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Abstract
One of the most challenging scientific data analysis quandaries is the identification of small
intermittent irregularly spaced pulsatile signals in the presence of large amounts of heteroscedastic
experimental measurement uncertainties. We present an application of the use of AutoDecon to a
typical fluorescence and/or spectroscopic data sampling paradigm, which is to detect a single
fluorophore in the presence of high background emission. Our calculations demonstrate that single
events can be reliably detected by AutoDecon with a signal-to-noise ratio of 3/20. AutoDecon was
originally developed for the analysis of pulsatile hormone-concentration time-series data measured
in human serum. However, AutoDecon has applications within many other scientific fields, such as
fluorescence measurements where the goal is to count single analyte molecules in clinical samples.

1. Introduction
There are numerous cases in the scientific literature where the ability to identify small pulsatile
signals of a magnitude comparable to the concomitant measurement errors is critical. One
typical example of this would be detection of a low concentration of fluorophores in a flow
cell or detection of a small number of fluorophores on a surface. The fluorescence might also
originate from monitoring a single fluorescence molecule within the sample. The flow cell
might be attached to the output of a chromatography column or any of a near infinity number
of other types of experimental apparatus. Additionally, a wide variety of bioaffinity surfaces
are used in genomic and proteomic analysis.

The basic data processing concepts presented here do not depend upon the specifics of the
experiment other than the size and shape of the pulsatile signal or the properties of the
concomitant measurement errors. Consequently, the current discussion will emphasize
irregularly spaced approximately Gaussian-shaped pulsatile events of variable size and the
typical Poisson distributed measurement uncertainties that originate from photo counting
experiments. One example of this approach to signal analysis could be the counting of single
analyte molecules in biological samples which may display high background emission. Single
molecule counting (SMC) assays would represent the ultimate in high sensitivity detection.
However, the basic mathematical approach presented here is not specific to this application
nor to Gaussian events or Poisson noise. This work presents a fluorescence monitoring
application of a data analysis algorithm that was originally developed for identifying pulsatile
events in the hormone-concentration time-series that are observed in human serum ( Johnson
et al., 2009).
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2. Methods
The general approach to be presented here is to generate a large number of simulated data sets
with specific signal and measurement error characteristics. The advantage of simulated data is
that the locations and sizes of the simulated pulsatile events within the data series are known
a priori. The ability of the AutoDecon algorithm to identify small, irregularly timed events
within noisy experimental data can then be evaluated by how well it can identify the events
within these simulated data time-series. One example could be the photon counts from a single
fluorophore flowing past a detector.

The specific event detection criteria utilized here are the: True-Positives, the fraction of
identified events that correctly identified; False-Positives, the fraction of identified events that
it incorrectly identified; False-Negatives, the fraction of simulated events that were not
identified; and Sensitivity, the fraction of simulated events that were correctly identified. For
an event to be correctly identified it must occur within a specific time window of a
corresponding simulated event in the specific simulated data sets.

2.1. The simulated data
The data is simulated to mimic typical data that could be obtained from many different types
of experiments. Specifically, each simulated data set consists of 1000 data points equally
spaced in time units with three additive parts: (1) The background number of photons, typically
20 per unit time; (2) Several sparsely occurring Gaussian-shaped events of various heights and
widths; and (3) Poisson distributed pseudo random measurement errors based upon the total
number of counts within each unit of time. One thousand data sets were simulated for each
example presented in this work. The results are independent of the specific units of time.

The number of Gaussian-shaped events within each data set was randomly selected between
1 and 5 with an even distribution. The temporal locations of these events were also selected
based upon an even distribution with two caveats: no events were assigned within the first and
last hundred data points, and the events could not occur within two standard deviations of the
Gaussians. The first of these was intended to exclude the end effects of partial events at either
end of the simulated data set. The second was to enforce the restriction that multiple events
cannot be nearly simultaneous in time and thus indistinguishable.

The Poisson distributed measurement errors, that is, the experimental noise, were generated
from the total number of background and event counts by the POIDEV procedure (Press et
al., 1986).

2.1.1. AutoDecon procedure—AutoDecon was originally developed for the analysis of
the pulsatile hormone-concentration secretory events that are observed in serum. This
deconvolution procedure functions by developing a mathematical model for the time course
of the pulsatile event and then fitting this mathematical model to the experimentally observed
time-series data with a weighted nonlinear least-squares algorithm. It implements a rigorous
statistical test for the existence of pulsatile events. The algorithm automatically inserts
presumed pulsatile events, then tests the significance of presumed events, and removes any
events that are found to be nonsignificant. This automatic algorithm combines three modules:
a parameter fitting module, an insertion module that automatically adds presumed events, and
a triage module which automatically removes events which are deemed to be statistically
nonsignificant. No user intervention is required subsequent to the initialization of the algorithm.

It is interesting to note that the mathematical form of hormone-concentration time-series data
is the same mathematical form as expected in time-domain fluorescence lifetime
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measurements. Specifically, this mathematical model (Johnson and Veldhuis, 1995; Veldhuis
et al., 1987) is:

(13.1)

where C(t) is the hormone-concentration as a function of time t, S(τ) is the secretion into the
blood as a function of time and is typically modeled as the sum of Gaussian-shaped events,
and E(t−τ) is the one- or two-exponential elimination of the hormone from the serum as a
function of time. For the time-domain fluorescence lifetime experimental system, the S(t)
function corresponds to the lamp function (i.e., the instrument response function) and the E(t
−τ) corresponds to the fluorescence decay function.

For the current study it was assumed that the elimination half-time was short compared with
the width of the Gaussian-shaped events to be detected. In this limit, the shape of the events
detected by AutoDecon will approach a Gaussian profile. This allowed the existing algorithm
and software to detect the simulated Gaussian-shaped events without modification.

2.1.2. AutoDecon fitting module—The fitting module performs weighted nonlinear least-
squares parameter estimations by the Nelder–Mead Simplex algorithm (Nelder and Mead,
1965; Straume et al., 1991). In the present example, it fits Eq. (1) to the experimental data by
adjusting the parameters of the Gaussian-shaped events function such that the parameters have
the highest probability of being correct. The module is based upon the Amoeba routine (Press
et al., 1986) which was modified such that convergence is assumed when both the variance-
of-fit and the individual parameter values do not change by more than 2 × 10−5 or when 15,000
iterations have occurred. This is essentially the original Deconv algorithm ( Johnson and
Veldhuis, 1995; Veldhuis et al., 1987) with the exception that the Nelder–Mead Simplex
parameter estimation algorithm (Nelder and Mead, 1965; Straume et al., 1991) is used instead
of the damped Gauss–Newton algorithm which was previously utilized as the Nelder–Mead
algorithm simplifies the software since it does not require derivatives.

The AutoDecon fitting module constrains all of the events to have a positive amplitude by
fitting to the logarithm of the amplitude instead of the amplitude. The fitting module also
constrains all of the events to have the same standard deviation.

2.1.3. AutoDecon insertion module—The insertion module inserts a presumed event at
the location of the maximum of the Probable Position Index (PPI).

(13.2)

The parameter Hz is the amplitude of a presumed Gaussian-shaped event at time z. The index
function PPI(t) will have a maximum at the data point position in time where the insertion of
an event will result in the largest negative derivative in the variance-of-fit versus event size. It
is important to note that the partial derivatives of the variance-of-fit with respect to an event
size can be evaluated without any additional weighted nonlinear least-squares parameter
estimations or without even knowing the size of the presumed event, Hz. Using the definition
of the variance-of-fit given in Eq. (3), the partial derivative with respect to the addition of an
event at time z is shown in Eq. (4) where the summation is over all data points,
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(13.3)

(13.4)

where wi corresponds to the weighting factor for the ith data point, and Ri corresponds to the
ith residual. The inclusion of these weighting factors is the statistically valid method to
compensate for the heteroscedastic properties of the experimental data. For the present case it
was assumed that these weighting factors were equal to the square-root of the number of photon
counts at any specific time.

2.1.4. AutoDecon triage module—The triage module performs a statistical test to
ascertain whether or not a presumed secretion event should be removed. This test requires two
weighted nonlinear least-squares parameter estimations, one with the presumed event present
and one with the presumed event removed. The ratio of the variance-of-fit resulting from these
two parameter estimations is related to the probability that the presumed event does not exist,
P, by an F-statistic, as in Eq. (5). For most of the present examples a probability level of 0.01
was used.

(13.5)

This is the F-test for an additional term (Bevington, 1969) where the additional term is the
presumed event. The 2’s in Eq. (5) are included since each additional event increases the
number of parameters being estimated by 2, specifically the location and the amplitude of the
event. The number of degrees of freedom, ndf, is the number of data points minus the total
number of parameters being estimated when the event is present. Each cycle of the triage
module performs this statistical test for every event in an order determined by size, from
smallest to largest. If an event is found to be not statistically significant it is removed and the
triage module is restarted from the beginning (i.e., a new cycle starts). Thus, the triage module
continues until all nonsignificant events have been removed. Each cycle of the triage module
performs m + 1 weighted nonlinear least-squares parameter estimations where m is the current
number of events for the current cycle: one where all of the events are present and one where
each of the events has been removed and individually tested.

2.1.5. AutoDecon combined modules—The AutoDecon algorithm iteratively adds
presumed events, tests the significance of all events, and removes nonsignificant events. The
procedure is repeated until no additional events are added. The specific details of how this is
accomplished with the insertion, fitting, and triage modules are outlined here.

For the present study, AutoDecon was initialized with the background set equal to zero, the
elimination half-life set to a small value (specifically three time units), the standard deviation
of the events set to the specific simulated value, and zero events. It is possible, but neither
required nor performed in this study, that initial presumed event locations and sizes be included
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in the initialization. Initializing the program with event position and amplitude estimates might
produce faster convergence and thus decrease the amount of computer time required.

The next step in the initialization of the AutoDecon algorithm is for the fitting module to
estimate only the background. The fitting module then estimates all of the model parameters
except for the elimination half-life and the standard deviation of the secretion events. If any
secretion events have been included in the initialization, the second fit will also refine the
locations and sizes of these secretion events. Next, the triage module is utilized to remove any
nonsignificant events. At this point the parameter estimations that are performed within the
triage module will estimate all of the current model parameters except for the elimination half-
life and the standard deviation of the secretion events.

The AutoDecon algorithm next proceeds with Phase 1 by using the insertion module to add a
presumed event. This is followed by the triage module to remove any nonsignificant events.
Again, the parameter estimations performed within the triage module during Phase 1 will
estimate all of the current model parameters with the exception of the elimination half-life and
the standard deviation of the secretion events. If during this phase the triage module does not
remove any secretion events, Phase 1 is repeated to add an additional presumed event. Phase
1 is repeated until no additional events are added in the insertion followed by triage cycle.

For the current example, Phase 2 repeats the triage module with the fitting module estimating
all of the current model parameters but this time including the standard deviation of the
secretion events and not the elimination half-life.

Phase 3 will repeat Phase 1 (i.e., insertion and triage) utilizing the parameter estimations that
are performed by the fitting module within the triage module estimating all of the current model
parameters again including the standard deviation of the secretion events but not the elimination
half-life. For the present example, the elimination half-life is never estimated. Phase 3 is
repeated until no additional events have been added in the insertion followed by triage cycle.

2.1.6. Concordant secretion events—Determining the operating characteristics of the
algorithms requires a comparison of the apparent event positions from the AutoDecon analysis
of a simulated time-series with the actual known event positions upon which the simulations
were based. This process must consider whether the concordance of the peak positions is
statistically significant or whether it is a consequence of a simply random position of the
apparent and simulated events. Specifically, the question could be posed: given two time-series
with n and m distinct events, what is the probability that j coincidences (i.e., concordances)
will occur based upon a random positioning of the distinct events within each of the time-
series? The resulting probabilities are dependent upon the size of the specific time window
employed for the definition of coincidence. This question can easily be resolved utilizing a
Monte-Carlo approach. One hundred thousand pairs of time-series are generated with the n
and m distinct randomly timed events, respectively. The distribution of the expected number
of concordances can then be evaluated by scanning these pairs of random event sequences for
coincident peaks where coincidence is defined by any desired time interval.

Obviously, as the coincidence interval increases so will the expected number of coincident
events. The expected number of coincident events will also increase with the numbers of
distinct events, n and m. Thus, the coincidence interval should be kept small.

3. Results
The procedure to demonstrate the functionality of AutoDecon for the detection of small events
within noisy time-series involves simulating and then analyzing one thousand time-series
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which have between one and five events temporally assigned at random between data points
100 and 900. These are analyzed via AutoDecon and the results compared with the known
answers upon which the simulations were based. If an observed event is within a concordance
window of 20 data points from a simulated event then it is considered a true-positive, if an
observed event is not within 20 data points of an actual simulated event it is a false-positive,
etc. However, an initial question is how many true-positive events are expected based simply
upon the random locations of the events. For a specific data set containing one simulated event
there is a 0.05 probability that a coincidence will be randomly coincident to within ±20 data
points. For each specific data set with five simulated events randomly located within 800 data
points there is a 0.71 probability that one or more coincident events will be randomly coincident
to within ±20 data points, a 0.26 probability of two or more coincident events, a 0.04 probability
of three or more coincident events, a 0.0024 probability of four or more coincident events, and
less than a 0.0001 probability that five or more will be randomly located. However, when
combining 1000 independent data sets these probabilities are raised to the 1000th power. Thus,
the probability of observing five or more randomly coincident events in 1000 data sets is less
that 10−4000.

Figure 13.1 presents the analysis of the first of a 1000 data sets that were simulated with between
1 and 5 noncoincident events between data points 100 and 900 of a total of 1000 data points
in the time sets. The simulated number of photons at each data point was a Poisson distributed
random deviate with a mean based upon Gaussian-shaped randomly occurring noncoincident
events with a standard deviation (i.e., half-width/2.354) of 20 data points and a height of 10
photons and a background, that is, dark current, of 20 photons. The probability of randomly
observing these four events correctly to within ±20 data points is less than 0.0001.

Table 13.1 presents the operating characteristics of the AutoDecon algorithm when applied to
1000 time-series analogous to Fig. 13.1. The mean, median, and interquartile distances are
given because the operating characteristic distributions do not always follow Gaussian
distributions. For this simulation the sensitivity is ~98% for finding the event locations to within
±10 time units when the half-width of the simulated events is ~50 time units (~2.354 SD).
Obviously this simulation, where the events heights are 50% of the dark current and event
standard deviation is equal to the dark current, represents a comparatively easy case. For an
analogous simulation (not shown) where the standard deviation of the event is decreased to
half of the dark current sensitivity increases to 99.1 ± 0.2% and the false-positive % increases
slightly to 4.0 ± 0.04%.

Figure 13.2 and Table 13.2 present a somewhat more difficult case. This simulation is identical
to the previous simulation except that the simulated event height is only 5 photons. Here the
events are half the size of the previous simulations. For this simulation the AutoDecon
algorithm was still able to accurately find the event locations to within ±15 time units.

It is instructive to examine the median values found in Tables 13.1 and 13.2. In every case the
medians are either 100% or 0%. This indicates that the AutoDecon algorithm correctly located
all of the simulated events to within ±10 time units for more than half of the simulated data
sets. Furthermore, for the instances where the interquartile distance is also 0.0 the
AutoDecon algorithm correctly located all of the simulated events in more than 75% of the
simulated data sets.

Figure 13.3 and Table 13.3 takes the simulations presented in Figs. 13.1 and 13.2 and Tables
13.1 and 13.2 to the next logical step where the standard deviation is 20 data points and a height
of 3 photons and a background of 20 photons. In Fig. 13.3, five events were correctly identified
within ±20 data points. When all 1000 simulated time-series are examined the false-positive
% for event identification to within ±20 data points is 6.8 ± 0.6% and the corresponding false-
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negative% is 28.5 ± 1.0%. This is clearly a very difficult case where the Autodecon algorithm
performs surprisingly well.

In Table 13.1, the false-positive percentages are substantially higher than the corresponding
false-negative percentages. They are of a comparable size in Table 13.2, while in Table 13.3
the false-positive percentages are substantially lower than the corresponding false-negative
percentages. Clearly, these percentages are both expected and observed to be a function of the
relative height of the events. But the false-negative percentages are more sensitive to the
relative event heights than are the false-positive percentages. These percentages are also a
function of the probability level within the triage module, see Eq. (5). Table 13.4 presents the
results from the analysis of the same simulated data sets that were used for Table 13.3 where
the only difference is that a probability level of 0.05 was used in Eq. (5). With the probability
level of 0.05 the false-positive and false-negative percentages are approximately equal for
simulated event sizes of three photons.

4. Discussion
The Autodecon algorithm functions by: (1) creating a mathematical model for the shape of an
event, (2) using the derivative of the variance-of-fit with respect to the possible existence of
events, predicts where the next presumptive event should be added, (3) performing a least-
squares parameter estimation to determine the exact event locations and sizes, and (4) using a
rigorous statistical test to determine if the events are actually statistically significant. Steps 2–
4 are repeated until no additional events are added.

AutoDecon is a totally automated algorithm. For the current examples the algorithm was
initialized with a probability level of 0.01 and an approximate standard deviation for the
Gaussian-shaped events of 20 time units. The algorithm then automatically determined the
number of events, their locations, and sizes.

The algorithm does not assume that the events occur at regular intervals. However, if they did
occur at regular intervals the algorithm could be modified to include this assumption and would
then perform even better.

Similarly the algorithm does not assume that the secretion events have the same height. If the
events had a constant height this could also be included in a modified algorithm to obtain even
better performance.

The Autodecon algorithm is also somewhat independent of the form of the noise distribution.
In the present example, the simulated data contained Poisson distributed simulated
measurement uncertainties while the current Autodecon software assumes that the
measurement error distribution follows Gaussian distribution.

The Autodecon algorithm functions by performing a series of weighted nonlinear regressions.
The weighting factors employed here are proportional to the square-root of the observed
number of photons at each simulated data point. This is consistent with the procedure
commonly employed for experimental photon counting protocols. A consequence of this is
that the statistical weight assigned to a data point with n too many photons is less than the
statistical weight of a data point with n too few photons. This introduces an asymmetrical bias
into the weighting of the data points. The major consequence of this is that the baseline levels
in Figs. 13.1–13.3 are ~19 photons instead of the simulated value of 20 photons.

The relative values of the false-positive and false-negative percentages are adjustable within
the Autodecon algorithm. Tables 13.3 and 13.4 present an example of how the probability level
within the algorithm’s triage module can be manipulated so that the false-positive and false-
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negative percentages are approximately equal. The optimal value for the probability level is a
complex function of the relative sizes of the events and the baseline values as well as many
other variables. Thus, the optimal probability level cannot be predicted a priori but it can be
determined by computer simulations which include the specific experimental details.

The Concordance and Autodecon algorithms are part of our hormone pulsatility analysis suite.
They can be downloaded from www.mljohnson.pharm.virginia.edu/pulse_xp/.
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Figure 13.1.
A simulated case where four simulated events were correctly identified. Background is 20
photons, simulated Gaussian event standard deviations are 20 time units and the event heights
are 10 photons. The points are the simulated noisy photon counts and the curve represents the
best estimated values.
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Figure 13.2.
A second simulated case where four simulated events were correctly identified. Background
is 20 photons, simulated Gaussian event standard deviations are 20 time units and the event
heights are 5 photons.The points are the simulated noisy photon counts and the curve depicts
the best estimated values.
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Figure 13.3.
A third simulated case where five simulated events were correctly identified. Background is
20 photons, simulated Gaussian event standard deviations are 20 time units and the event
heights are 3 photons.The points are the simulated noisy photon counts and the curve depicts
the best estimated values.
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Table 13.1
Operating characteristics of AutoDecon for 1000 data sets simulated as in Fig. 13.1

Median Mean ± SEM Interquartile range

±20 Data point concordance

True-positive% 100.0 98.6 ± 0.2 0.0

False-positive% 0.0 1.4 ± 0.2 0.0

False-negative% 0.0 0.1 ± 0.1 0.0

Sensitivity% 100.0 99.9 ± 0.1 0.0

±15 Data point concordance

True-positive% 100.0 98.3 ± 0.2 0.0

False-positive% 0.0 1.7 ± 0.2 0.0

False-negative% 0.0 0.4 ± 0.1 0.0

Sensitivity% 100.0 99.6 ± 0.1 0.0

±10 Data point concordance

True-positive% 100.0 96.8 ± 0.4 0.0

False-positive% 0.0 3.2 ± 0.4 0.0

False-negative% 0.0 2.0 ± 0.3 0.0

Sensitivity% 100.0 98.0 ± 0.4 0.0
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Table 13.2
Operating characteristics of AutoDecon for 1000 data sets simulated as in Fig. 13.2

Median Mean ± SEM Interquartile range

±20 Data point concordance

True-positive% 100.0 97.1 ± 0.3 0.0

False-positive% 0.0 2.9 ± 0.3 0.0

False-negative% 0.0 2.6 ± 0.3 0.0

Sensitivity% 100.0 97.4 ± 0.3 0.0

±15 Data point concordance

True-positive% 100.0 94.7 ± 0.5 0.0

False-positive% 0.0 5.3 ± 0.5 0.0

False-negative% 0.0 4.8 ± 0.5 0.0

Sensitivity% 100.0 95.2 ± 0.5 0.0

±10 Data point concordance

True-positive% 100.0 84.7 ± 0.8 25.0

False-positive% 0.0 15.3 ± 0.8 25.0

False-negative% 0.0 14.8 ± 0.8 25.0

Sensitivity% 100.0 85.2 ± 0.8 25.0
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Table 13.3
Operating characteristics of AutoDecon for 1000 data sets simulated as in Fig. 13.3

Median Mean ± SEM Interquartile range

±20 Data point concordance

True-positive% 100.0 89.0 ± 0.8 0.0

False-positive% 0.0 6.8 ± 0.6 0.0

False-negative% 20.0 28.5 ± 1.0 50.0

Sensitivity% 80.0 71.5 ± 1.0 50.0

±15 Data point concordance

True-positive% 100.0 81.1 ± 1.0 33.3

False-positive% 0.0 14.7 ± 0.9 25.0

False-negative% 33.3 34.2 ± 1.0 60.0

Sensitivity% 66.7 65.8 ± 1.0 60.0

±10 Data point concordance

True-positive% 66.7 65.5 ± 1.2 50.0

False-positive% 20.0 30.3 ± 1.1 50.0

False-negative% 50.0 46.1 ± 1.1 75.0

Sensitivity% 50.0 53.9 ± 1.1 75.0
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Table 13.4
Operating characteristics of AutoDecon for 1000 data sets simulated as in Fig. 13.3

Median Mean ± SEM Interquartile range

±20 Data point concordance

True-positive% 100.0 83.6 ± 0.8 33.3

False-positive% 0.0 15.6 ± 0.7 33.3

False-negative% 0.0 13.5 ± 0.7 25.0

Sensitivity% 100.0 86.5 ± 0.7 25.0

±15 Data point concordance

True-positive% 83.3 76.8 ± 0.9 40.0

False-positive% 16.7 22.4 ± 0.8 40.0

False-negative% 0.0 20.1 ± 0.9 33.3

Sensitivity% 100.0 79.9 ± 0.9 33.3

±10 Data point concordance

True-positive% 66.7 61.6 ± 1.0 56.3

False-positive% 33.3 37.6 ± 1.0 50.0

False-negative% 33.3 35.3 ± 1.1 60.0

Sensitivity% 66.7 64.7 ± 1.1 56.3

The probability level 0.05 was used in Eq. (5) for this table.
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