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Abstract
Developmental trajectories provide the empirical foundation for theories about change processes
during development. However, the ability to distinguish among alternative trajectories depends on
how frequently observations are sampled. This study used real behavioral data, with real patterns of
variability, to examine the effects of sampling at different intervals on characterization of the
underlying trajectory. Data were derived from a set of 32 infant motor skills indexed daily during
the first 18 months. Larger sampling intervals (2-31 days) were simulated by systematically removing
observations from the daily data and interpolating over the gaps. Infrequent sampling caused
decreasing sensitivity to fluctuations in the daily data: Variable trajectories erroneously appeared as
step-functions and estimates of onset ages were increasingly off target. Sensitivity to variation
decreased as an inverse power function of sampling interval, resulting in severe degradation of the
trajectory with intervals longer than 7 days. These findings suggest that sampling rates typically used
by developmental researchers may be inadequate to accurately depict patterns of variability and the
shape of developmental change. Inadequate sampling regimes therefore may seriously compromise
theories of development.

Developmental Trajectories
Understanding developmental change is a central goal for developmental science. However,
despite numerous treatises by prominent developmental theorists in a variety of areas urging
researchers to focus on change processes (e.g., Elman, 2003; Flavell, 1971; Siegler, 1996;
Thelen & Smith, 1994), developmental psychologists have made surprisingly little progress
toward understanding the process of developmental change. Part of the problem is historical.
Much of the work in developmental psychology has concentrated on descriptions of children’s
behavior at various ages or on the earliest manifestations of particular abilities. Decades of
reliance on cross-sectional designs, demonstration proofs, and broad-sweeping longitudinal
approaches have left researchers with a gallery of before and after snapshots, studio portraits
of newborns, and fossilized milestones, but little understanding of the process of development
itself. What we need are accurate, fine-grained depictions of developmental trajectories for
cognitive, language, perceptual, motor, and social skills.

The staggering variety of developmental trajectories has also contributed to the lack of progress
in understanding change processes. The shape of developmental change might assume any
number of patterns (Figure 1). For instance, a trajectory might show smooth and monotonic
improvements with age, proceeding at a steady pace as in children’s use of retrieval strategies
in addition (Siegler, 1996), or with accelerating or decelerating rates of change, as in infants’
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acquisition of new words (McMurray, 2007) and improvements in toddlers’ walking skill
(Adolph, Vereijken, & Shrout, 2003), respectively. The path of change may show
discontinuities such as abrupt, stage-like shifts in performance between periods of relative
stability, as in children’s stage-like success on many Piagetian tasks (Schultz, 1998), their
abrupt shift from ignoring to marking the past tense of verbs (Marcus, et al., 1992), and the
sudden transition to grasping while reaching (Wimmers, Savelsbergh, Beek, & Hopkins,
1998). Variability may increase during the period of acquisition, with a series of reversals
vacillating between less and more mature expressions of the skill, as in children’s conservation
of volume (van der Maas & Molenaar, 1992). Or a variable acquisition period may entail use
of multiple, unsystematic use of strategies between incorrect and correct endpoints, as in
(Church & Goldin-Meadow, 1986) and their acquisition of a theory of mind (Flynn, 2006).
Discontinuities can take on other shapes, such as episodic changes, where development
advances like climbing a staircase, with sudden improvements in children’s conceptual
understanding separated by long periods in a single stage (Case & Okamoto, 1996) or small
fits and starts of physical growth separated by periods of stasis (Lampl, Veldhuis, & Johnson,
1992). Discontinuities can involve reversible patterns of change, as in the U-shaped course of
children’s success on math equivalence problems (McNeil, 2007), infants’ alternating stepping
movements (Thelen, 1984), and the classic description of over-regularizations in past tense
verb forms (Marcus, 1992), or the inverted-U-shaped trajectory of cognition over the life span
(Craik & Bialystok, 2006), and infants’ zigzag-shaped error rate in detecting threats to balance
as they learn to sit, crawl, cruise, and walk (Adolph, 2005).

Such descriptions of developmental trajectories play an instrumental role in formulating and
testing theories of development (Gottlieb, 1976; Siegler, 2006; Smotherman & Robinson,
1995; Wohlwill, 1973). For example, a contentious theoretical debate was spurred by
descriptions of a sudden, stage-like increase in children’s rate of word learning, the so-called
“vocabulary spurt,” or “naming explosion” (Bloom 2004; Ganger & Brent, 2004). According
to the classic description, at about 18 months of age, when children have acquired
approximately 50 words, they display a sharp transition from an initial stage of slow vocabulary
growth to a later stage of faster growth. Several influential theories were advanced to explain
the putative shift, invoking major cognitive or linguistic changes that coincided with the spurt
(e.g., Gopnik & Meltzoff, 1987; Reznick & Goldfield, 1992). However, recent work shows
that for most children the increase in the rate of word learning is best fit by a quadratic rather
than a logistic function (Ganger & Brent, 2004). Without a stage-like spurt in the trajectory,
theories positing a sudden, fundamental change in cognitive or linguistic abilities become
superfluous.

As illustrated by this example, regardless of whether the theoretical perspective is one of
discontinuity or continuity, spurts or quadratics, theoretical accounts of how change occurs are
built upon the foundation of an accurate portrayal of the pattern of developmental change
(Wohlwill, 1970, 1973). And, as we demonstrate in this paper, an accurate characterization of
the developmental trajectory depends on the rate at which observations are sampled.

The Problem of Sampling Rate
More than 75 years ago, Vygotsky (1978) criticized researchers’ reliance on sampling methods
that merely characterize the stable endpoints in cognitive development. As a remedy, he
proposed a “microgenetic method” of sampling at small time intervals to observe development
in progress. More recent researchers also have cautioned against over-reliance on cross-
sectional and long-term longitudinal designs (Wohlwill, 1970, 1973), and have espoused the
microgenetic method for capturing the process of developmental change (e.g., Granott &
Parziale, 2002; Kuhn, 1995; Siegler, 2006; Thelen & Ulrich, 1991).
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However, apart from the general criticism that researchers’ typical sampling intervals are too
large, the microgenetic method does not quantify the potential consequences of various rates
of data collection for detecting and characterizing different patterns of development.
Proponents of the microgenetic method have offered general suggestions that researchers
should collect observations spanning the entire period of change from one stable state to
another, and that the frequency of observations should be high relative to the rate of change of
the phenomenon (Siegler, 2006). But these proponents have not addressed the problem of how
to decide whether a sampling interval is small enough to detect the shape of the underlying
trajectory. That is, when does one stable state end and another begin? Is the development step-
like or is there an intervening period of variability, partial or intermittent expression, or
disruption of performance? Similarly, critics of developmental methodology have recognized
that overly large sampling intervals in longitudinal research can cause important patterns of
change to go undetected, and have suggested that developmental researchers sample at smaller
intervals (Burchinal & Appelbaum, 1991; Collins, 2006; Hertzog & Nesselroade, 2003;
McArdle & Epstein, 1987). But how small is small enough?

In fields of inquiry such as physiology, psychobiology, health psychology, and neuroscience,
principles are available to guide the selection of an appropriate sampling rate to ensure recovery
of the underlying pattern. For instance, the Nyquist-Shannon sampling theorem (Nyquist,
1928/2002; Shannon, 1949/1998) provides an algorithm for calculating the minimum sampling
rate to fully characterize complex waveforms. The sampling theorem stipulates that for a
waveform composed of one or more frequencies, with a maximum relevant bandwidth (B), the
minimum sampling frequency (fs) necessary to reconstruct the original waveform must be at
least twice the bandwidth (fs > 2B). In other words, sampling frequency must be at least twice
as frequent as the highest frequency component. For example, recording sounds at 20 kHz, the
upper limit for human auditory perception, would require sampling the waveform at a minimum
of 40 kHz (which is one reason why mp3 digital sound files have such poor quality for higher
frequency sounds). Assumptions about the maximum relevant bandwidth are dictated by the
nature of the research question. A study of human color discrimination would not require light
wavelengths to be sampled beyond the blue end of the visible spectrum.

Ironically, the same developmental psychologists who scrupulously use principles such as the
Nyquist-Shannon theorem to select sampling rates to estimate functions for physiological and
psychophysical variables rely on intuition, convenience, and tradition to select sampling
intervals to characterize developmental change in said functions. For example, to describe age-
related changes in the ERP associated with face and object recognition, Webb, Long, and
Nelson (2005) sampled the EEG at 100 Hz to ensure that they could characterize specific
components of the EEG response distributed during the first 1500 ms after presentation of the
stimulus. But, they relied on arbitrary two-month intervals to chart the developmental trajectory
of the ERP signals. To describe the development of stereoacuity in infants, Held, Birch, and
Gwiazda (1980) estimated the psychophysical functions by ensuring a sufficiently high
sampling rate to distribute intervals of visual angle along the inflection of the curve. Yet, they
relied on an arbitrary, one-month sampling interval to estimate infants’ developmental
trajectories and onset ages. Similarly, Adolph (1997) described developmental changes in
infants’ perception of affordances for crawling and walking by sampling at sufficiently small
intervals of difficulty to ensure robust estimates of the psychophysical functions, while relying
on an arbitrary three-week sampling interval to estimate the developmental trajectories.

A recommended remedy for researchers’ sampling dilemma is to design the spacing of
observations based on a formal theoretical model about the shape of the underlying
developmental function (Boker & Nesselroade, 2002; Burchinal & Appelbaum, 1991). Such
a model would dictate the minimum number of data points and their optimal spacing in time
(e.g., a linear function requires only two observations at each end of the acquisition period).
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However, formal rules such as the Nyquist theorem are applicable only when the data consist
of complex waveforms and the maximum frequency of interest is known in advance. If the
temporal scale of developmental changes also were known in advance, then applying a formal
rule like the Nyquist might be possible (e.g., sample at twice the frequency of the smallest
significant change). Unfortunately, most developmental data are not periodic and are not
generated by simple mathematical functions, where the relevant scale of temporal change can
be obtained by deduction. Thus, developmental researchers must determine patterns of
developmental change empirically and discover, rather than deduce, the temporal scale of
events that make a difference in the process of change.

The problem is compounded because, as Collins and Graham (2002) point out, empirically
derived sampling intervals lead to a “chicken and egg” situation: Without prior knowledge
about the shape of the underlying trajectory to inform a statistical function, researchers cannot
know how frequently to space their observations. And, the underlying function that determines
the shape of the developmental trajectory cannot be discovered empirically without making a
decision about sampling interval. Often, researchers do not even have prior information about
the approximate ages that span the period of developmental change.

Implications for the Shape of Change
Few examples of developmental research have systematically assessed the empirical costs and
benefits of large and small sampling intervals on descriptions of developmental change. A
notable exception is Lampl and colleagues’ research on patterns of physical growth (Johnson,
Veldhuis, & Lampl, 1996; Lampl, Johnson, & Frongillo, 2001; Lampl, Veldhuis, & Johnson,
1992). Traditionally, children’s growth is characterized as a continuous function from birth to
adulthood, with more rapid growth rates during infancy and adolescence. However, when
children’s height is measured every day, growth appears to be episodic. Infants’ height, for
example, can increase 1.65 cm in the course of a single day, separated by long periods of days
or weeks during which no growth occurs. Sampling at weekly intervals results in developmental
trajectories that preserve the episodic nature of children’s growth but reduce the observed
number of growth spurts, increase the amplitude of the spurts, and prolong the periods of stasis.
And sampling at quarterly or yearly intervals, as in traditional studies of growth, results in the
smooth, continuous growth curves on standard growth charts.

Even within a 24-hour period, growth is not continuous. In a tour de force of micro-
measurement, Lampl and colleagues (Noonan et al., 2004) demonstrated episodic growth on
two time scales: brief periods of substantial growth on a scale of minutes and days, flanked by
long periods of no growth on an hourly and weekly scale. Leg growth in freely moving lambs
was measured with a microtransducer surgically implanted across the tibial growth plate. Bone
length was sampled at 167-sec intervals over a period of 3 weeks, synchronized with video
recordings of the lambs’ activity. Periods of bone growth revealed by the microtransducer
coincided with periods of recumbency revealed by the video recordings, and periods when
bones did not grow coincided with periods of loading the limbs in stance or locomotion. The
authors calculated that 90% of bone growth occurs while lying down, even though lambs spend
just over 50% of their time in a recumbent position, and little or no growth occurs while standing
or walking. Clearly, tradition, intuition, and convenience that informed traditional studies of
physical growth have been inadequate for capturing the richness of the actual trajectory.

The case of physical growth shows how increased sampling resolution from years to days to
minutes can provide novel insights into developmental process. The episodic growth pattern
from minute to minute indicates that bones lengthen only when compressive forces on the leg
are absent. Paradoxically, other research has demonstrated that the presence of physical forces
applied to bone promote growth by stimulating the expression of genes that regulate cartilage
and bone formation (Muller, 2003). Together, these research findings imply that cellular
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processes involved in regulating physical growth must be coordinated and synchronized on a
temporal scale previously unsuspected.

As exemplified by the research on physical growth, overly large sampling intervals will cause
interval data to appear smooth and continuous, regardless of whether the underlying trajectory
is episodic or U-shaped. Similarly, overly large sampling intervals will distort the shape of
change for binary data (skills that are indexed as absent or present). Figure 2 shows the potential
impact of sampling at monthly intervals on characterizing patterns of development using actual
data from daily observations of two infants’ progress in balancing upright. The top panel (A)
shows a step function, where the infant exhibited a single transition from not-standing to
standing, from one day to the next. The bottom panel (B) shows a variable developmental
function, where standing was expressed intermittently (21 times) over a protracted transition
period of several weeks. For skills with variable trajectories and reversals, interpolating over
the existing data points—which is what all developmental researchers do when measurements
are collected at weekly, monthly, and yearly intervals—can distort the shape of the
developmental trajectory. Infrequent observations will cause binary data to appear as a step
function, with a single abrupt transition, regardless of whether the underlying trajectory is
variable, with a series of reversals. As illustrated by the gray curves in the figure, the variable
data in (B) will appear to follow the same developmental path as the stage-like data in (A).

Implications for the Timing of Change
Overly large sampling intervals are also likely to produce errors in estimating onset ages—the
earliest age at which children consistently and reliably express a behavior, skill, or
physiological milestone. Identification of onset ages plays a prominent role in normative and
clinical studies of human development, screening for developmental delay, and experimental
manipulations of development in animals. The onset ages of cognitive and motor milestones
are commonly used to document developmental delays in clinical populations, such as the
delay in autistic and deaf children’s acquisition of theory of mind (Peterson & Siegal, 1999).
Age at onset is used to compare the development of different skills such as language
comprehension and production (Clark & Hecht, 1983), or to compare the development of the
same skill expressed in different contexts, such as the age of attaining conservation of quantities
in different cultures (Dasen, 1984), or the age of reaching for objects in the light and in the
dark (Clifton, Muir, Ashmead, & Clarkson, 1993). Researchers use age at onset to assess effects
of prior experiences on the development of a target skill, such as interactions with siblings on
acquiring a theory of mind (Perner, Ruffman, Leekam, 1994), experience with pottery making
on the onset of conservation (Price-Williams, Gordon, & Ramirez, 1969), or the effect of
sleeping prone versus supine on the subsequent development of crawling (Majnemer & Barr,
2005). Measures of experience in human infants typically are calculated as the number of days
between onset and test dates, for assessing effects of crawling experience, for example, on
improvements in perceptual, cognitive, and social tasks (Campos et al., 2000).

It is easy to imagine how sampling at longer intervals will result in reduced accuracy in
estimating the onset age of skills that exhibit abrupt, step-like transitions (e.g., monthly
sampling risks 1-month delays in estimates of onset ages; see Figure 2A). But it is less intuitive
how the choice of sampling interval affects the accuracy of estimating onset ages in skills with
variable developmental trajectories. As shown in Figure 2B, infrequent sampling is likely to
miss the period of variability, and thereby provide a later estimate of the onset age.
Occasionally, the observations will fall on a day when the skill is present, but not yet stable,
and thus distort the estimate of onset by providing a prematurely early estimate.

As we have argued in the foregoing account, the rate at which behavior is sampled is likely to
have a significant impact on our ability to discern the shape and timing of developmental
change. Sampling at inappropriately large intervals can yield an erroneous picture of the
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underlying developmental trajectory, which in turn may provide misleading inferences for
developmental theory. But the real cost is not just in misrepresenting the pattern of change. It
is the loss of the ability to distinguish among alternative trajectories, such as the ones depicted
in Figure 1. An important principle of empirical science is that theories and hypotheses must
be falsifiable. It should be possible in principle to obtain some set of measurements that would
not accord with the theory (Popper, 1959). Inferences about particular developmental
trajectories are not falsifiable unless the data could have revealed alternative patterns of change.
Confidence in the shape of a developmental trajectory depends on whether the data were
sampled at appropriate intervals to permit the possible detection of alternative paths. And
because there are no generally accepted rules or theorems to guide selection of a sampling
interval in a particular developmental context, appropriate sampling intervals must be
determined empirically.

Current Study
In the present study, we aimed to meet the challenge of the microgenetic method by establishing
empirically whether the different sampling rates typically used by developmental psychologists
in microgenetic and longitudinal research—days, weeks, and months—are sufficient to
accurately characterize the pattern of developmental change. Our aims were four-fold. First,
we sought to demonstrate that real data with real patterns of variability could yield dramatically
different trajectories when sampled at rates commonly used in developmental research. Second,
we aimed to quantify how quickly researchers lose the picture of developmental change when
sampling at increasingly large intervals. It is a mathematical certainty that coarser sampling
will be less sensitive to fluctuations in the data, but it is not clear at what rate researchers will
incur the cost of misrepresenting the underlying trajectory. Third, we assessed the consequence
of different sampling intervals for estimating onset ages—the earliest manifestation of stable
expression of skills and abilities. And fourth, we tested whether the effects of sampling interval
generalize across children, the first 18 months of life, and a range of different skills.

Specifically, this study measured the impact of collecting developmental data at intervals of
varying length on loss of sensitivity to detect the underlying trajectory. To ensure that natural
patterns of variability would be included in the data, we compiled a real data set of daily changes
in 32 infant motor skills (sitting, crawling, standing, walking, etc.) obtained from parent
checklist diaries, rather than an artificial data set of experimenter-generated data. We focused
on motor skills because motor performance is overt and amenable to objective, reliable
measurement, new motor skills are highly salient to parents, and motor development has a long
history of longitudinal and microgenetic research. However, in principle, the data set could
have been constructed from any skills appearing at any point in the lifespan, indexed in terms
of competence rather than performance, and obtained in the laboratory or during home visits
rather than by parents’ reports.

Following in the long tradition of language studies (e.g., Darwin, 1877/1974; Dromi, 1987),
parents served as informants by noting the presence or absence of each skill at the end of the
day in a checklist diary. Although readers’ first inclination may be skepticism regarding
parental reports, home observations integrated over the course of the day may be the best way
to determine if a skill is in children’s repertoire because parents are with their children in many
different situations, including contexts that are likely to elicit and support the emergence of
new skills (Bodnarchuk & Eaton, 2004). For language skills, laboratory tests and experimenter
home visits grossly underestimate children’s early abilities, necessitating parental reports to
avoid false negatives (Bates, 1993). For motor skills, parent checklist diaries of basic motor
skills are concordant with experimenter home visits (Bodnarchuk & Eaton, 2004).
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As is customary in the literature, we treated the appearance and disappearance of motor skills
as binary, categorical data (present or absent). Like researchers in other developmental domains
that treat skills categorically (e.g., object permanence, conservation, and theory of mind), we
established operational definitions for the performance of each skill. For several skills, we
included multiple criteria for successful performance (e.g., walking < 3 m and walking > 3 m)
to determine whether more stringent criteria would affect the trajectory.

From the daily assessments, we constructed developmental trajectories for each skill at the
finest available grain of temporal resolution. Then we systematically removed observations to
simulate the effects of sampling at intervals ranging from daily to monthly, and reconstructed
the developmental trajectories based on the reduced number of observations. Key features of
the resulting trajectories were compared to the original data to determine the loss of sensitivity
for detecting various patterns of developmental change that result from different sampling
schedules. In addition, we formulated a method based on a neurally-inspired activation function
for objectively estimating onset ages for each skill. We compared the estimated onset ages
derived from the original daily observations with those derived from the simulations of larger
sampling intervals to determine the magnitude of error that could be attributed to sampling
frequency.

Method
Checklist Diary

We compiled a database of daily diary data from eleven families (5 boys, 6 girls). Nine infants
were Caucasian and two were Asian. All parents were middle class and highly educated. Eight
infants had parents who were doctoral students or professors in psychology or anthropology,
including the daughter of the first author, and thus most respondents were experienced in
methods of behavioral data collection. Parents began keeping diary records before their infants
could perform any of the target skills, and ended participation several weeks after their infants
could walk independently. One family stopped participation abruptly when the infant was 9
months old because of a medical emergency. For the other 10 infants, length of participation
ranged from 10.94 to 17.00 months (M = 12.59 months). One additional family ceased
participation after only 3 months because the parents found it to be too grueling; data from this
infant were not included in the database.

Parents were trained to make daily entries into a 3-page, paper-and-pencil, checklist diary
containing 32 gross motor skills involving balance and locomotion, all of which could be
performed in a minimally structured environment (i.e., with a floor and furniture). Instruction
manuals accompanied parents’ diaries with detailed descriptions of the criteria for each skill
(see Appendix 1), and a reminder for how to fill out the diary. The diaries were similar to those
used by Bodnarchuk and Eaton (2004), who showed that parents’ reports were concordant with
home visit observations. Data were collected for 22 additional stair climbing and sliding skills,
but these were not included in the current study because they required access to special
equipment not readily available on a daily basis.

Parents noted whether they had observed infants perform each skill at any point over the course
of the day. The diaries provided space for additional written comments about observed skills
that did not quite match criteria. Such comments about the first two participants—the first
author’s daughter and the son of another psychology professor—provided useful information
for revising skill definitions and criteria. Only skills with uniform definitions and criteria were
included in the final data set. Parents entered a question mark for days when they could not
remember whether they had witnessed the skill or if they had forgotten to fill in their diaries.
Parents also noted days when infants did not have normal access to the floor or to furniture
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(due to long car trips, camping trips, infants’ illness, etc.) and thus were precluded from
performing various skills due to situational factors.

Diaries were distributed to parents each month and were organized to minimize errors in
parents’ reports. Skills were grouped roughly by postural systems and order of appearance
(sitting, prone/crawling, standing/cruising/walking). The first page of the diary contained
sitting and early prone skills, the second page contained crawling and upright skills, and the
third page contained stair climbing and sliding skills. More stringent criteria for specific skills
(e.g., “walking > 3 m”) followed more lenient criteria (“walking < 3 m”). Some of the skills
in our dataset were ordered hierarchically, where demonstrated facility for a stricter criterion
necessarily assumed facility under a more lenient criterion (noted by asterisks in Appendix 1).
For example, once a child can consistently walk 3 meters or more it is not necessary to also
record walking less than 3 meters. Therefore, after infants demonstrated facility for at least 30
consecutive days with the stricter criterion, the entries for the lenient criterion were assumed
to be present.

During monthly lab visits, researchers collected parents’ completed diaries from the previous
month, interviewed parents about diary entries (confirmed infants’ expression of new skills,
cessation of old skills, and question-mark and no-access days), and distributed a new diary for
the current month. The interviewer reminded parents about the criteria for the various skills
using verbal descriptions, physical demonstrations of the behaviors, and by directing them to
the relevant definitions in the instruction manual.

Missing Data
Because our aim was to assess effects of sampling interval on characterization of the underlying
developmental trajectories, it was especially important to maintain high confidence in the
integrity of the time series. Days that parents noted with question marks and days in which
infants had no access to the floor constituted missing data. Given that the aim of the study was
to detect variability, we adopted a conservative strategy for interpolating over missing data.
For each skill, a software program written in our laboratory searched for the first instance of
existing data prior to the day for which data were missing and replaced the missing data entry
with that notation. The assumption underlying the interpolation rule was that infants were likely
to have continued doing what they last did until otherwise noted. At most, two consecutive
days of missing data were reconstructed in this way. If a skill contained more than two
consecutive days of missing data or if missing data constituted 5% or more of all entries, the
time series was not used for further analyses.

Overall, each infant contributed 4-30 skills (M = 23.73 skills) for a total of 99,971 usable diary
entries in the final data set across infants and skills. Several factors caused the large range in
the number of skills that each infant contributed. For the first two infants in the sample, we
revised the definitions and criteria for several skills, and thus eliminated several time series
collected under earlier definitions and criteria. For other infants, some of the time series
included more than 5% missing data due to days noted with question marks, days when infants
did not have access to the floor, and in the case of one infant, a lost month of entries. Across
the sample, some infants never performed certain skills (e.g., never crawled > 3 m). Finally,
several time series were either cut short or were not performed by the infant who withdrew
from the study because of a medical emergency.

Manipulation of Sampling Frequency
The critical tests involved varying sampling frequency, then interpolating over the intervening
points. The actual daily data entries provided the smallest sampling interval. We wrote software
to simulate the effect of sampling at longer intervals by systematically selecting observation
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points at 2- to 31-day intervals for each skill reported by each parent in the data set. For example,
to simulate a 2-day sampling interval, the program selected every second data point; to simulate
a 3-day sampling interval, the program selected every third data point. After resampling,
removed days were replaced with interpolated values. The process continued for each of the
remaining sampling intervals until the least frequent sample at 31-day intervals. Therefore,
every simulated time series had the same number of days as the original.

When observation points are distributed in time, the specific day that each sample is collected
can vary (e.g., sampling at a 2-day interval could be initiated on the first available day that
measurements were collected and on all odd numbered days thereafter, or the sample could
begin on the second day of data collection and proceed on all even numbered days). Failure to
take phase into account would allow for random sampling effects to influence the overall
trajectory, particularly if performance of the skill is variable. For example, the singular
occurrence of a skill on Day 31, but not on surrounding days, would appear as a stage-like
transition a month earlier if sampling at 30-day intervals beginning on Day 1 (i.e., 1, 31, 61,
91...) compared to the same rate of sampling beginning on Day 2 (2, 32, 62, 92...). To allow
for random variation due to the phase of sampling, the final data set was exhaustive and included
all possible phases at each sampling interval (e.g., 30 phase sets were created for each skill
when sampling was conducted at 30-day intervals).

The resulting final data set included the original data collected daily, and data sets resulting
from sampling at 2-31 day intervals at all possible phases. After sampling each simulated series
of observations, the software program interpolated over missing values by filling in daily values
based on the last available observation point. Although it would have been possible to use an
alternative rule, such as retroactively filling in missing data according to the next available
data point, we adopted a conservative assumption that a binary function continues on the same
trajectory until a demonstrated instance of a change. Because each of the original time series
resulted in 495 additional sampled time series, the original data set of 261 (infant × skill) time
series yielded a final data set of 129,456 unique time series.

Results
Effects of Sampling Interval on Observed Trajectories

We assessed the effect of variations in sampling interval on the shape of the observed trajectory
by counting the number of transitions between absent and present for each time series. A single
transition would represent an abrupt step-like trajectory from absent to present, as exemplified
by infant 11 who began standing on one day and stood every day thereafter (see Figure 2A,
which is also depicted as the data point nearest the origin in Figure 3A). Alternatively, multiple
transitions would represent a variable trajectory between absent and present, as exemplified
by infant 7 who vacillated 21 times between standing and not-standing (see Figure 2B and top
data point in left-most panel of Figure 3A).

Of the 261 time series in the data set, only 15.7% showed single abrupt transitions (either onsets
alone or a single onset and offset) at a one-day sampling interval. For the remaining 84.3% of
time series, the daily diary data showed variable trajectories, ranging from 3 to 72 transitions
during the acquisition period (M = 13.37 for those time series showing variable trajectories).
Inspection of all time series revealed that variable trajectories were characteristic of all infants
and skills. Between 65% and 100% of the time series for each infant showed multiple
transitions, regardless of sex. Similarly, between 67% and 100% of the time series for each
skill (expressed by at least two infants) showed multiple transitions, regardless of the kind of
skill, the strictness of the criterion for judging skill occurrence, or the average age at which the
skill was expressed.
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The consequence of larger sampling intervals was to obscure the true shape of the
developmental trajectory. Across the 32 motor skills in the data set, sampling at the simulated
rate of once per week caused 51.2% of the 220 variable time series to show a single transition
from absent to present. At the simulated rate of once per month, 91.4% of the variable time
series appeared to involve a single, abrupt transition. Overall, with monthly sampling, 242
(92.7%) of the 261 time series appeared to follow step-like trajectories (compared to the 15.7%
based on daily samples), yielding a very different picture of developmental change from that
of the daily data.

How quickly did we lose the picture of developmental change? Given fewer observations at
larger sampling intervals, one would expect a general loss of sensitivity to detect variability.
In fact, sampling at progressively larger intervals carried a tremendous cost: Sensitivity to
detect variability in the time series declined dramatically each time we widened the sampling
interval by one day. Figure 3A illustrates this precipitous drop-off in sensitivity for each child
for one skill, standing (also represented in Figure 2). Of the 8 children depicted in the graph,
only one (infant 11) exhibited a step-like transition from absence to presence when standing
was indexed daily. By the time sampling approached 14-day intervals, however, the child with
21 transitions (infant 7) was indistinguishable from the child with a single transition.

The black curves in Figure 3B show that the dramatic decrease in sensitivity was evident for
all of the 32 skills in the data set. The gray curve in the figure shows the group average across
sampling intervals. Although infants averaged 11.74 transitions (SD = 10.48) in their actual
daily diaries across all 32 skills, sampling once per week yielded only 2.51 transitions (SD =
2.10), on average, and sampling once per month yielded only 1.20 transitions (SD = 0.83). The
drop-off in sensitivity is more evident in Figure 3C, which depicts these same data expressed
as a percentage of the number of transitions observed with daily sampling. As shown by the
concentration of trajectories in the lower left of the figure, for most time series, fewer than 1
in 4 transitions (25%) were detected when sampling at larger than one-week intervals.
Moreover, time series with frequent transitions were disproportionately mischaracterized. The
only trajectories that were depicted accurately at larger sampling intervals were the 41 time
series (15.7% of all time series) with only 1 abrupt transition from absent to present, shown
by the superimposed horizontal lines at 100%.

Each day that the sampling interval widened resulted in fewer transitions detected. To quantify
how quickly sensitivity to variability was lost, we fit a variety of mathematical functions to the
data shown in Figure 3B. The loss of sensitivity to detect transitions was best described by an
inverse power function, meaning that the rate of loss of sensitivity was greatest at the smallest
sampling intervals and declined as intervals grew larger. As shown in Figure 3D, most of the
R2 values exceeded 0.8 for power functions fit through the data for each of the 240 time series
with multiple transitions at each of the 31 possible phases.

Effects of Sampling Interval on Estimated Onset Ages
Developmental researchers rely on onset age—the earliest date at which children can
consistently and reliably express a particular motor or cognitive skill—as a primary index of
developmental progress. As the foregoing discussion of sampling intervals suggests, measuring
developmental change at long intervals is likely to result in greater error in identifying the onset
of skill performance than measuring at shorter intervals. We sought to quantify the expected
magnitude of error in estimating the onset ages by calculating the deviation between the date
determined by a particular sampling frequency and the date determined by daily sampling.

When sampling at 31-day intervals, each unique phase set provided a separate estimate of the
onset age, and thus a distribution of 31 different estimates of the error of measuring onset age
relative to daily samples. In addition to phase differences, if onset is determined by a criterion
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other than first day of expression, the specific pattern of days in which a skill occurs within a
variable trajectory can influence the age identified as the onset of stable performance. Because
most time series were variable, we sought to vary the particular sequence of days in which the
skill was expressed to obtain a larger and more robust set of time series. By creating variants
through a constrained randomization procedure, we provided more time series for analysis at
all sampling intervals, including short intervals that provided fewer estimates of onset age (e.g.,
sampling on alternate days provides only two estimates, one for each phase). In applying a
randomization procedure, however, it was important to constrain the procedure to local
sequences within the time series, thereby leaving the overall arc of the trajectory the same.

We used a Monte Carlo randomization procedure to introduce slight variations in the dates at
which skills were expressed. In a typical randomization procedure, the sequence of events in
the entire time series is shuffled, producing a random reordering of the data set (e.g., Johnson
et al., 1996; Kleven, Lane, & Robinson, 2004). Clearly, if the sequence of events in the original
time series were completely randomized, no developmental pattern could be discerned. To
preserve the overall developmental pattern while creating random variations in the daily events,
randomization was constrained to restrict the temporal range within which shuffling occurred.
A similar procedure was applied by Loreau (1989), who constrained randomization on a
seasonal basis to maintain biological realism in a model of annual activity cycles and ecological
competition.

To implement our randomization procedure, each binary time series, after simulated sampling
and interpolation, was parsed into a sequence of bins comprising 14 consecutive days. The size
of this bin (14 days) was selected after exploring alternative bin widths, and was chosen to
provide a diversity of permutations while introducing minimal error in the overall
developmental profiles. Within each bin, daily events were randomly resampled without
replacement, creating a sequential permutation of the original bin (Crowley, 1992). Although
the specific dates of occurrence were reordered within bins throughout the time series, the
sequence of 14-day bins was not modified. Thus, for a time series of daily samples spanning
a year, there would be 26 14-day bins and therefore (14!)26 possible permutations. We selected
25 randomly generated time series from this set of possible permutations for each unique phase
set for further analysis. This approach resulted in the creation of many alternative time series
that differed in the specific dates that skills were expressed, but which preserved the same
general developmental trajectory.

The 129,456 density x phase combinations and 25 randomization procedures applied at each
simulated sampling interval resulted in a total of 3,236,400 time series of skill performance.
For each of these time series, we applied an objective algorithm to identify the onset age based
on the earliest age at which the skill was consistently and reliably performed. Determination
of the onset age is straightforward when the underlying developmental trajectory is a step-
function because skill performance exhibits a single transition from absence to presence in the
infant’s repertoire (see Figure 2A). However, objectively defining skill onset is more
problematic when the skill is performed on one day and not on the next (see Figure 2B).

In determining onset age, one might simply report the first day on which the skill was observed.
In some developmental research, however, the first date of observation is not used as the
criterion for onset because a singular performance followed by weeks of no expression may
be interpreted as anomalous or unrepresentative of a stable ability. Other criteria (e.g., skill
must be expressed on three consecutive days) are also arbitrary and seem to lead to exceptions
and additional criteria requiring qualitative inspection of each time series. In lieu of these
options, and to provide an automated method of determining the onset of stable performance
of each skill that could be applied to three million time series, we applied an objective algorithm
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to summate over variable periods of skill expression until a criterion level of skill performance
was reached.

The algorithm we used to objectively determine the onset age consisted of an activation
function that summated across consecutive days of variable skill performance. Although
inspired by the rules of summation that generate action potentials in a neuron, this function did
not involve processing of the data with an artificial neural network, but acted more generally
as a smoothing function over periods of variable expression. The critical parameters of the
activation function were a decay rate (d), a criterion onset threshold (Ton), and a criterion
inactivity threshold (Toff). Activity accumulated or decayed in the function over successive
days following equation 1, where At is the accumulated activity at time t, E is the value of the
event at time t (1 = skill present, 0 = skill absent), and d is decay rate, which specifies the
amount of activity that carries over from one day to the next.

(1)

With this simple smoothing rule, each day that a skill was performed added activity to the
function (much like a small synaptic potential contributes to the net depolarization of a neuron),
but activity decayed from one day to the next. When the skill was performed over consecutive
days, the function approximated a logarithmic function and activity summated toward an
asymptote that represented consistent and reliable performance. Over a span of days when the
skill was not performed, activity decayed toward zero as a negative exponential function. When
the cumulative activity, as determined by the particular pattern of skill expression over
successive days, exceeded the criterion onset threshold (Ton), the skill was considered stable
and the onset age was determined by tracing the rising slope of activity back to the preceding
minimum below the inactivity threshold (Toff, see Figure 4A). In practice, this algorithm
identified the first day a skill was expressed in cases where there was a single step-like transition
from one day to the next, and it consistently identified a date between the first day a skill was
expressed and the asymptote in trajectories with periods of variable expression.

We systematically explored the effects of varying different parameters in this function with a
subset of the data to maximize the number of time series for which an objective onset age could
be determined. To confirm the validity of this function, all four authors visually examined
representative graphs of the time series to identify an age by consensus for the onset of stable
and consistent performance. The subset of time series included skills that exhibited sudden
onset from one day to the next, and skills that showed protracted periods of intermittent
expression before skills were consistently expressed. Parameters of the activation function then
were adjusted to identify the same ages in the exemplar trajectories. For the results reported
below, we used a decay rate of 0.8, an upper onset threshold of 75% of asymptote, and a lower
inactivity threshold of 10% of asymptote as optimal for identifying onset ages across all types
of trajectories. With these settings, we identified onset ages for 3,045,764 time series (94.1%).
In most instances, failure to identify an onset age by these objective criteria was due to the
infrequent expression of the skill (on five or fewer days) in the time series (and thus, insufficient
activity accumulated to exceed the onset threshold).

For each child and each skill, we used the activation function to identify an onset age from the
original daily diary data. Then, we compared the original onset ages with estimated onset ages
for all of the other time series generated by the randomization procedure at each of the simulated
sampling intervals and phases. Figure 4B shows a series of histograms charting the distributions
of error estimates for one representative skill, standing, in all 8 of the infants for whom we had
useable data. As revealed by reading down the column of histograms, the magnitude of error
increased systematically with larger sampling intervals. As sampling interval increased, the
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distributions progressively shifted to the right, reflecting delays in identifying onset. At the
most extreme, the estimated onset age was delayed by 55 days.

The pattern of increasing error exemplified by standing was characteristic across the entire
data set (Figure 4C). With daily sampling, the magnitude of error introduced by the Monte
Carlo randomization procedure averaged 4.31 days (SD = 1.97) across infants and skills. In
other words, constraining our randomization of skill sequences within 14-day bins resulted in
relatively small variations in onset age. However, with progressively longer sampling intervals,
the average magnitude and range of error in estimating onset ages increased sharply. For
example, sampling at weekly intervals resulted in a mean absolute error of 6.31 days (SD =
4.43), and absolute errors >14 days occurred in 7.7% of estimated onset ages. (Errors larger
than about 14 days can seriously compromise theorizing about motor skills.) Sampling at 20
day intervals resulted in a mean absolute error of 11.06 days (SD = 7.74), and absolute errors
> 14 days in 21.4% of estimates. At a 30-day sampling interval, the mean absolute error
compared to daily samples was 15.06 days (SD = 9.86), and absolute errors > 14 days
constituted 37.5% of estimates. At the most extreme, the estimate of onset age differed from
the actual onset age calculated from daily sampling by 109 days.

Moreover, errors were not distributed symmetrically around the daily estimates of skill onset;
most errors were greater than 0, indicating a delayed estimate of the onset age. Sampling at
longer intervals resulted in estimates that were increasingly delayed. When sampled at 2-day
intervals, 19.5% of estimates were delayed relative to the actual onset age, compared with
20.1% occurring earlier and 60.4% on the correct date. Sampling at weekly intervals resulted
in 34.3% of all estimates occurring later than the actual onset age. At 30-day sampling intervals,
delay errors increased to 59.0% of all estimates. For all skills, acceleration errors did not change
across sampling intervals. But delay errors increased with longer sampling intervals: The rate
of increase followed a power function, R2 = 0.96.

Discussion
A fundamental goal of developmental science is to understand change processes. To achieve
this goal, researchers need accurate pictures of the shape of change, and such pictures require
repeated observations. Most developmental researchers, however, do not conduct longitudinal
and microgenetic studies because repeated observations are difficult and expensive to collect.
The problem is compounded because overly large sampling intervals distort depictions of
developmental change by obscuring important fluctuations in the data: Trajectories charted
with binary data will appear more abrupt than they really are, and trajectories charted with
interval or ratio data will smooth over important irregularities such as regressions and sudden
changes in the rate of change.

The present study addressed the problem of selecting sampling intervals for developmental
data by assessing the empirical costs of sampling at progressively larger intervals. The aim
was not merely to confirm the loss of detail with coarser sampling, but to determine how quickly
depictions of development may be altered by sampling data at the rates typically used by
developmental researchers. We compiled an illustrative dataset of 32 infant motor skills, and
sampled daily to provide a fine-grained depiction of developmental change. We used real,
rather than hypothetical data to ensure that our sampling regimes incorporated actual patterns
of variability into depictions of the shape of developmental change. Most skills showed a period
of variability (vacillating between occurrence and absence) before acquiring a stable period of
daily expression. When we simulated sampling at longer intervals (2-31 days), the picture of
a variable acquisition period was quickly lost, so that skills with variable trajectories showed
a single, step-like transition. Other critical aspects of the trajectories were also distorted: Most
skills showed large delays in estimating onset ages.
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Daily Changes in Infant Motor Skill Acquisition
A surprising finding that emerged from analyses of the original, daily time series was the large
number of transitions preceding stable performance. The widespread practice of using point-
onset dates for motor skills (e.g., Adolph, et al., 2003; Campos et al., 2000; Frankenburg &
Dodds, 1967) presupposes that most skills appear suddenly and are consistently expressed
thereafter. However, in the current study, a variable acquisition period characterized most skills
for every infant across the entire age range. For example, infants averaged 14.57 transitions
(SD = 4.96) for standing, as illustrated in Figure 2, and 13.37 transitions across all skills (SD
= 10.35). Is it really possible that infants vacillate between occurrence and absence of a skill
on a day-to-day basis? Perhaps the variability is just noise and is not developmentally
significant.

Several factors lend assurance that the diary reports were reliable indicators of daily
performance. First, the parents were a select group of observers. Eight infants had parents who
were professors or doctoral students, and who conducted behavioral research of their own. In
addition, parents were carefully trained on the criteria for each skill, and understood the
importance of noting question-mark days when they had insufficient data to mark a skill present
or absent. Most parents spontaneously annotated their diaries when infants’ performance did
not meet criterion (e.g., number of crawling steps, seconds of independent sitting), suggesting
that they took the criteria seriously, and were eagerly waiting for performance to reach
threshold. A second factor that inspires confidence in the daily data is a reliability study: A
less select group of 95 parents provided reliable reports of sitting, crawling, standing, and
walking skills using a daily checklist diary designed after the one used here (Bodnarchuk &
Eaton, 2004). Home visits by experimenters blinded to the diary entries yielded concordant
data for 11 of 12 measures. A third factor concerns the directional bias of parents’ errors. If
parents did err, the most likely errors were false positives. That is, observing infants pass
criterion on one day may have biased parents to produce “present” responses on the following
days. False positives, however, would produce fewer transitions in the time series for any skill,
suggesting that the number of transitions reported here are, if anything, an underestimate of
the true day-to-day variability.

Why then might infants have failed to express sitting, crawling, walking or other basic motor
patterns after demonstrating the ability to do so? Variable acquisition periods cannot be
attributed to a lack of opportunity. We only analyzed skills that could be performed in a normal
home environment (with floor, furniture, etc.), and that did not require special equipment or
resources (e.g., stairs). Moreover, we eliminated days when the family situation precluded
access to the floor (traveling, illness, etc.). Variable acquisition periods also cannot be
explained as an artifact of low base-rate levels of performance. Nearly all (94%) of the 261
time series eventually reached a stable pattern of daily performance, suggesting that infants
were highly motivated to perform the indexed skills.

A remaining possibility is that variable acquisition periods reflect a biological reality: As
infants acquire new motor skills, they perform close to the limits of their abilities, much like
athletes struggling to meet their personal best during competition. In early periods of skill
acquisition, infants’ peak skill level is far below the criterion level, and on a binary scale, the
skill is considered absent. At later periods, as infants’ abilities hover around the criterion
threshold, their top level of performance exceeds criterion on some days, but not others,
resulting in variable trajectories. Eventually, infants’ peak skill level comfortably surpasses
threshold, and skills are expressed on a consistent, daily basis. To achieve a more stringent
criterion for the same skill (e.g., walks > 3 m versus walks < 3 m), infants must acquire a still
higher level of peak performance.
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This “peak performance” interpretation implies that at least for gross motor skills, over the first
year and a half of life, infants continually push the envelope of possibility by attempting actions
that they haven’t quite mastered. Like Vygotsky’s (1978) concept of a “zone of proximal
development,” day-to-day variability in motor skill performance may reflect periods of
development when infants are operating close to their limits; they are most disrupted by
perturbations, and can benefit most from external support. This account also accords with
previous proposals that motor skills are more unstable and sensitive to context when they first
appear in infants’ repertoires (Thelen, Fisher, & Ridley-Johnson, 1984; Robinson &
Smotherman, 1992; Garciaguirre, Adolph, & Shrout, 2007). As infants’ peak abilities expand,
performance improves, and skills are expressed for longer durations and under more variable
and challenging circumstances.

A question that arises about daily variation in infants’ motor skills is whether even smaller
sampling intervals would have revealed something additional. As in the example of physical
growth, where episodic growth across days encompassed episodic growth across minutes, like
a set of nested Russian dolls, smaller, meaningful units of motor action are nested within daily
samples. For example, nested within the stuttering day-to-day trajectory of performance in
crawling and walking, infants also show a variable trajectory in their expression of locomotion.
On the scale of minutes and seconds, infants vacillate between short bouts of locomotion and
longer periods of rest (Adolph, Badaly, Garciaguirre, & Sosky, 2008; Badaly & Adolph,
2008; Chan, Lu, Marin, & Adolph, 1999). Variable expression from step to step produces a
temporally distributed and spatially variable practice regimen that is most effective in
promoting motor learning (Adolph & Berger, 2006). The intervening rest periods provide time
to consolidate effects of practice and to renew infants’ motivation. Thus, intermittent rest
periods may be especially important when infants must operate at peak performance simply to
execute crawling or walking steps.

These theoretical speculations about variable acquisition periods, however, depend on the
characterization of the developmental trajectory. Without evidence for variable acquisition
periods, the foregoing discussion of theoretical implications for motor skill acquisition would
be moot. And without sampling at a rate that renders the same picture as the daily data, there
would be no evidence for variable acquisition periods. Instead, we would be constructing an
account to explain step-like transitions in the development of motor skills. A similar dilemma
is posed for sampling development in other domains.

Empirical and Theoretical Costs of Sampling Decisions
Given the long history of microgenetic research (Vygotsky, 1978), methodologists’
exhortations to select sampling intervals for reasons other than convenience, tradition, or
intuition (Wohlwill, 1970, 1973), and formal demonstrations that long sampling intervals can
compromise conclusions about development (Boker & Nesselroade, 2002; Collins, 2006), one
might expect that developmental research would reflect the same care in choice of sampling
regime as in experimental design. Unfortunately, it does not. The general principle that we
must take sampling interval seriously in designing developmental studies is not reflected in
current practice.

Possibly, general awareness about sampling on a developmental time scale has not yet filtered
down to the rank and file. As Collins and Graham (2002) commented, a similar situation
prevailed 40 years ago for the use of power analyses to determine sample size: Originally,
power was a concept that statisticians worried about, but it was not widely applied in actual
research settings. Now researchers routinely use power analyses to design their experiments
as they balance the practical demands of minimizing sample size while avoiding the empirical
and theoretical pitfalls of type two errors.
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How quickly we lose the picture of developmental change—How seriously must
developmental researchers consider the problem of selecting a sampling interval? In previous
studies of infant motor skill acquisition that are touted in the literature as heroic examples of
microgenetic research, observations were collected at weekly or monthly intervals, two of the
larger intervals among our simulated sampling frequencies (Adolph, 1997; Corbetta &
Bojczyk, 2002; Thelen et al., 1993; Thelen & Ulrich, 1991; Vereijken & Thelen, 1997). In the
current study, daily sampling revealed that 84% of time series exhibited a variable pattern of
emergence. When we simulated sampling infants’ daily motor performance at larger intervals,
the picture of day-to-day variability was quickly lost. When sampled once per week, fewer
than half of these time series appeared variable, and when sampled monthly, only 9% appeared
variable. In other words, sampling motor skills once a month caused 75% of the developmental
trajectories to erroneously look abrupt and step-like, thus characterizing 93% of the entire time
series with step-like trajectories. It should come as no surprise then that researchers typically
consider the first appearance of motor skills to be the onset of a stable period of expression.

The shape of developmental change was not just distorted at the largest sampling intervals.
Relatively small increases in interval length resulted in unexpectedly large decrements in
sensitivity to variability. In fact, an inverse power function accurately described the rate of loss
of sensitivity in portraying actual developmental trajectories. These findings indicate that, in
the realm of motor development, the ability to detect variable developmental trajectories drops
off extremely rapidly at sampling intervals longer than 2 to 3 days. It is the rapidity of this
drop-off in sensitivity that is counter-intuitive, not the fact that infrequent sampling generally
reduces precision.

A second aspect of developmental profiles that was significantly affected by different sampling
rates was estimates of onset ages. Increasingly large sampling intervals caused an increased
rate of errors in estimating the earliest age of stable expression for motor skills. With one-
month sampling intervals, the average absolute error was 15 days, and 59% of errors were
biased toward delays. In areas such as infant motor development and language acquisition
where skills appear and disappear in relatively quick succession, errors of this magnitude are
likely to have serious consequences for both theory and application in studies of development.
Erroneous onset ages carry concomitant costs for estimating durations of experience (e.g., how
long a child has been walking or talking), developmental sequences (e.g., the ordering of motor
and linguistic events), and the duration of stable periods (e.g., telegraphic speech, over-
regularization of verb tense).

Risks of over-sampling—Of course, frequent sampling also carries potential costs. As
others have pointed out (Cohen, 1991; McCartney, Burchinal, & Bub, 2006), substantial
practical costs can be incurred by dense sampling. Collection of behavioral data, particularly
in experimental settings, often entails considerable time, effort, and expense that may present
logistical difficulties. Frequent sampling may have adverse effects on subject recruitment and
attrition because demands on participation can be considerable and onerous. Repeated testing
can alter participants’ responses to the experimental condition, although this problem can be
addressed explicitly by including a control group sampled less frequently. Dense sampling
over a long period exacerbates problems of data management and methods for summarizing
and analyzing data.

But does over-sampling carry the risk of misrepresenting developmental trajectories, thereby
causing researchers to misinterpret the research findings? Many time-based phenomena are
evident only when assessed on the appropriate time scale. For example, it might be difficult to
discern a 24-hr circadian rhythm while viewing an activity record plotted on a time scale of
seconds, or to detect the day-to-day variability in infants’ acquisition of crawling and walking
over a trajectory that included the bout-rest periods of locomotion on a time scale of seconds.
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More generally, researchers might fail to detect a developmentally significant pattern on a
larger time scale that is obscured by abundant low-level variability or noise in a densely
sampled time series.

The interpretive problem, however, arises solely from failure to adequately summarize data
obtained from dense sampling. There are no intrinsic interpretational problems that arise from
sampling frequently, because any time series can be resampled at a reduced rate or smoothed
to faithfully represent patterns at a lower grain of resolution. In fact, researchers routinely over-
sample physiological and movement data and then apply various smoothing functions to reduce
noise and to detect underlying patterns in the data. In other words, researchers can recover the
developmental pattern from over-sampled data, but the converse is not true: Researchers cannot
recover the developmental pattern from data sampled with overly large intervals.

Moreover, as illustrated by the findings in the present study, variable developmental trajectories
are not an inevitable consequence of high sampling rates. Although we found that infant motor
development is most often characterized by variable trajectories, the data also demonstrated
that 15.7% of the daily time series showed a sudden, step-like transition, with the skill appearing
from one day to the next. Contrary to the notion that high sampling rates might create the false
impression of variability, only with sufficiently frequent sampling is it possible to refute the
possibility that a developmental trajectory is variable, and that a step-function is a more
accurate depiction of the underlying pattern. This fact is well appreciated by evolutionary
scientists, who acknowledge the need for much finer resolution in the fossil record, on a
geological time scale, to distinguish between competing theories of evolutionary change, such
as gradualism versus punctuated equilibrium (Gould & Eldredge, 1993; Gingerich, 2001).

Beyond binary data—Can conclusions regarding the effects of sampling interval generalize
beyond the specifics of the dataset reported here? Sitting, standing, walking, and so on were
scored as binary data (either present or absent over the course of each day), and all skills reached
a level of stable, daily performance. Likewise, skills in other domains can be expected to attain
stable, daily performance (e.g., correct production of words, learning the multiplication tables).
Skills such as crawling, and cruising (and in other domains, weaning from breastfeeding, the
ability to distinguish speech sounds outside the native language, etc.) also attain stable offset
periods, where children never produce them again. But what of skills scored as a binary process
with base rates between 0 and 1? Symbolic play, for example, might achieve a stable base rate
during the preschool years between 0.8 and 1, and professional hitting averages in baseball
only rise to the neighborhood of 0.2 to 0.3. Going in the other direction, crying begins at 1 for
newborns, but thankfully decreases to a base rate closer to 0. How does a base rate less than 1
(and for offsets, a base rate greater than 0) affect the optimal selection of sampling interval?

A simple Markov switching model can help to clarify the issue of generalization to skills with
intermediate base rates. Even a high base rate will result in some days when the skill is not
expressed. Figure 5 provides an illustration. The black curves represent data from three
hypothetical time series; the gray curves represent a 15-day moving average that smoothes
over the same data. Suppose that the developmental trajectory involves a step-like switch from
an early period of absence (pE = 0) to a later period of probabilistic occurrence (pL < 1.0). For
instance, as shown in Figure 5A, a sudden, step-like shift from absence to a 0.95 probability
of daily expression would result in an average of five days when the skill was not expressed,
and 11 concomitant transitions (between absence and presence, and vice versa) within a 100-
day period that actually represents the stable base rate of the skill. Under these conditions,
sampling on a daily basis would reveal occasional transitions in the stable base rate, which
might be misidentified as a variable period of acquisition. In such a situation, it might seem
preferable to sample less frequently, say, once a week or once a month, to reduce the chance
of erroneously attributing transitions to a variable acquisition period rather than to a stable,
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more mature period with a base rate < 1. Obviously, if fewer samples are collected, fewer false
transitions would be detected.

However, a reduced sampling rate would not provide a more accurate measure of the
developmental profile. Instead, it would fail to identify the correct onset age in a step-like
trajectory, and it would decrease the estimate of the number of transitions during the acquisition
period for time series with variable trajectories. In contrast, for step-like trajectories, dense
sampling would pinpoint the onset age. For variable trajectories, dense sampling would allow
researchers to distinguish a variable acquisition period from a post-acquisition period with a
stable base rate < 1, using the difference in the number of transitions (or some other measure
of variability, as revealed by a smoothing function) as an index.

For example, Figure 5B presents the same two-state model (pE and pL) as in 5A, but now
separated by a 60-day window (representing a variable acquisition period) in which the
underlying process randomly shifts between pE and pL. If pL is high (pL > .8), then the number
of transitions detected by daily sampling will be greater during the variable acquisition period
than during the later period of stable expression. But, as shown in Figure 5C, if pL is low (pL
< .5), then the number of transitions during the variable acquisition period will be less than the
number observed after the onset of stable expression. In both cases, a simple smoothing
function can reveal differences in the level of expression during the variable acquisition and
stable periods. Thus, the difference in the number of transitions over the entire time series
provides a clue as to whether the change from absence to stable expression is step-like or
variable. Even though the absolute number of transitions can be inflated during acquisition for
skills with base rates < 1, only dense sampling can reveal differences in the rate of expression
when expression of the skill is probabilistic.

Recording skills with greater precision does not alleviate the need for dense sampling to
characterize the developmental trajectory. The findings regarding sampling intervals should
also generalize from the binary data presented here to more precise levels of measurement
(ordinal, interval, and ratio scales). Ordinal data, for instance, present much the same problem
as binary data for dealing with variable trajectories. On an ordinal scale, sampling less
frequently would pose the risk of missing periods of vacillation between higher and lower
levels of performance, periods of inconsistent fluctuation between several levels, periods of
consistent expression at intermediate levels, or wholesale reversals in levels of performance.

Similarly, when skills are indexed with interval or ratio data, infrequent sampling over
development can lead to decreased sensitivity to detect periods of stability and instability (in
single observations, means, and measures of variability such as the coefficient of variation).
Interval and ratio data are conducive to interpolation and curve-fitting that smooth over
variations in the developmental trajectory, so that researchers may fail to detect brief episodes
of improvement (as in the case of physical growth) or decrement, interruptions in the expression
of skills, spikes in activity, accelerations (e.g., the vocabulary explosion) and decelerations, or
other changes in rate that are evident only when sampling on a finer time scale. Moreover,
because sensitivity to random sampling error is greater with larger sampling intervals,
estimation of onset ages based on achievement of a criterion level of performance, as measured
with ordinal or interval data, also would be subject to the same types of errors that we have
described for binary data.

Theoretical consequences—Developmental trajectories provide more than empirical
summaries of change over time: Historically, evidence that cognitive, perceptual, social, or
motor skills exhibit particular developmental trajectories (step-like, variable, linear, episodic,
U-shaped, etc.) has stimulated some of the most important theories in developmental
psychology. The concept of developmental stages illustrates the profound influence of
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empirical claims about developmental trajectories on theoretical work about developmental
change. Stage theories have enjoyed a long and influential history in developmental psychology
(e.g., Baltes, Reese, & Nesselroade, 1977; Brainerd, 1978; Piaget, 1954). Although the concept
of developmental stages encompasses qualitative changes, hierarchical reorganizations,
universal sequences, and so on (Fischer & Silvern, 1985), typically, a central feature of stage
theories involves the timing of development—extended, stable periods interrupted by shorter
periods of developmental change. Rapid, stage-like transitions from one stable pattern of
performance to the next are characteristic of phenomena ranging from moment-to-moment
fluctuations in sleep and waking states in rat pups (Blumberg, Seelke, Lowen, & Karlsson,
2005) to patterns of change on an evolutionary time scale (Gould & Eldredge, 1993).

Considerable effort has been devoted to constructing formal models that can account for abrupt
transitions between developmental stages. For example, theoretical accounts of stage-like
cognitive development include simulations using connectionist models (McClelland, 1989)
and rule-based approaches (Siegler, 1976), and mathematical models based on catastrophe
theory (van der Maas & Molenaar, 1992), dynamic systems theory (Thelen & Smith, 1994),
and other mathematical frameworks (van Rijn, van Someren, & van der Maas, 2003). For
instance, according to catastrophe theory and dynamic systems theory, enhanced variability is
a hallmark of transitions between stable attractors (Kelso, 1995; Thelen & Smith, 1994) such
as successive stages (Raijmakers & Molenaar, 2004). Thus, accurate assessment of the amount
and timing of variability is critical for empirically evaluating such models of cognitive
development.

The present study suggests that researchers’ ability to accurately characterize variable and step-
like trajectories in development is profoundly affected by sampling rate, and either trajectory
may be inferred erroneously as an artifact of inadequate sampling. Models of developmental
change become moot if the empirical evidence cannot distinguish among alternative
trajectories. That is, without an appropriate sampling interval, researchers would not be able
to detect a sufficient amount of variability to distinguish between punctate onset dates
(Wimmers et al., 1998), instability around times of transitions (Kelso, 1995), expression of
partial knowledge (Munakata, McClelland, Johnson, & Siegler, 1997), or other patterns of skill
onset.

Sampling Development
How can developmental researchers avoid the pitfalls of under-sampling? Unfortunately,
formal principles such as the Nyquist theorem are not applicable to developmental time series
because developmental trajectories can assume many different shapes, few of which are
periodic or conform strictly to mathematical functions. Instead, sampling rates must be
determined empirically based on the questions being addressed and developmental processes
being studied. Building on previous work (Siegler, 2006; Thelen & Ulrich, 1991), the present
study suggests some precepts to guide the empirical enterprise of identifying optimal sampling
rates to accurately capture the shape of developmental change.

(1). Determine the base rate—In most cases, skills of interest to developmental
psychologists eventually reach a level of stable, consistent performance. Estimating the typical
rate at which the skill is expressed is important in planning how to sample the acquisition period
and/or the more mature, stable period. For skills with stable periods of occurrence (or stable
periods of absence in the case of skills that disappear from children’s repertoires), determining
the base rate of occurrence will depend on the number of observations collected, not on the
rate of sampling. If the base rate is less than 1, applying a smoothing function may be useful
in determining an average rate of occurrence (see Figure 5).
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(2). Find the acquisition period—For most kinds of skills, researchers are likely to initiate
a study with some knowledge of the time frame encompassing significant development. Some
aspects of children’s behavior emerge over a span of weeks; other aspects may require years.
A preliminary investigation with economical sampling (at monthly intervals or longer) may
be useful to identify the approximate age range for the acquisition period, and thereby narrow
the span of time requiring more detailed examination. Note that the initial characterization of
the developmental trajectory from the preliminary study is unlikely to reveal a detailed and
accurate picture of the shape of developmental change, but may be necessary in planning more
detailed sampling in future efforts.

(3). Sample as small as you can—If the objective is to accurately portray the shape of a
developmental process, it is crucial to sample data at the minimum, practicable interval,
especially over the ages spanning the acquisition period. Researchers should consider the
default rate for most kinds of child behavior to be daily sampling: absence or presence over
the course of the day for skills indexed with binary data; highest level attained over the course
of the day for skills indexed with ordinal data; and a summary score such as the mean, sum,
or coefficient of variation over the course of the day for skills indexed with interval or ratio
data. One reason to consider daily sampling a privileged sampling interval is that it reflects the
nearly ubiquitous influence of 24-hour circadian rhythms on human psychological functions.
Skills expressed each day are interrupted by sleep each night, during which the day’s activities
and experiences may be absent, suppressed, forgotten, or consolidated (e.g., Stickgold,
2005). A second reason to consider daily sampling privileged is that the present study and
others (e.g., Ganger and Brent’s study of the vocabulary explosion and Lampl and colleagues’
work on physical growth) serve as demonstration proofs of important day-to-day changes in
multiple domains of development. Sampling less frequently than every day risks losing the
shape of those trajectories. Sampling multiple times each day may provide additional or
converging insights into development, as in the cases of infant walking and physical growth.
However, multiple samples per day also introduce variability that may not be meaningful
because circadian rhythms affect patterns of performance by changing children’s behavioral
state, motivation, and opportunity for performance.

(4). Look before the onset—To satisfy the objective of describing the entire trajectory,
especially the shape of the acquisition period, researchers will need to focus attention on the
ages when the skill is first expressed. A preliminary investigation using coarse sampling should
be useful for obtaining an initial estimate of an onset age, but as the findings of the present
study show, estimates of onset ages based on infrequent sampling are likely to produce large
delay errors, and such errors increase with larger sampling intervals. In trajectories based on
monthly samples, for example, estimates of onset age are three times more likely to occur after
the actual onset age. Therefore, the earliest expression of the skill is likely to occur before the
earliest onset age identified by relatively infrequent sampling. As a consequence, more dense
sampling efforts should include ages prior to the crude estimate of onset.

5. Look for changes in variability—For skills indexed by binary data, trajectories may
be step-like or variable. The latter will show fluctuations prior to attaining a stable level of
performance. If the base rate of occurrence is high but < 1 during the period of stable
performance (> .8), then a variable acquisition period will likely consist of an increased number
of transitions. In contrast, if the base rate is low (< .5), then a variable acquisition period should
show a lower number of transitions relative to the later period of stability. As shown in Figure
5B-C, application of a simple moving average or similar smoothing procedure can reveal
periods of enhanced variability regardless of the base rate. After smoothing, variable periods
appear as a lower rate of occurrence relative to later ages. Thus, smoothing techniques can be
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useful in demarcating changes in the level of variability of performance, which can help
researchers to verify that they have distinguished the acquisition and stable periods.

Concluding Remarks
Historically, much of developmental research has resembled the old saw about the man who
lost his keys in a dark alley and turned his attention to searching for them on the street, “where
the light was much better.” Understanding child development has benefited from descriptions
of age-related differences and demonstrations of the surprising abilities of infants. But
understanding the process of developmental change requires more. It requires solid empirical
foundations built upon accurate depictions of change over time. The implications of our
analysis of sampling intervals would appear to offer a bleak view of methodological difficulties,
even greater than those already recognized by researchers engaged in longitudinal and
microgenetic research. The payoff for dealing with the thorny methodological difficulties of
sampling rate is that accurate descriptions of developmental trajectories will be instrumental
to advancing theories of development. It is simply necessary for understanding the shape of
developmental change.

Appendix 1. Skills Analyzed from Daily Diaries

Skill Description

Sits (propped on hands) Sits on floor for ≥ 30 s, with legs outstretched, using hands for support.
*Sits (hands free) Sits on floor for ≥ 30 s, with legs outstretched, without using hands for support.

Sitting to prone Shifts from sitting position with legs outstretched to prone position.

Prone to sitting Shifts from prone or crawling position into sitting position with legs outstretched.

Kneel to stand (holding) Shifts from kneeling, sitting, or crawling position to standing position by holding onto furniture to pull
body upright.

*Squat to stand (hands free) Shifts from kneeling, sitting, or crawling position into a squat, and then stands up without pulling upright
on furniture.

Stands (holding) Balances upright for ≥ 3 s by holding onto furniture for support.
*Stands (hands free) Balances upright for ≥ 3 s without holding onto furniture for support.

Stand to sit (holding) Shifts from upright to sitting position while holding onto furniture for support.
*Stand to sit (hands free) Shifts from upright to sitting position without holding onto furniture for support.

Rolls front to back Shifts from lying prone to lying supine.

Rolls back to front Shifts from lying supine to lying prone.

Torso raised (propped on arms) Pushes head and chest off floor by propping on forearms or hands while lying prone.
*Torso raised (1 arm free) Pushes head and chest off floor by propping on 1 arm and using the other hand or arm to reach or manipulate

objects.

Rocks on hands and knees Rocks ≥ 2 oscillations while balanced on hands and knees.

Turns 180° prone Pivots in place ≥ 180° while on belly or hands and knees.

Crawls belly (< 3 m) Crawls forward < 3 m, before stopping, with belly resting on floor for duration of each crawling cycle.
*Crawls belly (≥ 3 m) Crawls forward ≥ 3 m without stopping, with belly resting on floor for duration of each crawling cycle.

Crawls intermittent belly (< 3 m) Crawls forward < 3 m, before stopping, with belly alternately raised in air and resting on floor during each
crawling cycle.

*Crawls intermittent belly (≥ 3 m) Crawls forward ≥ 3 m without stopping, with belly alternately raised in air and resting on floor during each
crawling cycle.

Crawls hands and knees (< 3 m) Crawls forward < 3 m, before stopping, balancing on hands and knees for duration of each crawling cycle.
*Crawls hands and knees (≥ 3 m) Crawls forward ≥ 3 m without stopping, balancing on hands and knees for duration of each crawling cycle.
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Skill Description

Crawls hands and feet (< 3 m) Crawls forward < 3 m, before stopping, balancing on hands and feet for duration of each crawling cycle.
*Crawls hands and feet (≥ 3 m) Crawls forward ≥ 3 m without stopping, balancing on hands and feet for duration of each crawling cycle.

Cruises 2 hands (< 3 steps) Takes < 3 upright steps, torso sideways, holding onto furniture for support with both hands.
*Cruises 2 hands (≥ 3 steps) Takes ≥ 3 upright steps, torso sideways, holding onto furniture for support with both hands.

Cruises 1 hand (< 3 steps) Takes < 3 upright steps, torso frontward, holding onto furniture for support with 1 hand.
*Cruises 1 hand (≥ 3 steps) Takes ≥ 3 upright steps, torso frontward, holding onto furniture for support with 1 hand.

Walks supported (2 hands held) Walks with both hands held by caregiver, supporting own weight.
*Walks supported (1 hand held) Walks with 1 hand held by caregiver, supporting own weight.

Walks (< 3 m) Walks independently < 3 m.
*Walks (≥ 3 m) Walks independently ≥ 3 m.

*
Denotes skill with stricter definition than preceding skill.
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Figure 1.
Idealized shapes of developmental change, with age shown on the X-axis and an index of
behavioral expression or level of performance on the Y-axis. (a) Linear, (b) Accelerating, (c)
Asymptotic, (d) Step-like, (e) S-shaped, (f), Variable, (g) Unsystematic, (h) Stair-climbing, (i)
U-shaped, (j) Inverted-U-shaped.
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Figure 2.
Examples of developmental trajectories derived from daily data (black curves) for standing
(balancing upright for ≥ 3s without holding a support) in two infants. (a) Trajectory that exhibits
abrupt step-function from absent to present from one day to the next. Simulated monthly
sampling (gray curve) results in an error in identifying the skill onset age, but does not distort
the shape of the trajectory. (b) Variable trajectory, where skill vacillated 21 times between
absent and present over the course of several weeks. Simulated monthly sampling (gray curve)
misrepresents both the shape of the variable trajectory and the estimated onset age.
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Figure 3.
Effects of sampling interval on sensitivity to variability in developmental trajectories. (a) The
number of observed transitions between absence and presence for one skill (standing). Each
curve represents data for one of the 8 infants for whom we had a complete time series. Open
symbols depict data when the skill was sampled daily; lines show data averaged across all
possible phases at each of the 1- to 31-day sampling intervals. Note that the data point nearest
the origin represents the stage-like data from infant #11, shown in Figure 2A. The other 7 data
points show data for variable trajectories from other infants, including the top data point
depicting infant #7, shown in Figure 2B. (b) Number of observed transitions, presented as in
Figure 3A, for all 32 skills. The thick gray line represents the mean trajectory across all 261
time series. (c) The same data presented in Figure 3B expressed as a percentage of observed
transitions recorded at daily intervals. The horizontal line at 100% represents the 41 time series
with only 1 abrupt transition from absent to present (15.7% of all time series). Most time series
consisted of variable trajectories when measured daily, but more than 75% of transitions were
not detected when sampled at weekly intervals. (d) Distribution of R2 values for inverse power
functions fit to each of the 240 time series with multiple transitions. Most time series were best
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described by an inverse power function, indicating that modest increase in small sampling
intervals (< 1 week) resulted in a sharp decline in the ability to detect transitions.
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Figure 4.
Effects of sampling interval on estimates of onset ages. (a) Neurally-inspired activation
function and resulting estimate of the onset age applied to the daily data shown in Figure 1B
for standing in infant #7. The onset age is determined by identifying the first instance of activity
that exceeds a criterion threshold, then tracing the function back to the preceding period of
inactivity. In this case, the function identifies an onset age at 501 days (shown as vertical dashed
line). (b) Histograms showing errors in estimates of the onset age for one skill, standing, in all
8 of the infants for whom time series were available. Y-axis is expressed as a percentage of
total estimates. Note that larger sampling intervals result in a greater range of errors, a general
increase in the magnitude of errors, and a tendency for errors to be shifted toward later ages.
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(c) Number of days that estimates of onset ages deviated, either earlier or later, from estimates
derived from daily sampling. Data are presented for all available skills for each child (261 time
series) as a function of the sampling interval; the superimposed gray line shows the mean
absolute error resulting from sampling at different intervals.
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Figure 5.
Simulated developmental trajectories (dark lines) generated by a simple Markov switching
model. In each graph, the first 60 days represents a period where the behavior of interest is not
yet expressed (p = 0), and the final 100 days represents a period of consistent expression in
which the behavior occurs at a stable rate < 1. (a) A stage-like trajectory involving an abrupt
transition from absence (extended through the first 120 days) to a high base rate of occurrence
(p = .95) during the period of stable expression. (b) Trajectory involving an intervening
acquisition period (from day 61 to day 120) before achieving a stable period with a high base
rate (p = .95). During the acquisition period, behavior is generated by randomly switching
between the early regime (absence) and the later period of stability (high base rate). (c)
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Trajectory involving an intervening acquisition period before a stable period with a lower base
rate (p = .5). Regime switching occurs in the same way as in (b). In all three graphs, the thicker
gray line shows a 15-day moving average that depicts the same data; in graphs (b) and (c), this
smoothing function visually demarcates the variable acquisition period from the later period
of stable expression.
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