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Abstract
The study focuses on the impact of different sets of single nucleotide polymorphisms (SNPs)
selected from the available data set on prediction of genomewide breeding values (GBVs) of
animals. Correlations between breeding values estimated as additive polygenic effects (EBVs) and
GBVs as well as correlations between true breeding values (TBVs) and GBVs are used as major
criteria for the comparison of different SNP selection schemes and GBV estimation models.

The analysed data is the simulated data set from the XII QTL Workshop. In the analysis five
different SNP data sets are considered. For prediction of EBVs a standard mixed animal model is
applied, whereas GBVs are defined as the sum of additive effects of SNPs estimated for the different
SNP data sets using model 1 with fixed SNPs effects, model 2 with fixed SNPs effects and a random
additive polygenic effect, model 3 with a random effects of uncorrelated SNP genotypes.

The additive polygenic and residual variance components estimated by the EBV model amount to
1.36 and 3.12, respectively. Differences between models are expressed by comparing the ranking
of individuals based on EBV and on GBV and by correlations. Among 100 individuals with the
highest EBVs, depending on a model and a data set, there are only between 11 and 37 individuals
with the highest GBVs. The highest correlation between GBV and EBV amounts to 0.787 and is
observed for model 3 with 3,328 SNPs selected based on their minor allele frequency, the lowest
correlation of 0.519 is attributed to model 2 with 300 SNPs. Correlations between GBV estimates
obtained from different models with the same number of SNPs range between 0.916 and 0. 998,
whereas correlations between different SNP data sets using the same model fall under 0.850.

These results indicate that successful application of high throughoutput SNP genotyping
technologies for prediction of breeding values is a very promising approach, but before the method
can be routinely applied further methodological improvements regarding model construction and
SNP selection are required.
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Background
The idea behind using high throughoutput single nucle-
otide polymorphism (SNP) microarray technology in cat-
tle breeding industry is based on the assumption that the
additive genetic merit of animals (mainly bulls) can be
accurately predicted based on their genotypes at many
SNPs. This study focuses on the impact of different sets of
SNPs selected from the available data set of 6,000 SNPs on
prediction of GBVs of animals. Correlations between
breeding values estimated as additive polygenic effects
(EBVs) using a standard mixed animal model, and GBVs
are used as a major criterion for the comparison of differ-
ent SNP selection schemes and different GBV estimation
models.

Methods
The analysed data is the simulated data set from the XII
QTL Workshop, consisting of 5,865 individuals from
seven generations, divided into (i) a group of 4,665 ani-
mals from generations 1–4 for which both phenotypes
and genotypes are available, (ii) a group of 1,200 animals
from generations 5–7 for which only genotypes are avail-
able. Phenotypes represent a quantitative trait, while gen-
otypes represent 6,000 SNP markers evenly distributed
every 0.1 cM over six chromosomes. In our analysis five
different SNP data sets are considered. They comprise:

- a set of all available 6,000 SNPs (SNP6000),

- a set of 3,328 SNPs selected based on their estimated
minor allele frequency (MAF) using the condition: MAF ≥
0.3 (SNP3328),

- a set of 1,200 SNPs selected as every 5th SNP out of the
available set (SNP1200),

- a set of 600 SNPs selected as every 10th SNP out of the
available set (SNP600),

- a set of 300 SNPs selected as every 20th SNP out of the
available set (SNP300).

For prediction of EBVs a standard mixed animal model is

applied: y = μ + Zα + e, where y is a vector of phenotypic

values, μ is the overall mean,  is a vector

of random additive polygenic effects of animals with a
covariance matrix given by the numerator relationship
matrix (A) and the component of the additive polygenic

variance , and  is a vector of residuals.

GBVs are defined as the sum of additive effects of SNPs,
estimated from different SNP data sets defined above
using the following models:

- (1) y = μ + Xq + e, where q (NSNP × 1) is a vector of fixed
additive SNP effects with the corresponding design matrix
X with score 0, 1, or 2 for an SNP genotype 11, 12, or 22
respectively, NSNP is the number of SNPs considered and
other model parameters are defined as above.

- (2) y = μ + Xq + Zα + e, with all the parameters defined
as above.

- (3) y = μ + Zq + e, where  is a vector of

random SNP effects with the corresponding design matrix
Z with score 0, 1, or 2 for an SNP genotype 11, 12, or 22
respectively.

Note that EBVs and GBVs are estimated for the 4,665 ani-
mals from the first four generations. The estimation of
parameters of all the mixed models was based on solving
the mixed model equations (MME, [1]) while effects in
model 1 were estimated using the least squares approach.
The DFREML package [2] was used for the estimation of
parameters and variance components of the EBV model,
whereas the parameters of GBV models (model 1–3) were
estimated using R programmes. For models 1–3 residual
and additive polygenic variance components were
assumed as known and were set with the estimates
obtained from the EBV model. Due to too high memory
requirements for building an inverse of the coefficient
matrix of MME, we were unable to estimate parameters of
models 2 and 3 for the data set with all SNPs.

Results and discussion
Variance components
The additive polygenic and residual variance components
estimated by the EBV model amount to 1.36 and 3.12,
respectively, which results in a heritability of 0.30.

Ranking of individuals based on EBVs and on GBVs
Differences between the models expressed in the similar-
ity in ranking of 100 individuals with the highest GBV are
summarised in Table 1. When the ranking based on EBV

αα ~ ,N 0 2Aσ α( )
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Table 1: Differences in top 100 ranking of individuals.

Model 1 Model 2 Model 3

GBVSNP6000 41 NA NA
GBVSNP3328 36 35 35
GBVSNP1200 30 32 37
GBVSNP600 26 18 31
GBVSNP300 23 11 25

The number of 100 best individuals as ranked by GBV models 
contained within the set of 100 best individuals as ranked by the EBV 
model calculated for individuals from the first four generations. GBV 
are calculated for different SNP data sets, as indicated in subscripts. 
NA, not available.
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is treated as a basis, the highest ranking similarity is
observed for GBVSNP6000 of model 1 which has 41% corre-
spondence with the 100 individuals with the highest rank
based on EBV. The lowest similarity of 11% is observed
for GBVSNP300 of model 2. In general, for a given number
of SNPs model 2 has mostly the lowest number of individ-
uals in the top 100 ranking based on EBV, while model 3
– mostly the highest. Consequently, when differences in
ranking are compared on an individual level, the smallest
differences are observed for model 3 with 3328 SNPs and
highest differences – for model 2 and 300 SNPs (Figure 1).
However in general, individual differences in ranks are
similar across models and SNP data sets.

Correlations between EBV and GBV

Correlations between EBVs and GBVs calculated from the
three models and different SNP data sets for individuals
from the first four generations are presented in Table 2.
Generally, correlations between GBV and EBV are far from
one and they decrease with the decreasing number of
SNPs considered in a model. The highest correlation is
estimated for model 3 and SNP3328 amounting to 0.787,

the lowest correlation of 0.519 is attributed to model 2
and SNP300. Note, that in model 3 a relatively large vari-

ance parameter of  was assumed for the SNP effect,

while a common approach to modelling random SNP

effects is to apply the variance estimator of . How-

ever, in terms of correlations between GBV and EBV, there
was practically no difference between the models assum-
ing the two different variance estimators (results not pre-
sented).

In the paper of Meuwissen et al. [3], which was a pioneer-
ing in the filed of using multiple SNPs for the prediction
of GBV, a similar correlation of 0.73 between true and pre-
dicted GBV, based on a random SNP haplotype effects,
was reported. However, using fixed SNP effects resulted in
a correlation as low as 0.32 – lower than the correlation in
our study if at least 1200 SNPs are considered. Much
higher correlations of 0.95 between true additive genetic
values and GBVs estimated by a model with random SNP
genotype effects and a model with a random additive
polygenic effect with SNP effect modelled by a kernel
function, were observed by Gianola et al. (2006) [4], but
for the favourable conditions of unrelated individuals, no
correlations between SNPs, and all 100 loci determining a
trait fitted into the model. Similar correlations were also
reported by Habier et al. [5].

Correlations between GBVs
A general overview of correlations between different GBVs
is given in Figure 2. Correlations vary considerable from
0.99 between GBVSNP3328 for model 1 and model 2, as well
as between GBVSNP1200 also for models 1 and 2 to as low
as 0.47 between GBVSNP6000 for model 1 and GBVSNP300 for
model 2. In general correlations between predicted GBVs
resulting from models using the same number of SNPs are
relatively high exceeding 0.80 (except two correlations
involving GBVSNP3328 for model 3). Correlations between
GBV estimates obtained from the same model, but using
different NSNP are lower, generally falling under 0.70 for
models 1 and 2 and somewhat higher – from 0.97 to 0.85
for model 3.

σ α
2

σα
2

NSNP

Differences in ranking of individuals based on EBV and on GBVsFigure 1
Differences in ranking of individuals based on EBV 
and on GBVs. Individual differences in ranks based on EBV 
and different GBV models and for different SNP data sets, 
calculated for animals from the first four generations and 
sorted in ascending order. Model 1 is represented by black 
curves, model 2 – by red curves, and model 3 – by green 
curves. The best (lowest differences) and the worst (highest 
differences) models are represented by dashed curves.
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Table 2: Correlation between EBV and GBV.

Model 1 Model 2 Model 3

GBVSNP6000 0.761 NA NA
GBVSNP3328 0.750 0.758 0.787
GBVSNP1200 0.742 0.714 0.777
GBVSNP600 0.720 0.643 0.745
GBVSNP300 0.665 0.519 0.694

Correlations between EBV and GBV calculated for individuals from 
the first four generations and for different SNP data sets, as indicated 
in subscripts. NA, not available.
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Residual variances
Table 3 summarises residual variances resulting from each
of the GBV estimation models applied. The lowest value
of 0.20 obtained for model 1 and 6000 SNPs indicates
overfitting of the model. For data sets with the lower
number of SNPs considered there are only minor differ-
ences in residuals variance, however model 3 always
results in the highest values.

Summarising, each of methods applied in the present
study has its drawbacks: the mixed animal model unifies
the additive genetic background and does not properly
account for the existence of QTL along the genome, model
1, with the increasing number of SNPs included, suffers
problems related to over fitting, models 1 and 3 do not
use information on relationship among individuals, in

model 2 the additive polygenic relationships are given too
much emphasis since the corresponding variance compo-
nent was not estimated for this model, but simply
assumed as known and equal to the variance component
of a pure polygenic model without SNPs. The number of
fitted SNPs not only influences on the estimates of GBV,
but also the feasibility of computations – that is why it
should be treated with caution. Although the highest EBV-
GBV correlations are obtained for data a set with all 6000
SNPs, similar values are observed using a bit more than a
half of SNPs selected based on MAF.

Conclusion
The most important result of this study, also reported by
other authors [3,5], are overall low correlations between
EBVs and GBVs which indicate that both quantities can-
not be regarded as describing the same genetic back-
ground. The correlations between TBVs and GBVs are even
lower [6].

Summarising, relatively simple models applied in this
study are not stable enough (e.g. robust towards the
number of fitted SNPs, poorly correlated with EBV) to be
used for routine national genetic evaluation of dairy cat-
tle, especially if the EBVs estimated using a classical
method are to be regarded as the desired selection crite-
rion. On the other hand practical application of more
sophisticated methods is hampered by computational
problems. Although successful using of high throughout-
put SNP genotyping technologies for prediction of breed-
ing values is a very promising approach, before the
method can be routinely applied, further methodological
improvements regarding model construction and SNP
selection procedures are needed.
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Table 3: Residual variances.

Model 1 Model 2 Model 3

GBVSNP6000 0.20 NA NA
GBVSNP3328 0.91 0.64 3.00
GBVSNP1200 2.29 2.29 3.11
GBVSNP600 2.82 2.82 3.23
GBVSNP300 3.31 3.31 3.45

Residual variances calculated for the GBV estimation models and for 
different SNP data sets, as indicated in subscripts. NA, not available.
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