision rules suggested by the decision structure in Fig. 1. That is to say, a triplet can
be correctly classified if there exists a decision structure position (defined by a critical
point) such that all three rating pairs are correctly classified. Note here that the outcome
of this test depends only on the relative positions of the rating pairs on the decision
plane.
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The described procedure is illustrated graphically in Fig. 2, where the triangle, square, and
disk represent the randomly sampled objects, with one from each rating pair distributions
f1(x, y), f2(x, y), and f3(x, y), respectively. Fig. 2(a) illustrates a case when at least one
decision structure position exists that results in correctly categorizing these three rating
pairs, and Fig. 2(b) illustrates a case when no such position exists. Note that the underlying
assumption here is that the rating procedure and the categorization procedure use the same
decision structure and decision variables. By repeating this procedure and computing the
ratio of correct to total trials, we can thus estimate the percent correct for this categorization
procedure from the rating data produced by a rating procedure.

D. Equivalence of VUS in a Rating Procedure and Percent Correct in a Categorization
Procedure

Given the above mathematical treatment, we can compute the percent correct (PC) as the
integration of the product of the probability distributions of the rating pairs for the three
classes over all the combinations that can give correct decisions. The formulation of PC is
thus obtained by finding a strategy such that a complete set of correctly classified triplets is
obtained without counting any triplet more than once, and then integrating the probabilities
of all possible correct classifications. In the Appendix, we prove that such a formulation of
percent correct leads to the same expression for VUS, i.e.,

(4)

Note that the proof is done for continuous rating data. In other words, samples of rating
values from the continuous distributions cannot give rise to rating triplets at identical
positions in the decision space.

IV. Statistical Analysis
Given the equivalence of VUS and percent correct, we now propose methods for statistical
analysis of VUS value.

A. Calculation of the VUS Value
Since, as described above and proved in the Appendix, the VUS equals the percent correct in
the corresponding three-class categorization task, we can thus estimate PC as a substitute for
estimating the VUS. With sample sizes of n1, n2, and n3 from continuous class 1, class 2,
and class 3 distributions, respectively, the rating procedure will result in nk rating pairs for

class k (where k = 1, 2, 3). We denote each rating pair as , where i = 1 ... ni
refers to the ith sample in the kth class. The corresponding categorization procedure, at least
conceptually, consists of making all possible n1 · n2 · n3 comparisons among the ratings

from the three classes and summing the score, , for each comparison
according to the rule

(5)

where l, m, and n are the lth, mth, and nth samples from classes 1, 2, and 3, respectively. In
(5), correct categorization is said to occur when there exists a critical point (this is a position

for the decision structure) such that  falls into the area for a class 1 decision,  falls into

the area for a class 2 decision, and  falls into the area for a class 3 decision. The percent
correct, PC, is then estimated by averaging the {U} over all n1 · n2 · n3 comparisons, i.e.,

He and Frey Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6)

where the caret above PC indicates that it is an estimate. Given the equivalence between the
VUS and PC, VUS can be evaluated using (6).

Equation (5) is very similar to its counterpart in the 2AFC procedure, as described in [4]. In
the binary case, when discrete rating data are used, it is possible for two samples from
different classes to be identical, and the decision rule will assign a value of 0.5 for percent
correct calculation [4]. One may note (5) does not include a contingency for the case where
some of the ratings are the same. This is because, in this paper we only proved VUS = PC
for a continuous rating scale, where we do not need to consider the case where random
samples of the ratings are identical. The possible relationship between VUS and PC for
three-class discrete rating scale is more complicated than in the binary case and is beyond
the scope of this paper.

B. Estimation of the Variance of the VUS Value
We have implemented two methods for variance estimation. The first method is based on
Dreiseitl's extension [13] of Lehmann's nonparametric approach [14]. In Dreiseitl's work,
algorithms for estimating the volume under the surface value and its variance were proposed
for Mossman's three-class decision model. Dreiseitl's algorithms for volume-under-the-
surface estimation are very similar to (5) and (6). The only difference lies in the definition of
correct categorization in (5). This is because Mossman's decision model uses different
decision structures, requiring a different correct categorization test. However, this difference
does not affect the formulation for VUS and its variance, and Dreiseitl's variance calculation
algorithm can be readily applied to this work as explained below.

In this method, the variance is given by [13]

(7)

In (7), , cov(Uijk, Umnl) = E(UijkUmnl) - θ2, where E() is the

expectation operation, , and θ = E(Uijk), which is the true percent
correct. Note that E(UijkUmnl) is the probability that both Uijk and Umnl are 1. Expanding
(7), as described in [13] results in the following formula for variance of the VUS

(8)
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Note that the elements in each expectation in (8) have at least one identical subscript, e.g.,
the two elements in E(UijkUIJk) have subscripts ijk and IJk, respectively. E(UijkUIJk) is de
fined as

(9)

Other expectations in (8) have analogous definitions.

The calculation of each E(UijkUmnl) in (8) requires four or five nested loops, which, as will
be demonstrated later, takes a long time when the number of rating pairs is large. Therefore,
we propose to implement a second method using a bootstrap approach [15], [16] to estimate
the variance. The steps involved in this method are as follows.

Step 1) Formulate three empirical probability rating pair distributions, , to
estimate the real rating pair distribution, , where I represents the ith class. For a

standard Bootstrap approach,  is expressed as a discrete distribution such that

each of the ni samples from  from class i has a probability of 1/ni. Despite the

fact that  is discrete, each rating pair is a sample from the continuous rating
distribution, fi(x, y). In cases where the sample size is small, one might want to fit the
distribution of the data with a normal distribution as is done in binary ROC analysis.
However, we have not yet been able to derive a three-class counterpart of the binormal
ROC curve fitting. Thus we provide an alternative approach using a simple parametric
Bootstrap method, where the available experimental samples are used to fit bivariate

Gaussian distributions to estimate ,  and , respectively. To be
specific, using the experimentally obtained rating pairs of the ith class, we compute the
mean, variance and the covariance of x and y, and then use these parameters to
formulate the empirical probability distribution of the rating pairs of the ith class. Note
that the parametric bootstrap approach is not essential, but does have the advantage of
handling the case for discrete ratings and, to the extent the data are described by
bivariate Gaussian distributions, more precise estimates of the VUS and its variance.

Step 2) Take n1 random samples from , n2 random samples from , and n3

random samples from  with replacement.

Step 3) Make all possible n1 · n2 · n3 comparisons among the random samples from
each class. Calculate the fraction, Γ, of the samples of comparisons that result in a
correct categorization using (5)-(6).

Step 4) Repeat Steps 2 and 3 B times, to create B bootstrap samples. This results in a set
of estimates of the percent correct Γ1, Γ2, Γ3, ..., ΓB.

Step 5) The distribution of Γ estimates the distribution of PC, which estimates the
distribution of the VUS value. The variance of the VUS is estimated by the variance of
Γ.

V. Experiments
We have implemented the algorithms for estimating the VUS and its variance. To test the
algorithms, we used a set of data from a previous experiment on dual-isotope myocardial
perfusion SPECT (MPS) image quality evaluation described in [17], [18], where the rest-
stress MPS images were obtained from a simulated population of normal patients and
patients with reversible or fixed defects. For each of the three classes, a total of 432 rating
pairs were generated. Fig. 3(a) shows the decision plane and Fig. 3(b) shows the
corresponding three-class ROC surface.
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To validate the VUS calculation algorithm proposed, we developed an ad hoc VUS
calculation algorithm, as illustrated in Fig. 4. The rating pair distributions were sampled on a
grid with very small grid spacing [Fig. 4(a)]. In the ROC space, a relatively large bin size
was defined on the (T1F, T2F) plane [Fig. 4(b)]. Moving the decision structure in the
decision plane with very small grid spacing produced several T3F values in each of the
(T1F, T2F) bin in the ROC space. For each (T1F, T2F) bin in the ROC space, we average
the T3F values to produce an ROC histogram. An estimate of the VUS value was obtained
by averaging the histogram for all (T1F, T2F) bins. The accuracy of the VUS can be
increased by decreasing the grid spacing.

The experimentally obtained data were too sparse to enable small grid spacing in the
experimental decision plane. We thus fit the three rating pair distributions to bivariate
Gaussian distributions for the ad hoc algorithm. This was done based on our previous
unpublished study of the normality of the rating pairs. Note that the ad hoc method is a very
coarse method, its resulting VUS value is affected by the bin sizes on both the decision
plane and the histogram. We developed this ad hoc method only to obtain a rough idea of
the magnitude of the VUS value to test whether the theoretical method provides a VUS that
is similar. For the method based on (6), we did not use the bivariate Gaussian fitting. Table I
shows the parameters of the fitted bivariate Gaussian distributions for the three classes. To
validate the variance calculation, we simply compared the estimate from Dreiseitl's
extension [13] in (8) and the proposed Bootstrap method. We also compared the
computational times for (8) and the Bootstrap method.

Since the data were obtained from 432 triplets of rating values, we used n1 = n2 = n3 = 432
in calculating VUS using (6). The results are shown in Table II, where we see that methods
based on VUS = PC agreed well with the ad hoc method for estimating the VUS value. To
calculate the variance using the Bootstrap method, we used B = 1000 repetitions. It can be
seen from Fig. 5 that VUS and its variance were well-converged after 200 repetitions. The
resulting standard deviation using the Bootstrap method after 1000 iterations was 0.181 (Fig.
5), which is in the same order as the one obtained using (8). However, the algorithm for
obtaining standard deviation using (8) took approximately eight days. This is because, as
described above, each E(UijkUmnl) in (8) involves a nested summation loop four or five
levels deep [an example is given in (9)]. The five level deep loops dominate the
computational time. Thus, when n = n1 = n2 = n3, the nested summation loops result in a
computational time that is roughly proportional to n5. For example, using a 2.13 GHz AMD
Opteron processor, when n = 100, it took 418 s to compute the variance, while when n =
200, it took 13, 358 s, approximately 31.96 times longer. In our study, with n = 432, the
computational time was about eight days. The Bootstrap method, on the other hand, required
only 15 min for 200 repetitions, as shown in Table II.

VI. Discussion
Current Status of the Proposed Three-Class ROC Analysis

Binary ROC analysis has been a standard method for assessing diagnostic performance.
However, there are an increasing number of diagnostic tasks of interest for which binary
classification is not sufficient. In particular, in many cases diagnosing disease using imaging
techniques requires both detection and characterization of the disease instead of disease
detection alone; analysis of these cases requires ROC analysis techniques for analyzing
multi-class diagnoses. However, multiclass ROC analysis is a theoretical problem whose
solution has been eluded the community ever since the introduction of the binary ROC in the
1950s [19], [20]. Much work has been devoted to understanding the nature of a multiclass
classification problem, and many metrics have been proposed to assess the performance of a
multiclass classification task [12], [13], [19]-[32].
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Motivated by the medical problem of cardiac perfusion defect evaluation using simultaneous
dual-isotope myocardial perfusion SPECT (MPS), where the assessment of a three-class
diagnostic task is required to evaluate and optimize MPS imaging techniques, we have
carried out a series of studies on the theoretical foundations for a practical three-class ROC
analysis method. The present paper results in both an additional theoretical justification for
the proposed method, and a practical method to calculate its figure of merit, the volume
under a three-class ROC surface. In the following, we review the previous developments in
order to present a more complete picture of the theoretical framework.

Model Development
We first developed an optimal three-class decision model that maximizes the expected
utility under decision theory by assuming that incorrect decisions have equal utilities under
the same hypothesis (the equal error utility assumption). This decision model produces a 2-
D ROC surface in a 3-D ROC space and the volume under this surface (VUS) is a figure-of-
merit for three-class task performance. We have compared the proposed three-class ROC
analysis with conventional binary ROC analysis and concluded that they share many similar
properties and that three-class ROC analysis reduces to binary ROC analysis for certain
special cases [1].

Decision Theoretic Foundation
We thoroughly investigated the decision theoretic foundations of the proposed three-class
ROC analysis and proved the optimality of the three-class ideal observer (3-IO) according to
several decision theoretic criteria. In particular, we found that the 3-IO and the proposed
decision model maximizes the expected utility (MEU) under equal error utility assumption,
maximizes the probability of making correct decisions, provides the maximum likelihood
(ML) decision, and satisfies the Neyman-Pearson (N-P) criterion in the sense that, given the
sensitivities of two classes, the sensitivity of the third class is maximized [2]. We believe
that the optimality with respect to N-P criterion is of particular importance for clinical
applications, as explained in [2] and [3].

Linear Discriminant Analysis (LDA) Foundation
We then investigated the LDA foundation of three-class ROC analysis. We have shown that
the conventional multiclass extension of LDA has significant limitations. In particular, the
L-class Hotelling trace, which has been used as a figure-of-merit for multiclass task
performance, cannot distinguish cases where all classes are perfectly classified from cases
where only one of the classes can be correctly classified [33]. Using the proposed three-class
ROC analysis method, we have found that when the data follow multivariate Gaussian
distribution with equal covariance matrices, in addition to the optimality mentioned above,
the proposed three-class decision model maximizes the SNR between each pairs of the
classes, and likelihood ratios can be computed using a linear observer, i.e., the three-class
Hotelling observer (3-HO) [3]. When the data are not Gaussian distributed, we have shown
that 3-HO still maximizes the SNR between each pair of the classes given a certain data
linearity condition [3].

Psychophysical Foundation
In this paper, we have investigated the relationship between a three-class rating procedure
and the corresponding categorization procedure. The equivalence of VUS and the percent
correct extends the psychophysical foundation of binary ROC analysis to the proposed
three-class ROC analysis.
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From the above, we conclude that the proposed three-class ROC analysis method extends
and unifies the decision theoretic, linear discriminant analysis, and psychophysical
foundations of binary ROC analysis in a three-class paradigm. The proposed three-class
ROC methodology is practical mathematically in the sense that a figure-of-merit (FOM) was
proposed along with practical numerical methods to obtain the FOM and its statistical
properties [1]-[3]. Additionally, the proposed methodology might also prove to be a
reasonable model of clinical decision making, as described in [2] and [3].

VII. Conclusion
In this paper, we investigated the psychophysical foundation of a previously-proposed three-
class ROC methodology by presenting an intuitive meaning for the VUS value, i.e., the
percent correct in a three-class categorization procedure for continuous rating data. This
equivalence is neither dependent on the decision variables used, nor dependent on the actual
distributions of the three classes. In other words, no matter what decision variables are used,
the VUS obtained always equals the percent correct in a corresponding three-class
categorization procedure when using the decision rules defined by the decision structure
used in this work. Based on this psychophysical foundation, we developed and tested
algorithms for calculating the VUS and its variance.

In light of this connection to the proposed psychophysical task, we reviewed the current
status of the proposed three-class ROC analysis methodology, and concluded that it extends
and unifies decision theoretic, linear discriminant analysis, and psychophysical foundations
of binary ROC analysis in a three-class paradigm.
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Appendix
We denote the rating pair distributions as f1(x, y), f2(x, y), and f3(x, y) for each of the three
classes, respectively, and the corresponding true class fractions as

(A1)

(A2)

and

(A3)

Note that scalar variables are represented using italic fonts while functions are in regular
fonts. In the following, we prove the equivalence of the VUS and the PC with respect to a
categorization procedure.
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A. Preparing Necessary Partial Derivatives and Three Lemmas
Before proving the equivalence of the VUS and the PC in a categorization procedure, we
first introduce three lemmas and derive the partial derivatives of T2F(x, y) and T3F(x, y),
which will be used later in the proof.

1) The Three Lemmas
Lemma 1—The purpose of Lemma 1 is to change the bound of the integrals, and is
expressed as

(A4)

Proof:

where Θ is the Heaviside step function. Now let y′ = y - x + a

Let y = y′

Lemma 2—Lemma 2 is very similar to Lemma 1, and is expressed as

(A5)

Proof:

where Θ is the Heaviside step function, let x′ = x - y + b

Let x = x′
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Lemma 3—The purpose of Lemma 3 is to change the order of the double integral, and is
expressed as

(A6)

Proof:

where Θ (y) is the Heaviside step function. Now the order of the integration can be changed.

2) Partial Derivatives of T2F (x, y)
For a decision structure centered on (x, y), T2F(x, y) is expressed in (A2), and the partial
derivative of T2F(x, y) with respect to x is thus

(A7)

To calculate the partial derivative of T2F(x, y) with respect to y, we note that T2F(x, y) is an
integral over a region bounded below by a horizontal ray extending from the origin of the
decision structure to -∞ and a second ray from the origin of the decision structure along the
45° line from the origin of the decision structure toward (∞, ∞). We use the observation
above to rewrite T2F(x, y) as

(A8)

Applying Lemma 1 in (A4) to the second term of (A8), T2F(x, y) can be expressed as

(A9)

Using this we find that
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(A10)

3) Partial Derivatives of T2F(x, y)
For a decision structure centered on (x, y), T3F(x, y) is given by (3). Its partial derivatives
with respect to x and y are thus

and

(A11)

B. Strategy for Computing the Percent Correct
We now describe the strategy for computing percent correct; a full mathematical derivation
based on this strategy will be given in the next section. The percent correct on a three-class
categorization procedure is given by

(A12)

where c = c(x1, y1, x2, y2, x3, y3) is 1 if there exists a position of the decision structure such
that the triplet of rating pairs ((x1, y1), (x2, y2), (x3, y3))can be correctly classified, and is 0
otherwise. Rearranging (A12), we obtain

(A13)

Examination of (A13) reveals that the outermost double integral can be expressed as

(A14)

where

(A15)

Here, p(c = 1|x3, y3) is the probability density for a correct classification over all possible
(x1, y1) and (x2, y2) combinations for the given (x3, y3). Similarly, p(c = 1|x3, y3) can be
expressed as
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(A16)

where p(c = 1|x2, y2, x3, y3) is the probability density for correct classification over all
possible (x1, y1) for the given (x2, y2) and (x3, y3) combination, and is expressed as

(A17)

Equations (A14), (A16), and (A17) provide a natural strategy to evaluate the six-
dimensional integral in (A12). We first select a (x3, y3) pair. Next, we recognize that all (x2,
y2) for which correct classifications are possible will necessarily have y2 > y3, as seen in
Fig. 6(a). For such pairs, the maximum region containing (x1, y1) that is correctly
classifiable will be obtained if the decision structure is positioned such that the selected (x2,
y2) and (x3, y3) lie on the rays comprising the decision structure. For a given (x3, y3), there
are three subsets of (x2, y2) for which correct classification is possible, as described in Table
III and shown in Fig. 6(b)–(d), depending on which of the rays the two pairs of decision
variables are located on. Thus, what we need to do is to add the probability density for
correct classification for each of these subsets. Integrating over all the (x2, y2) pairs for a
given (x3, y3) and then over all the (x3, y3) will give the percent correct.

C. Computing the Percent Correct
First consider p(c = 1|x3, y3) for a particular (x3, y3). Note that

(A18)

Thus, (A16) can also be written as

(A19)

where the double integral is over the half plane where y2 > y3. As described above, there are
three nonintersecting subsets of (x2, y2) that satisfy y2 > y3, defined by their relative
locations; we label these Subset 1, Subset 2 and Subset 3, respectively, as shown in Table III
and illustrated in Fig. 6(a).

Given the subsets defined in Table III, (A19) is expressed as

(A20)

Fig. 6 provides an intuitive illustration of the three subsets [Fig. 6(a)] and the corresponding
strategies for identifying p(c = 1|x2, y2, x3, y3) for a (x2, y2) sampled from each subsets [Fig.
6(b)–(d)]. In particular, Fig. 6(b) shows the strategy for identifying p(c = 1|x2, y2, x3, y3) for
a (x2, y2)sampled from Subset 1. We wish to find all (x1, y1) that may be correctly classified
with this particular (x2, y2) and (x3, y3). To accomplish this, the decision structure should be
moved toward x = -∞, y = +∞ to include as many (x1, y1)as possible. However, as shown
in Fig. 6(b), the vertical line of the decision structure should not exceed x = x3, and the
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horizontal line should not exceed y = y2. Otherwise, incorrectly classified triplets will be
counted. As a result, the shaded area in Fig. 6(b) includes all (x1, y1) that form correct
classification triplet with the particular (x2, y2), and (x3, y3) shown in Fig. 6(b). For this
particular (x2, y2) and (x3, y3), p(c = 1|x2, y2, x3, y3) is obtained by integrating f1(x1, y1) in
the shaded area. Fig. 6(c)–(d) illustrate the strategies for identifying for p(c = 1|x2, y2, (x3,
y3) for (x2, y2) belonging to Subsets 2 and 3, respectively. It can be seen that the first,
second and third term in (A20) are the probability densities for correct classification given a
(x3, y3) for each of the three subsets of potentially-correctly-classifiable (x2, y2). In the
following, we consider the computation of each of the three terms in (A20).

Let the first term be

(A21)

Now note that the true class 1 fraction, T1F(x, y), when the decision structure is located at
(x, y) is equal to p(c = 1|x2, y2, (x3, y3), i.e.,

(A22)

Thus, referring to Fig. 6(b) for the computation of A(x3, y3), we see that A(x3, y3) can be
expressed as

(A23)

Rearranging (A23) gives

(A24)

Similarly, the second term in (A20), is

(A25)

Referring to Fig. 6(c) and again recognizing the true class 1 fraction, we see that we can
rewrite this as

(A26)

We now apply Lemma 1 [given in (A2)] to change the bounds of the integrals in B(x3, y3),
obtaining

(A27)

Thus, the sum of the first two terms of (A20) is

He and Frey Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A28)

Comparing (A28) and (A10) reveals that the line integral inside the square brackets in (A28)
is equivalent to the negative of the partial derivative of T2F with respect to y2.

Similarly, referring to Fig. 6(c), the third term in (A20) can be expressed as

(A29)

Applying Lemma 2 [given in (A3)] to change the limits of integration, (A29) becomes

(A30)

Inside the square brackets is the line integral of f2(x, y) along the line of identity in Fig. 6(d),
and function T1F is an area integration of f1(x, y) over the shaded area. Comparing (A30)
and (A7) reveals that the line integral inside the bracket in (A30) is the partial derivative of
T2F with respect to x2.

Substituting the partial derivatives of T2F given in (A7) and (A10), p(c = 1|x3, y3) in (A20)
is given by

(A31)

Substituting (A31) into (A14), we obtain an expression for PC, i.e.,

(A32)

Equation (A32) shows that the percent correct is a sum of two terms. For notational
simplicity, we replace all the x3 with x, y3 with y, x2 with x′, and y2 with y′. We first
rewrite the first term as

(A33)

Applying the Lemma 3 [given in (A4)] to the expression inside the square bracket in, (A33)
becomes
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(A34)

Comparing (A11) and (A34) reveals that the term inside the parentheses is the partial
derivative of T3F with respect to x. Substituting (A11) into (A34), gives

(A35)

Applying Lemma 3 and the expression for the partial derivative of T3F in (A11) to the
second term of (A32) in a similar fashion gives

(A36)

For notational simplicity, we rewrite (A35) and (A36) so that they are both integrals of x and
y. Thus, (A32) becomes

(A37)

Inspection of (A37) reveals that the determinant is the Jacobian for the change of variables
from (T2F, T3F) to (x, y). Noting that these fractions become 0 and 1, respectively, as the
rating values move from -∞ to ∞, we thus have

(A38)

where T1F, T2F, and T3F are defined in (A1). Equation (A38) is the expression for VUS,
and we thus have that

(A39)
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Fig. 1.
Decision plane of the three-class decision model and a three-class ROC surface. (a) Decision
plane spanned by (log LR13, log LR23). (b) Decision plane spanned by (x, y). (c) Example of
three-class ROC surface.
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Fig. 2.
Illustration of a mathematical treatment of the categorization procedure that is equivalent to
a rating procedure. Ellipses with different shadings schematically represent the distributions
of decision variables for the three classes. Triangle is a random sample from class 1, the
square is a random sample from class 2, and the disk represents a random sample from class
3. (a) Illustration of a case where the triplet can be correctly categorized. (b) Illustration of a
case where correct categorization is not possible for any position of the proposed decision
structure.
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Fig. 3.
Decision planes and the ROC surface obtained for simulated dual-isotope MPS images. (a)
Decision plane. (b) ROC surface traced out by moving the decision structure on the decision
plane and compute the sensitivity triplets.
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Fig. 4.
Calculation of the VUS. (a) Sample the distributions with very small grid spacing in the
decision plane. (b) For each (T1F, T2F) bin in the ROC space, we average the T3F values to
produce an ROC histogram.
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Fig. 5.
Convergence of VUS (a) and its standard deviation (b) using the Bootstrap method.
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Fig. 6.
For a particular (x3, y3), (a)–(d) illustrates the strategies for finding correctly classifiable
triplet. (a) We divide all (x2, y2) that may form a correct classification with (x3, y3), i.e., y2 >
y3, into three mutually exclusive subsets, Subset 1, Subset 2, and Subset 3, respectively.
Here, (b)–(d) shows examples of the set of (x1, y1), indicated by the shaded region, which
will result in correct classification for the particular (x3, y3) and a (x2, y2) from each subset,
respectively.
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TABLE II

Resulting VUS Values and the Standard Deviations Using Different Approaches

VUS = PC method

Ad hoc methodBootstrap
Eqn. (6)-(8)

1000 repetitions 200 repetitions

VUS 0.5835 0.5835 0.5830 0.5815

Standard deviation 0.0181 0.0189 0.0182 N/A

Computational time 75min 15min ∼8 days N/A
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TABLE III

Definition of the Three Subsets

Subset 1 {x2 < x3, y2 > y3}

Subset 2 {x2 ≥ x3, y2 > y3, y2 - x2 ≥ y3 - x3}

Subset 3 {x2 ≥ x3, y2 > y3, y2 - x2 < y3 - x3}
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