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Mammalian SWI/SNF [also called BAF (Brg/Brahma-associated fac-
tors)] ATP-dependent chromatin remodeling complexes are essen-
tial for formation of the totipotent and pluripotent cells of the
early embryo. In addition, subunits of this complex have been
recovered in screens for genes required for nuclear reprogramming
in Xenopus and mouse embryonic stem cell (ES) morphology.
However, the mechanism underlying the roles of these complexes
is unclear. Here, we show that BAF complexes are required for the
self-renewal and pluripotency of mouse ES cells but not for the
proliferation of fibroblasts or other cells. Proteomic studies reveal
that ES cells express distinctive complexes (esBAF) defined by the
presence of Brg (Brahma-related gene), BAF155, and BAF60A, and
the absence of Brm (Brahma), BAF170, and BAF60C. We show that
this specialized subunit composition is required for ES cell main-
tenance and pluripotency. Our proteomic analysis also reveals that
esBAF complexes interact directly with key regulators of pluripo-
tency, suggesting that esBAF complexes are specialized to interact
with ES cell-specific regulators, providing a potential explanation
for the requirement of BAF complexes in pluripotency.

BAF complexes � BAF155 � Brg

ES cells are pluripotent cells capable of both limitless self-
renewal and differentiation into all embryonic lineages.

These abilities are conferred by various mechanisms, including
transcription factors (1–3), possibly Polycomb complexes (4, 5),
microRNAs (6), and histone modification enzymes (7) that work
in coordination to maintain the expression of pluripotency genes
while repressing lineage-determinant genes. The involvement of
such mechanisms in pluripotency has been investigated exten-
sively in recent years (reviewed in ref. 8), but the role of
chromatin remodeling enzymes remains unclear.

The mammalian genome encodes about 30 SWI2/SNF2-like
ATPases, which are assembled into SWI/SNF-like complexes
with ATP-dependent chromatin remodeling activity. Of these,
Brg and Brm are alternative ATPases of a family of 2-MDa
multisubunit SWI/SNF or BAF complexes and make up the
prototypic mammalian SWI/SNF-like chromatin remodeling
complexes (9, 10). BAF complexes have been shown to be
essential for many aspects of mammalian development (11–13).
A role of BAF complexes in pluripotency is suggested by
observations that deletion of Brg, BAF155 (or Srg3), and BAF47
(or hSNF5) all lead to peri-implantation lethality and failure of
the totipotent cells that give rise to both the inner cell mass and
trophoblast to survive and grow (14–16). The catalytic ATPase
subunit, Brg, also was recovered in screens for factors essential
for nuclear reprogramming (17) and to ES cell morphology (18).
In addition, ES cells lacking BAF250 have defects in ES cell
maintenance and differentiation (19, 20). However, the mech-
anism by which BAF complexes help to establish and maintain
pluripotency is not understood.

In vitro, BAF complexes use energy generated from ATP
hydrolysis to alter DNA-nucleosome contacts (21) and can also
exchange histones or generate torsional stress on nucleosomal
templates. Although in Saccharomyces cerevisiae, SWI/SNF com-
plexes primarily activate transcription (22, 23), mammalian BAF
complexes can both activate and repress genes directly (24). BAF
complexes have been found to work with known repressors such
as REST (25) and histone deacetylases (26) to mediate gene
repression.

BAF complexes consist of 11 core subunits that are essentially
non-exchangeable in vitro, several of which are encoded by gene
families (10, 27). The diversity of complexes is derived from
combinatorial assembly of alternative family members and is
postulated to confer functional specificity to BAF complexes.
For example, the subunit composition of BAF complexes
switches at mitotic exit in the vertebrate nervous system. Pre-
mitotic neuronal progenitor BAF complexes are necessary and
sufficient for neuronal progenitor proliferation and self-renewal
(11). In contrast, postmitotic neuronal BAF complexes are
essential for dendritic outgrowth (28). Functionally distinct
complexes have also been identified in cardiac progenitors (29).
In addition, Polybromo-BAF (PBAF) complexes are defined by
incorporation of BAF180 (Polybromo) and BAF200 and are
required for heart development (30, 31).

To understand the mechanism underlying the role of BAF
complexes in pluripotency, we performed functional and bio-
chemical characterization of BAF complexes in ES cells. Our
studies indicate that a specialized esBAF complex is essential for
self-renewal and pluripotency.

Results
Reduction of Brg Leads to Loss of Self-Renewal in ES Cells. Brg
deletion leads to peri-implantation lethality because of the
failure of the inner cell mass (ICM) to proliferate and develop
(14). Consistent with this finding, we were unable to derive ES
cells after Cre-mediated deletion of Brg in ICM cells homozy-
gous for a conditional allele (data not shown), suggesting that
Brg is essential for ES cell formation. To circumvent this
problem, we depleted Brg in murine E14 ES cells using shRNA-
mediated knockdown. Under standard ES culture conditions,
BrgshRNA ES cells show a marked reduction in self-renewal. Cell
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cycle analysis following knockdown by 2 different constructs
(Fig. 1A Upper) revealed reduced transition into S phase and
decreased cell numbers compared with control (Fig. 1B), in
addition to losing colony morphology and alkaline phosphatase
staining (Fig. 1 A). When co-cultured with wild-type ES cells
(Fig. 1B, Left), BrgshRNA ES cells were lost rapidly from the
cultures compared with control. This proliferative requirement
for Brg is not seen when Brg is removed acutely by genetic
deletion in primary mouse embryonic fibroblasts (MEFs, Fig. 1C
and ref. 14) or glial cells (11). These findings suggest that Brg has
a specific role in ES cell self-renewal.

To ensure that this reduction in self-renewal was not a
nonspecific effect seen with shRNA-mediated knockdown, we
derived ES cell lines from Brglox/lox;Actin-CreER transgene�

blastocysts. These ES cell lines resemble wild-type ES cells in
marker expression and proliferation kinetics (data not shown)
and efficiently delete Brg by 72–88 h after addition of tamoxifen

(Fig. 1D). Similar to BrgshRNA ES cells, Brg knockout ES cells
lose proliferative capacity immediately upon reduction of Brg
protein levels, forming small colonies with flattened morphology
indicative of spontaneous differentiation (Fig. 1D).

Although decreased proliferation was evident immediately fol-
lowing the reduction of Brg protein, BrgshRNA ES cells lost expres-
sion of Oct4, Sox2, and Nanog only after many rounds of cell
division, approximately 10 d following transduction of shRNA
constructs (Fig. 1A). Similarly, Brglox/lox;Actin-CreER transgene�

ES cells also maintain the expression of these markers for many
divisions in the absence of Brg (Fig. S1B) and down-regulate them
only after the cells cease to form discernable colonies. Hence, loss
of Brg results first in reduced proliferation, self-renewal, and colony
morphology, whereas prolonged depletion leads to complete loss of
ES cell determinants including Oct4, Sox2, and Nanog expression.
To determine if Brg-deficient ES cells retain pluripotency, we
induced differentiation of early passage BrgshRNA ES cells (i.e.,
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Fig. 1. Brg is essential for ES cell self-renewal and proliferation. (A) Immunoblotting of Brg and housekeeping gene Hsp90 protein levels 96 h after transduction
of E14 ES cells with shRNA constructs (BrgshRNA#1 and Brg shRNA#2) compared with pLKO control. Colony morphology and alkaline phosphatase, Oct4, Nanog,
and Sox staining of BrgshRNA ES cells 10 days following transduction of shRNA contructs. (B Left) Day 3- transduced ES cells (GFP�) were mixed with non-transduced
ES cells at a 3:2 ratio. The co-cultures were passaged every 2 d, and the percentage of GFP� cells (mean value � SD; p-values by student’s t test) was determined
by flow cytometry. (Right) BrdU incorporation 96 h following transduction in (A). (C) Brglox/lox primary MEFs were transfected with Cre to mediate deletion of
Brg. GFP� marks transfected and deleted MEF cells (Top). Immunofluorescence for Brg protein. (Middle) Mixed cultures (GFP�) then were passaged serially over
5 d, and BrdU incorporation was performed on passage 4 MEFs (Bottom). (D) Colony morphology of Brglox/lox;Actinp-CreER� ES cells over a timecourse after
addition of either tamoxifen or ethanol vehicle control. (Left) Brightfield and (Right) immunofluorescence for Brg.
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before the loss of Oct4, Sox2, and Nanog expression) into embryoid
bodies. By measuring transcript levels, we observed that they were
impaired in ectodermal differentiation and were delayed in meso-
dermal differentiation (Fig. S1C). Hence, Brg-deficient ES cells
were unable to commit to germ lineages properly, reflecting a loss
of pluripotency, in addition to being impaired in self-renewal.
Consistent with the impairment in both self-renewal and differen-
tiation, we observed increased levels of apoptosis by Annexin V
staining in BrgshRNA ES cells (Fig. S1A).

Unique Composition of BAF Components in ES Cells: esBAF. We
reasoned that a specialized BAF complex might be involved in
mediating the specific role of Brg in ES cell pluripotency. To
address this possibility, we affinity purified endogenous BAF
complexes from ES cells (� 90% Oct4� by intracellular flow
cytometry, data not shown), MEFs, and P0 mouse brain (neu-
rons/neural progenitors) for comparison using an antibody
(clone J1) raised against the exposed C-terminal domain of Brg.
This antibody recognizes only Brg and its homologue Brm but
not other proteins in nuclear extracts from ES cells, MEFs, and
brain (Fig. 2A) (11). The purification was performed under
stringent conditions (0.1% SDS and 300 mM NaCl) to minimize
any spurious protein associations. Tandem mass spectrometry
and sequence database searching were then used to identify
proteins in the purified complexes (Fig. 2 A) (32). We found 197
proteins from ES cells, 112 proteins from MEFs, and 58 proteins
in P0 brain that co-immunoprecipitated with Brg/Brm with

probabilities exceeding 95% as determined by ProteinProphet
(33) (Table S1). Among these proteins, 28 contributed to � 80%
of the total spectra obtained and were found to be common
associations in all 3 cell types, including both known and novel
components of BAF complexes (Fig. 2B); the remaining proteins
were unique to each cell type (Fig. 2B). To determine the
predominant composition of known components of the complex
in each cell type, we compared spectrum counts for the proteins
in each sample. Protein abundance is estimated by the number
of spectra acquired for each protein, normalized to account for
protein length and normalized to the total spectra in each dataset
(see Methods). The predominant BAF complex in each cell type
differs significantly in composition (Fig. 2C), particularly when
BAF-associated proteins from ES cells (esBAF) are compared
with those from neurons and neuronal progenitors. Specifically,
the complex purified from ES cells contained Brg, but not Brm,
BAF155 but not BAF170, and was enriched for BAF60a and
BAF45d. The neuronal-specific subunits, BAF45b, BAF45c, and
BAF53b are low to undetectable in esBAF, confirming their
specialized role in the central nervous system. The absence of
Brm in ES cells is also consistent with the normal early devel-
opment of Brm knockout mice (34). These studies indicate that
BAF complexes in ES cells have a unique subunit composition
that is not seen in fibroblasts, brain, and other previously
characterized cell lines (35, 36). We refer to this complex as
‘‘esBAF’’ (Fig. 2D).

The Specific esBAF Composition is Critical to Its Function. BAF155
and BAF170 are 61.7% identical in protein sequence and
previously were thought to be ubiquitously present in stoichio-
metric amounts of all BAF complexes. Western blotting of whole
nuclear extracts and affinity-purified BAF complexes confirmed
the enrichment of BAF155 and the absence of BAF170 in ES
cells compared with MEFs and P0 brain (Fig. 3A). This finding
suggested that BAF155 substitutes for BAF170 in esBAF (Fig.
2D). Indeed, we found that at least 2 BAF155 proteins were
present per esBAF complex, shown by their ability to cross-
immunoprecipitate (Fig. S2 A). Differentiation of ES cells into
the neuronal lineage by RA treatment resulted in induction of
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Fig. 2. Endogenous BAF complexes in ES cells have a distinctive subunit
composition. (A) Endogenous BAF complexes were affinity purified from E14
ES cells and primary MEFs with an anti-Brg/Brm antibody (J1) and were
subjected to tandem mass spectrometry. (Left) Immunoblotting of whole
nuclear extracts using J1 antibody; (Right) silver stain analysis of purified
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BAF170 with concurrent reduction of BAF155 (Fig. 3B), indi-
cating a developmental switch in the complex with respect to
these subunits. Induction of BAF170 during ES cell differenti-
ation has also been reported previously (20). We hypothesized
that this configuration confers critical functional specificity to
the esBAF complex. To address this functional significance, we
first examined the requirement of BAF155 for ES cells.

BAF155 knockout embryos die around the time of implanta-
tion, and ICMs from knockout blastocysts fails to form in vitro
(37). We reasoned that BAF155 depletion also would impair ES
cell maintenance. As with the depletion of Brg, shRNA-
mediated depletion of BAF155 resulted in decreased prolifera-
tion, decreased Oct4 expression, and increased apoptosis of ES
cells (Fig. 4A), confirming that BAF155 and Brg work in
coordination to maintain ES cells. To address the functional
significance of the exclusion of BAF170 from esBAF, we directed
the formation of BAF170-containing complexes by transducing
ES cells with a lentivirus containing a flag-tagged BAF170
transgene driven by a constitutive actin promoter (Fig. 4B). As
controls, ES cells were transduced with BAF155 or empty vector
(EV). GFP� stable transductants then were co-cultured with
nontransduced GFP-negative ES cells. BAF170-transduced ES
cells showed an accelerated rate of decline in the percentage of
GFP� cells compared with BAF155- or EV-transduced ES cells
(Fig. 4B), revealing a competitive disadvantage in self-renewal.
To determine if BAF155 and BAF170 are functionally redun-
dant in esBAF complexes, we investigated whether BAF170
could rescue BAF155 deficiency. We reduced the expression of
endogenous BAF155 using RNAi directed against the 3�-UTR of
the BAF155 gene while stably expressing either BAF155 or
BAF170 (Fig. 4C). The BAF155 transgene rescued the prolif-

erative defect caused by BAF155 knockdown, but BAF170 did
not restore proliferation (Fig. 4C), suggesting that BAF170-
containing complexes could not replace endogenous BAF155-
containing complexes. We noticed that expression of BAF170 in
ES cells decreased the endogenous levels of BAF155 protein
(Fig. S2B), suggesting that BAF155 molecules were excluded
from complexes and consequently degraded. We also assayed
the ability of BAF170-expressing ES cells to form teratomas in
SCID mice compared with control and BAF155-expressing ES
cells. After 30 d of in vivo development, tumors arising from
control and BAF155-expressing ES cells were wholly GFP� (i.e.,
transgene positive). In contrast, tumors arising from BAF170-
expressing ES cells were composed largely of GFP-negative cells
derived from the very small percentage of nontransduced cells
in the transplanted population (Fig. 4D). This result indicates
that BAF170-expressing ES cells have a competitive disadvan-
tage in giving rise to differentiated tissue types in the tumor,
reflecting a loss of pluripotency.

Proteins Critical to Establishing and Maintaining Pluripotency Interact
Directly with esBAF Complexes. The discovery that ES cells have a
specific chromatin remodeling complex suggests that this com-
plex presents unique composite surfaces capable of interacting
with regulators specific to ES cells. Indeed, the genes encoding
the majority of proteins found to interact only with BAF
complexes purified from ES cells (Fig. 2B, n � 127; see Table S1
for a full list) are ES specific and are positively co-regulated with
Oct4 during differentiation (Fig. S3), including genes that en-
hanced the frequency of induced pluripotent stem cell formation
such as Sox2, Dppa2, Dppa4, and Sall4 (38) (Fig. 5A). Indeed, we
were able to detect physical interaction between Brg and Oct4 by
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co-immunoprecipitation on chromatin (Fig. 5B). Importantly,
we did not find peptides from general transcription factors or
mediator subunits despite the high level of expression of these
proteins. Rather we found that the esBAF complex interacted
specifically with a number of proteins found selectively in ES
cells. This specificity indicates that the esBAF complex is tai-
lored for interactions with proteins expressed in the pluripotent
state and that esBAF might function in coordination with master
regulators such as Oct4 and Sox2 to regulate the ES cell
transcriptional circuitry.

Discussion
We have demonstrated that ES cells contain a family of func-
tionally and structurally specialized chromatin remodeling com-
plexes, esBAF, that are critical for the self-renewal of ES cells
and maintenance of the stem cell state. The requirement for Brg
in ES cell maintenance and in blastocysts was reported recently
by Knott and coworkers (39), confirming earlier results with
gene deletion and studies reported here. In addition, we show
that Brg acts in the context of a specialized complex, esBAF. In
a companion paper (40), we demonstrated that esBAF com-
plexes participate in the regulation of the core pluripotency
transcription circuitry by regulating the expression of members
of the core circuitry as well as interacting functionally with Oct4
and Sox2. esBAF complexes also appear to colocalize with
Smad1 and Stat3, key effectors of leukemia inhibitory factor and
bone morphogenetic protein signaling, providing another po-
tential explanation for the critical requirement for esBAF com-
plexes in ES cells.

We initially assumed that the genetic requirement for BAF
complex family members in the formation of the pluripotent
state ref lected a relatively nonspecific requirement for general
transcription. Indeed, our studies of the yeast SWI/SNF com-
plex have demonstrated that it is necessary for activation of
most promoters and is required continuously for transcription
(41). However, several lines of evidence indicate that the role
of SWI/SNF-like BAF complexes in pluripotency is specific
and is a product of a distinctive family of complexes. First, in
our proteomic studies of purified esBAF complexes, we did not
detect general transcription factors. Second, our studies indi-
cate that although ES cells are vitally dependent upon Brg,
fibroblasts or glia can proliferate and respond to stimuli in the

complete absence of Brg. Third, the requirement for esBAF in
ES cells requires a specific subunit composition. Therefore,
although expression of BAF155 in ES cells is compatible with
self-renewal and pluripotency, expression of the BAF170 subunit
(found in BAF complexes in non-pluripotent cells) restricts
pluripotency and interferes with self-renewal. Fourth, genome-
wide occupancy studies show that although binding of esBAF
complexes is widespread and occurs in nearly 1/4 of all annotated
genes in ES cells, all known genes that contribute to pluripotency
and other ES-specific genes are selective targets (40). Last,
esBAF complexes interact directly with key regulators of the
pluripotent state such as Sox2, perhaps explaining why they are
found at the promoters of genes in the pluripotency network that
use Sox2/Oct4 complexes selectively. These lines of evidence
support a specific function of esBAF complexes in maintaining
and possibly establishing the pluripotent state and indicate that
this role is programmatic rather than simply a coincidence of the
promoters bound by the remodeling complexes.

The specific subunit composition of esBAF complexes is
likely to provide a large and specialized surface area. For
example, the unique BAF155 homodimer present in the com-
plex should provide a surface for binding not present in other
cells. Indeed, we found that esBAF complexes made unique
interactions with proteins not described to date, including
several components of the DNA-methylation machinery
(Hells, DNMT3b, and DNMT3L), suggesting a role in gene
silencing or heterochromatin maintenance. esBAF also inter-
acts with several transcription factors that have been impli-
cated in the maintenance of transcriptional networks in ES
cells, such as Sall4 and Sox2. esBAF also interacts with several
proteins such as Rif1, Dppa2, and Dppa4 whose molecular
functions are unclear but that have been implicated in ES cell
maintenance (42, 43). From these observations we propose
that the surface of esBAF complexes is tailored for interac-
tions with factors found specifically in ES cells and that
through these functional interactions esBAF maintains the
pluripotent chromatin landscape.

In conclusion, our studies illustrate how a chromatin remod-
eling complex specifically tailored to interact physically and
functionally with a group of ES cell-specific transcription factors
provides specificity, stability, and robustness to the genetic
circuitry underlying the essential goals of self renewal and
pluripotency. This understanding may be helpful in development
of new routes to reprogram differentiated cell types for thera-
peutic and investigational purposes.

Materials and Methods
Culture of ES Cells. All experiments were performed with E14Tg2a murine ES
cells cultured under standard feeder-free conditions. For details, please refer
to SI Methods

Antibodies. All antibodies used in this study are listed in Table S2.

RNAi and cDNA-Mediated Overexpression. RNAi knockdown of Brg and BAF155
proteins was mediated by pLKO lentiviral vectors (OpenBiosystems) encoding
short-hairpin constructs driven by human U6 promoter. These constructs were
modified by insertion of an IRES-GFP sequence downstream of the puromycin
resistance gene. Overexpression of BAF155 and BAF170 was mediated by
pRRL.sin19-based lentiviral vectors (kind gift of Irving Weissman) encoding
full-length cDNA sequences (Openbiosystem clones 6400646 and 5705438,
respectively) under the control of Chicken beta-Actin promoter with CMV
immediate/early enhancer.

Affinity Purification and Mass Spectrometry. Affinity purification and mass
spectrometry of endogenous BAF complexes were performed as previously
described (11). For details, please refer to SI Methods.

Spectrum Counting and Quantitative Analysis of Mass Spectrometry Data. The
proteins identified in different cell types were combined, and ambiguities
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Sox2

   P    S    J1  IgG 

Oct4

Gene
Symbol

Protein
Probability

%
coverage

Number of 
Peptides

Mbd3 0.98 7.6 1
Hells 1.00 6.7 5
Dppa2 0.99 6 2
Dppa4 1.00 5.7 2
Sox2 0.98 5.3 1
Rif1 1.00 5.1 10
Sall4 1.00 3.4 3
Dnmt3l 0.94 1.7 1
Dnmt3b 1.00 3 2
Jarid2 0.99 1.1 1

B IP

IB

Fig. 5. esBAF interacting proteins. (A) Examples of proteins detected to
interact with esBAF complexes. (B) Co-immunoprecipitation of Brg (J1 IP and
control IgG IP) with Oct4 and Sox2 on chromatin. P � positive control; S �
input. The arrow indicates the band for Oct4 protein.
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resulting from protein isoforms and multiple accession numbers were
resolved using in-house software. For each protein, a spectrum count index
was calculated as a measure of protein abundance (32). Peptides shared
among multiple proteins were apportioned using weighting factors cal-
culated based on the ratio of spectral counts computed for those proteins
using only distinct (non-shared) peptides (44). The spectrum counts for
each protein were normalized further for protein length and for the total
number of identified peptides in each experiment (45). The relative abun-
dance of a protein in a cell type was determined as the percentage of
spectrum from that protein belonging to the cell type.

Additional methods can be found in SI Text.
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