1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnue Joyiny vd-HIN

s NIH Public Access
Y,

Author Manuscript

Published in final edited form as:
J Am Chem Soc. 2009 February 18; 131(6): 2306—2312. doi:10.1021/ja808136x.

Theory for protein folding cooperativity: helix-bundles

Kingshuk Ghosh™ and K. A. Dill
Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158,
dil@maxwell.ucsf.edu

Abstract

We present a theory for protein folding stability and cooperativity for helix bundle proteins. We treat
the individual helices with a Schellman-Zimm-Bragg-like approach, using nucleation and
propagation quantities, and we treat the hydrophobic and van der Waals contacts between the helices
as a binding equilibrium. Predictions are in good agreement with experiments on both thermal and
urea-induced transitions of: (1) molecules that can undergo single helix-to-coil transitions, for various
chain lengths, and (2) 3-helix-bundle proteins A and a3C. The present model addresses a problem
raised by Kaya and Chan, that proteins fold more cooperatively than previous models predict. The
present model correctly predicts the experimentally observed two-state cooperativities, AHyan tHoff/
AHcq = 1, for helix-bundle proteins. The predicted folding cooperativity is greater than that of helix
formation alone, or collapse alone, because of the nonlinear coupling between the tertiary interactions
and the helical interactions.

l. INTRODUCTION

We present here a theory of protein stability and cooperativity. We focus on helix-bundle
proteins. Protein folding involves both secondary structure formation and collapse.
Historically, two types of models have been prominent in explaining conformational
cooperativity in proteins and polymers. First, helix-coil models treat the sharp transition that
some polymers undergo from a disordered random coil state to a single helix1=7. Such
processes are dominated by the local interactions among nearest neighbors in the chain. Helix-
coil experiments are typically well described in terms of the two parameters of helix-coil theory:
o, a nucleation parameter and s, a helix propagation parameter®. Second, polymer collapse
theories treat the sharp condensation collapse transition of hydrophobic polymers in water9-
17, Collapse processes are dominated by nonlocal interactions — the solvent-mediated contacts
among pairs of monomers that need not be adjacent in the chain sequence. While both types
of models have given important insights, a deeper understanding of the folding cooperativity
of proteins requires an approach that treats both local and nonlocal interactions within the same
theoretical framework.

The underpinnings of cooperativity has recently been of considerable interest. Chan and
coworkers have been at the forefront of protein folding cooperativity by comparing different
theoretical modelsl /=21, This question has also been the subject of experimental controversy
in the matter of whether or not proteins undergo downbhill folding, with no barrier?2=27 It is
achallenge for experiments to determine the density of states, with the exception of some recent
work using NMR24 or FRET2 studies. Hence, there remains a need for a microscopic
statistical mechanical model of the density of states and folding cooperativity.
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There is also an experimental challenge in understanding protein folding cooperativity because
a given protein differs from the next in non-systematic ways: different proteins have different
chain lengths, different secondary structures, different numbers of hydrogen bonds and
hydrophobic interactions, and different packing densities. There is no simple single variable
(i.e., “knob”) that can systematically vary the folding cooperativity of a protein. In contrast,
our understanding of helix-coil processes was considerably advanced because of experiments
that have systematically explored the effects of changing the chain length N and the propagation
parameter 58,2829 And, unlike helix-coil or collapse processes in simple model polymers, the
chain length of a protein is seldom the most important variable controlling its folding
cooperativity.

However, there is a class of proteins in which, in principle, cooperativity can be studied
systematically. These are helix-bundle proteins. Modern methods now allow for the synthesis
of simple repeating helical sequences of various numbers and lengths that can be connected
by loops into bundles. Experiments by Hecht30:31, Degrado32 and others33, for example,
show that it is straightforward to design helix bundle folds: you mainly need hydrophobic
residues on the inside and polar ones (for solubility) on the outside. Moreover, foldable helix-
bundle pozllymers have also been made using non-biological backbones, such as in

peptoids3 35, Despite these possibilities, however, as far as we know there are not yet
systematic investigations of folding stability and cooperativity of experimental model helix-
bundle systems.

Here, we develop an analytical theory for the equilibrium properties of helices and helix-bundle
proteins. We first describe below our treatment of a single helix, since the helix-bundle models
that follow rely upon it. Our helix-coil treatment here differs slightly from most earlier models,
such as Schellman’s?, the Zimm-Bragg model2, or the Lifson-Roig model4. In those classical
models, the only entropy that is treated explicitly is the “combinatoric entropy”, which is the
count of the number of different locations where helical residues can be located in the sequence.
For example, three consecutive helical units can occur in a chain of 5 monomers in three ways,
CCHHH, CHHHC, and HHHCC, where C represents a segment of chain that is in a coil
configuration and H represents a helical bond. However, this combinatoric entropy is only one
of the contributors to the entropy of a polymer chain. Another important entropy — the chain
conformational entropy — is not treated explicitly in the classical helix-coil models. Our
approach keeps the chain entropy explicit, because: (1) it is essential for more complex helix-
bundle treatment that follows, (2) it gives insights into the temperature dependences, and (3)
it allows for predictions of observables such as the radius of gyration, which are not otherwise
available from helix-coil theories.

In recent years, a key focus of helix-coil models has been on predicting how helical stability
depends on the amino acid sequence of a protein. To treat such dependences, such theories
typically utilize transfer matrices. For example, the Zimm-Bragg and Lifson-Roig models use
the 1-dimensional Ising matrix method. Such matrix treatments are also useful for treating
multiple non-interacting helical stretches within a longer chain; that was particularly important
in the early years for the proof of principle of helix-coil cooperativity in poly-benzyl glutamate
chains having 1500 monomers2. However, for treating the lengths of helices found in globular
proteins, which are typically less than about 20 monomers long, much simpler models are
possible, and, for applications of interest to us, more desirable. Here, we make this “single-
helix” simplification.

We start with a Schellman-like partition function for a helix-coil process; then introduce terms
into the statistical physics that account for the interactions among pairs of helices in order to
understand 2-helix-bundle (2hb) and 3-helix-bundle (3hb) molecules.
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II. THE PARTITION FUNCTION FOR A SINGLE HELIX

Consider a chain molecule that can have a maximum number N of helical bonds, and for which
z is number of rotameric configurations accessible to each backbone virtual bond. M is number
of amino acid residues in the protein molecule. These quantities are related by N = M — 4 since
residue i forms a helical hydrogen bond with i + 4. In this section, we consider a molecule that
undergoes a transition from coil to a single helix. We call this a 1-helix molecule, to distinguish
it from 2-helix and 3-helix bundles below. We factorize the total partition function, gyot

Grot=9p(N)q, (1)

into a product of two terms. The first term, qp, is the total count of all the polymer chain
conformations,

qp(N)=(z — DV*? @

The factor of z is the total number of conformations of the virtual bonds in one helical turn,
one conformation of which is helical and (z — 1) of which are coil conformations. The second
term, which accounts for the combinatorics, can be expressed as a sum of Boltzmann factors
over all the helical and coil states of a chain that can form a single helix (see Figure 1):

@1e(N,T)=1+0[ Ns+(N — )s*>+(N = 2)s>+ ... sV]
N

=1+0 Y (N — i+1)s
i=1
:]+(rw fors £ 1
1?2 :
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_ (N(N+1) _
—1+(TT fors=1 )

where s is the equilibrium constant for forming each helical bond relative to a coil unit, and
o is the nucleation parameter, i.e. the equilibrium constant for forming the first H after a string
of C’s. The first term (1) in Equation 3 is the statistical weight for the coil state, i.e., it counts
all the chain conformations that have all C’s and no helix. The second term, Nos expresses that
there are N different locations in the chain that can have a single helical bond. The third term,
(N — 1)0s2 expresses that there are N — 1 locations in the chain sequence at which an HH pair
can appear in a string of N monomers. The factor of o accounts for the difficulty of nucleating
the helix, i.e. forming the first H. The factor of s2 is an equilibrium constant for having 2
consecutive H’s in the helix. Each term in the partition function is made up from factors in this
way. This model is essentially identical to the model originally introduced many years ago by
Schellman?, which makes the “single-helix” approximation, except that we treat the
temperature dependence a little differently, as indicated below. To make explicit the full
temperature dependence, we express the helix-propagation equilibrium constant s, or unit
partition function, in terms of its energetic and entropic parts

S kT

z—1 (4)

5=
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where enp > 0 is the interaction energy increase upon breaking one helical bond, k is
Boltzmann’s constant and T is the absolute temperature. This expression for s shows that: (a)
there is an entropic cost (the factor of z — 1 in the unit equilibrium constant) when the chain
forms a helical bond from among the possible coil conformations, and (b) there is an energetic
advantage for forming the helix. Helix-coil theories usually treat ¢ as being a temperature
independent equilibrium coefficient, and thus as resulting from an entropy. Here, we treat it
more broadly as a free energy, since helix nucleation appears to be thermally activated, hence:

1 efgnuc/kT

g=
(z-1)? ®)

The enthalpic barrier is &nc and the entropic component cost is (z — 1)2 because the first bond
of a helix points in an arbitrary direction and the second and third virtual bonds must then be
restricted to the correct orientation to form a helix. Now, to compute the properties of this helix-
coil model, we need the probabilities of the various states. From the model, the probability that
a chain has i # 0 helical contacts is

_(N=i+los'
' qic )

and poqu}l. Several experimental properties are of interest for individual helices and for helix
bundles, including the average fractional helicity, ®, the average energy (E) and the heat
capacity Cy. We get these quantities from the model using standard expressions>°:

. (i) 1dlng
" N Ndlns (7)

ding

E)=kT>——=
B dT (8)

d(E) ding , d%Ing
C,=——==2kT —+kT

daT ar ' ar 9@

When computing {E) and C,, we substitute the combinatoric part, g, for g in equations 8 and
9 since qp does not depend on temperature.

We are interested in how the helix-coil equilibrium is affected by temperature and in how the
helix-coil equilibrium is affected by denaturin%and stabilizing solvents. For example, for
denaturants, we adopt the standard expression 6-38 that the interaction strength ¢ is a linear
function of the urea concentration

0
Erb=Epp — m[c] (10)
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where 82[7 represents the interaction energy in the absence of urea, and [c] is the concentration
of urea. For some types of denaturant, higher-order terms may be needed at high concentrations.

A. Predictions for the single helix-to-coil process

While the main point of this paper is to treat helix-bundle proteins, described below, we first
validate that this simple Schellman-like 1-helix model adequately describes the transition
between a single helix and its coil states. There is much more data now than when Schellman
first developed this kind of model. Here is how we apply it. First, for a given peptide, we know
the chain length, N and the temperature T. A particular chain sequence will be characterized
in our model by three parameters: a nucleation parameter e, that is averaged over the different
types of sequence monomers, an average chain flexibility z, and an average helical turn energy
ent- This is the same number of parameters that would be used in other helix-coil models, such
as the Zimm-Bragg model, when the temperature dependence is of interest. For a given
monomer sequence, we take these three quantities and m to be fit parameters. Figure 2 and
Figure 3 show the model predictions are in good agreement with the experimentally observed
temperature and urea denaturation for different lengths of a given peptide sequence 940, The
fits for the thermal denaturation data and urea denaturation data for different chain lengths
were obtained from a single set of parameter values.

We also use this model to predict the specific heat vs. temferature. Figure 6 compares the
predictions with experimental data on Baldwin’s peptide4 using the same parameters that
were used for the thermal and urea denaturation curves.

Because the model described above does not fit the heat capacity data accurately, we first
explore an improved version before treating helix bundles. In particular, we now explore the
two-helix approximation (2ha): a molecule can have a maximum of two helices anywhere in
the chain.

B. Single-helix protein again, now in the two helical-segment approximation
In the two-helix approximation (2ha), the partition sum is given by

M-4 M-9M-j-3 . .
3 M= j—k=T(M=j-k=6) ;,
QeanN,D)=1+0 ) (M =i =3)s'+0” ) . sk,

i=1 j=1 k=1 (11)

where s and ¢ have the same definitions as before. The first term represents the complete coil,
the second term represents all conformations containing a maximum of a single helix, and the
third term represents all conformations having two helical segments (j and k helical bonds
each). The fractional helicity (®) and specific heat C, are found by substituting g o, into
equations 7 and 9.

Relative to the single-helix approximation, the two-helix approximation leads to a small change
in the best-fit parameters (see Figures 2 and 3). The best-fit value of the hydrogen bond
parameter changes by 6% and the z parameter changes by 9%. While the predictions in figures
4 and 5 are only slightly improved, the predicted specific heat improves more significantly
using the two-helix approximation than the single-helix approximation (see Figure 6). This
calculation shows the nature of the errors made by these approximations. We take the simpler
single-helix approximation to be sufficient for the purpose of treating helix-bundles below.
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[Il. PARTITION FUNCTION FOR TWO-HELIX-BUNDLE PROTEINS

In this section, we treat two-helix-bundle (2hb) molecules. Now, in addition to the local
interactions within each helix, we also treat the nonlocal interactions that occur when the two
helices are packed adjacent to each other. As before, we factorize the total partition function
g for the 2-helix bundle into its (z — 1)2(N2+2) chain conformations and its combinatoric factor

02c
D10t (N2, T)=(z — 1*M* g +q1,0 (N1, T) (12)

where gy is expressed as

N> /4N>/4
GoeNa, D)=l 1e(No, T) = 1124402 3" 3" 404D (pninted) 1)
i=1 j=1 (13)

These equations are based on the following parsing of terms. g is the partition sum for each
individual helical sequence of the chain, given by equation 3. Hence the first term in equation
13 (2-independent-arm term) accounts for all the ways that each helical arm can have at least
one helical turn, where the helices do not interact with each other. The factor of z4 accounts
for the minimum of three virtual bonds connecting the two helices and the fact that the second
helix can orient in any possible direction compared to the three-bond linker. Subtracting unity
from q;¢ ensures that we count only non-coil states, i.e., all the states in which there is at least
one helical bond. The second term in equation 13 2-helix-bundle term is a sum over all the
states in which one helix is partially formed to any degree and the second helix is formed to
any degree and the two helices are in contact and interact with each other (see Figure 7). Each
helix-helix contact has a contact energy ey, corresponding to an equilibrium constant r = exp
(enn/KT). This contact term operates between helical turns and hence the sum is over number
of helical turns, rather than over helical bonds. We regard these as helix-helix interactions as
primarily hydrophobic and packing interactions. We have also assumed that only the
configuration with maximum helix-helix interactions contribute to the partition sum and hence
we have the term min(i, j). The other configurations which are responsible for forming contacts
less than min(i, j) between two helices have been ignored because the statistical weight of those
terms will be negligible. Thus the first component in equation 12 accounts for all combinations
of two segments where helical turns nucleate into two helices (B4 and B5 in Figure 7). The
final term single-helix term, given in equation 12, accounts for the possibility that instead of a
2-helix bundle, the whole chain simply forms a single long helix of any degree of helicity
(including the all-coil state; see Figure 7). N4 is the maximum number of helical bonds that
can be formed if the chain had a complete single helix conformation. Thus, 2N, + 10 =M and
N1 = M — 4 where for the two helix conformations we assume a three linker between the two
helices. The expression of N5 is derived from the fact there are M — 1 bonds of which 3 of them
contribute to the linker and rest of the bonds are equally distributed in each helix, and maximum
number of helical bonds is always 3 less than the total number of bonds available because i,

i + 4 nature of the helical cotacts. Thus N, = (M — 4)/2 — 3 which gives M = 2N, + 10. As
above, added denaturant will diminish the hydrophobic interactions approximately linearly,

0
Enn=&y, — M cl (14)
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where &}, is the interhelical contact formation energy in the absence of denaturant. We use the
same value of m as was used for the hydrogen bond strength dependence on denaturant
concentration.

IV. PARTITION FUNCTION FOR THREE-HELIX BUNDLE PROTEINS

A. Results

Finally, we treat three-helix bundles in a similar way. Following previous notation, we use
Uatot = (z — 1)3N3+2)qg. and g is the combinatoric factor for the three-helix partition sum.

Gt (N3, T)=(z = 1M g3+ @i (N2, T) (15)

where Qs is expressed as

N3/4N3/4N3/4

G3e(N3,T)=[q1c(N3,T) — 1]328+U3Z Z Z S4(i+j+k) (,3 min(i,jk) _ 1)

i=1 j=1 k=1 (16)

The logic behind different terms follows much the same way as before, g1c(N3, T) is the
partition function for a single helix having a total of N3 bonds, given by equation 3. Hence, the
first term in equation 16 (3-independent-arm-term) accounts for all conformations having three
fully or partially formed helices throughout the chain where helices do not interact with each
other. The factor of z8 accounts for the minimum of three virtual bonds connecting helices and
the second and third helix can orient in any possible direction with respect to the three-bond
linker. Subtracting unity from g ensures that we count only non-coil states, i.e., all the states
in which there is at least one helical bond. The second term in equation 16 3-helix-bundle
term is a sum over all the states in which one helix is partially formed to any degree and the
second and third helices are formed to any degree and the three helices are in contact and
interact with each other. Each helix-helix contact has a contact energy ey, (hydrophobic and
packing interaction), corresponding to an equilibrium constant r = exp(enn/kT) as before. This
contact term operates between helical turns and hence the sum is over number of helical turns,
rather than over helical bonds. It is important to note that the interaction is still two body and
hence we get a factor of three in the exponent of r. Once again, we assume the most dominant
contribution to the partition sum arises due to three helices (with i,,j and k number of turns)
having min(i, j, k) number of contacts and the configurations with less number of contacts have
been ignored. Thus, the first component in equation 15 accounts for all combinations of three
segments where helical turns nucleate into three helices (see Figure 8). The final term 2-helix
term in equation 15 includes all possible conformations that the protein molecule could adopt
if it were in a two-helix bundle conformation (see C1,C2,C3,C4,C5 in Figure 8). This has
already been derived explicitly in equation 12 and accounts for single-helix term as well as all
complete coil state. There are a maximum of 3N3 helical bonds with each helix having N3
bonds for a 3-helix configuration. N3 is related to the total number of amino acids M by M =
3N3 + 16 using same argument used for two-helix bundle protein and assuming each helix has
a 3 linker spacing as before. N, is the number of bonds in each helix for 2-helix bundle
conformation and it is related to total number of amino acids M as before, M = 2N, + 10.

Here we compare the predictions from the model with experiments on two 3-helix-bundle
proteins. Because of the extensive experimental data available, we study the thermal and
denaturant-induced unfolding of Protein A2 (see Figures 9 and 10), with a single set of
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parameters, and the thermal denaturation for three different values of denaturant concentration
of the protein Alpha?,(:43 (see Figure 11). For these cases, although the agreement is not
perfect, it is quite good. A deeper test of the theory would be if our model helix-coil parameters
were known for the individual helices from independent experiments, but they are not in these
cases, as far as we know. Our parameter values are given in table I.

V. THE NATURE OF THE COOPERATIVITY IN HELIX-BUNDLE FOLDING

Kaya and Chan and their colleagues21 have argued that previous models of protein folding
underpredict the high cooperativities that are observed in experiments. Small single-domain
globular protein molecules tend to fold in a two-state manner: i.e., at the transition midpoint,
there is a negligible population of intermediate states. Experiments reflect this either when
specific measurements are made of the individual chain populations, or through the observation
that the ratio of the van’t Hoff enthalpy(H,n) to the calorimetric enthalpy (Hca) is
experimentally found to be very close to one. Theoretical models, in contrast, tend to predict
a value of this ratio that is smaller than one. As noted by Kaya and Chan21, even Go models,
which are nonphysical models that are designed to be highly cooperative, give ratios of this
quantity that are too small.

To explore the cooperativity predicted by our model for 3-helix bundles, we computed
conformational populations at the transition midpoint, and we computed the ratio of enthalpies.
We find that this model predicts two-state cooperativity. For protein A and Alpha3C, we
evaluate the density of states at three different temperatures. At high temperatures, the model
predicts a peaked unimodal distribution around the denatured states. At low temperatures, it
predicts a peaked unimodal distribution around the native state, however there is a very small
peak at the two-helix conformation as well predicted by our mean-field model. And, at the
midpoint temperature, the model predicts a predominantly bimodal distribution but with a small
population of the two-helix-bundle intermediate conformation. Our model predicts a high
cooperativity for Protein A and moderately high cooperativity for Alpha3C (see Figure 12,
13).

In addition, we tested the prediction for the calorimetric behavior. We define AHc, as the
enthalpy difference between the fully unfolded state and the native state. The van’t Hoff
enthalpy Hyn is defined as2l.44

AH., =k 0logK(T)
o1/T) (17)
where we take K(T) to be
<l> - iu
K(T)=+ -
0 ins — (i) (18)

and where (i), which serves as an order parameter, is the average number of helical turns in
the protein at temperature T, iy, is the average number of helical turns in the unfolded state and
ins IS the number of helical turns in the native state. We define ¢ as the ratio of these two
enthalpies,
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AH

vH

o=
AHy (19)

For any system, it must be true that 6 < 1. 6 = 1 only for a two-state transition44. Thus, the
quantity ¢ is a measure of how well a model captures the two-state cooperativity observed in
proteins. In Table 1, we show predictions of the model for these two 3-helix-bundle proteins.
In the same table, we also show the cooperativities of the individual helices (if the full protein
molecule assumes a completely long helix) taken alone computed at the experimentally
observed melting temperature, predicted from the model. Our model predicts that protein A
should have near two-state cooperativity, but that a3C is less cooperative. We are not aware
of calorimetric data for these particular proteins. We also find that the individual component
helices of these proteins are not by themselves sufficiently cooperative to account for the
folding cooperativity of the full protein. Hence, this model indicates that the process of both
forming helices and the association and packing of multiple helices together is more
cooperative than the helix formation process alone. This indicates how protein folding may be
so highly cooperative.

VI. CONCLUSIONS

We study a simple analytical model for a single polymer chain transition from a large denatured
ensemble to either a single helix or to compact helix bundle conformations. First, at the single
helix level, this model is among the simplest possible versions of classical helix-coil theory,
and it performs well on a substantial body of data on thermal and solvent-induced denaturation
vs. chain length. We find that the single-helix approximation is adequate for short polymers,
except when predicting the heat capacity, in which case the two-helix approximation is needed.
Because of the simplicity of this model, we can then also treat helix-bundle proteins
analytically. Even though we use mean-field treatment, this helix-bundle model gives a good
accounting of the experimental data on denaturation and cooperativity. The model predicts
two-state cooperativity for helix bundle proteins. The two-state behavior arises because the
cooperativity in the helix-coil process is enhanced by the process of the tertiary packing of
helices upon each other. This model for cooperativity may generalize to the folding of other
small globular proteins, and provides a simple tractable model of protein stability.
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FIG. 1.
Different conformations considered in the partition sum for a single-helix. Al denotes complete
coil, A2 is for partially formed helix and A3 denotes fully formed helix.
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FIG. 2.
Thermal denaturation data from 39, vs. theory. In the model, we use z = 6.83, &np = 1.14 Kcal/
(mol-residue), en,c = 1.08Kcal/mol-residue. Different colors are for different chain lengths
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FIG.3.

Urea denaturation from Schotlz etal40. In the model, we use z = 6.83, enp = 1.14 Kcal/(mol-
residue), enyc = 1.08Kcal/mol-residue and m = 0.028 kcal/M. Different colors are for different
chain lengths.
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FIG. 4.

Thermal denaturation of peptides of different length from Scholtz etal40. Symbols represent
experimental data, lines with -- denote bestfit lines using model with single helical
approximation where as solid lines represent bestfit using two helical segment model. In this
model, we use z = 7.43, ep, = 1.2 kcal/(mol-residue), nyc = 1.0 kcal/mol-residue.
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FIG. 5.

Urea denaturation of peptides of different length from Scholtz etal40, Symbols represent
experimental data, lines with -- denote bestfit lines using model with single helical
approximation where as solid lines represent bestfit using two helical segment model. In this
model, we use z = 7.43, enp = 1.2 kcal/(mol-residue), enyc = 1.0 kcal/mol-residue and m = 0.029
kcal/M.

J Am Chem Soc. Author manuscript; available in PMC 2010 February 18.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Ghosh and Dill

1200

Page 16

1000 —

800 —

600 —

Specific heat (Cal/mol K)
T

200 —

e Data
— Isegment model fit

— 2segment model fit

| I | ! | L |

280

FIG. 6.
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Heat capacity data from Scholtz etal4L. This data was not used to obtain the best fit parameter
values. Solid line is the theoretical prediction while data points are shown in filled circle. Red
curve is produced using single helical sequence approximation with the parameter values z =
6.83, enp = 1.14 kcal/(mol-residue), en,c = 1.08kcal/mol-residue whereas the blue curve was
produced by using two helical sequence approximation with the parameter values z = 7.43,
enp = 1.2 kcal/(mol- residue), enyc = 1.0 kcal/mol-residue.
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FIG. 7.

Different conformations considered in the partition sum for a 2-helix bundle protein. B1, B2,
B3 denote all the components of a single helix conformation while B4 shows all possible
configurations with two partially formed helices interacting with each other. B5 represents
fully formed two helices, the native state of a 2-helix bundle protein.
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FIG. 8.

Different conformations considered in the partition sum for a 3-helix. C1,C2,C3,C4,C5 shows
all the components for a full 2-helix bundle partition sum. C6 denotes structures where helices
in three helical-arms are partially formed and C7 is the three helix bundle native structure with
completely formed helices.
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FIG. 9.

Protein A thermal denaturation data®2. The values of the parameters used are, z = 3.73, enp =
0.73 Kcal//(mol-residue), en,, = 2.38Kcal/mol-residue and m = 0.04 kcal/M and &,c = 6.33

Kcal/mol.
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FIG. 10.
Protein A GdnHcl denaturation®2. The values of the parameters used are, z = 3.73, epp = 0.73
kcal//(mol-residue), eny, = 2.38kcal/mol-residue and m = 0.04 kcal/M and &, = 6.33 kcal/mol
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FIG. 11.

Alpha3C thermal denaturation data?3. The values of the parameters used are, z = 3.43, epp =
0.64 kcal//(mol-residue), enp = 1.31kcal/mol-residue and m = 0.04 kcal/M and &p,c = 3.6kcal/
mol.
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FIG. 12.

Protein A folds with a two-state transition. Blue curve shows the population of different states
at high temperature (T=75) denaturing condition with a major peak near coil-like conformation
regime. The distribution of states at low temperature (T=20) is shows in black which shows a
peak near the 3-helix bundle native state with a very small peak near two-helix bundle
conformation as well. Red curve, predicting distribution of states at intermediate temperature
near melting (T=65) shows an approximate 2-state behavior with two peaks near i) the coil
like state and ii) the three helix bundle native state and with a slight population near the two-
helix bundle state. These curves were generated using the parameter values z = 3.73, gy, = 0.73
kcal//(mol-residue), enn, = 2.38kcal/mol-residue and m = 0.04 kcal/M and &, = 6.33 kcal/mol
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FIG. 13.

Protein Alpha3C folds with a two-state transition. Black curve shows the population of different
states at high temperature (T=95) denaturing condition with a major peak near coil-like
conformation regime. The distribution of states at low temperature (T=20) is shown in blue
which shows a peak near the 3-helix bundle native state with a very small peak near two-helix
bundle conformation as well. Red curve, predicting distribution of states at an intermediate
temperature near melting (T=65) shows an approximate 2-state behavior with two peaks i) the
coil like state and ii) the three helix bundle native state with a slight population at the two-helix
bundle state as well. These curves were generated using the parameter values z = 3.43, epp =
0.64 kcal//(mol-residue), enn = 1.31kcal/mol-residue and m = 0.04 kcal/M and ey = 3.6kcal/
mol.
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Protein name J (1 helixatT,,) J (3 helixatT,,) Tn(K)
Protein A (2.2 M) 0.36 0.91 3273
a5C (2.0M) 0.33 0.72 326
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