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Abstract

An ensemble of clustering solutions or partitions may be generated for a number of reasons. If the
data set is very large, clustering may be done on tractable size disjoint subsets. The data may be
distributed at different sites for which a distributed clustering solution with a final merging of
partitions is a natural fit. In this paper, two new approaches to combining partitions, represented by
sets of cluster centers, are introduced. The advantage of these approaches is that they provide a final
partition of data that is comparable to the best existing approaches, yet scale to extremely large data
sets. They can be 100,000 times faster while using much less memory. The new algorithms are
compared against the best existing cluster ensemble merging approaches, clustering all the data at
once and a clustering algorithm designed for very large data sets. The comparison is done for fuzzy
and hard k-means based clustering algorithms. It is shown that the centroid-based ensemble merging
algorithms presented here generate partitions of quality comparable to the best label vector approach
or clustering all the data at once, while providing very large speedups.
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1 INTRODUCTION

Clustering algorithms are used to partition unlabeled data into groups or clusters. Clustering
data is often time consuming. This is especially true of iterative clustering algorithms such as
the K-means family [16] or EM [23]. As larger unlabeled data sets become available, the
scalability of clustering algorithms becomes more important. There are now unlabeled data
sets which vastly exceed the size of a typical single memory [11,34]. Subsets of data can be
clustered in such a way that each data subset fits in memory and finally the clustering solution
of all subsets can be merged. This enables extremely large data sets to be clustered. Sometimes,
data is physically distributed and centrally pooling the data might not be feasible due to privacy
issues and cost. Thus, merging clustering solutions from distributed sites is required. Moreover,
iterative clustering algorithms are sensitive to initialization and produce different partitions for
the same data with different initializations. Combining multiple partitions may provide a robust
and stable solution [1,7]. Also, combining multiple partitions may produce novel clustering
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solutions which might not be possible when clustering all the data [1,7]. In [47], it has been
shown that consensus clustering converges to the true underlying distribution as the ensemble
size grows, further justifying the use of cluster ensembles. So, combining multiple clustering
solutions has emerged as an important area of research to address the issue of scalability, the
distributed nature of some data, and the robustness or stability of the clustering solution.

Current research on combining ensembles of clustering solutions has focused on what we are
going to call high-resolution representations [1,2,5,6,7,8,12,14 42 45,48,49]. Label vectors for
each example or a co-association matrix or a similar representation have been used. These
representations have a size which is on the order of the number of examples in a partition. As
the number of examples becomes large to very large, both storage and time costs scale poorly
with these approaches.

The work presented in this paper focuses on scalable methods of combining clustering
solutions. We use a low resolution representation of the clustering solutions (partitions) in the
form of cluster centroids. The centroids are insensitive to the number of examples from which
they are created. Our approach does not require labels from examples which is an advantage
when combining clustering solutions from object distributed data [1]. With object distributed
data there may be no overlap between the arbitrary labels created from disjoint data sets making
the label resolution difficult. This could prove an obstacle to creating scalable clustering
solutions by applying a distributed clustering algorithm where solutions created on subsets
must be merged.

There are many ways to create an ensemble of data partitions by clustering and we will touch
on the most common. You can exploit the sensitivity of the clustering algorithms to
initialization and simply create r partitions by initializing the algorithm differently each time.
Disjoint subsets of the data may be clustered or overlapping subsets of the data may be
clustered. In studying scalability of partition combining algorithms, we are primarily interested
in disjoint data subsets, which may be created to reduce the clustering time required, or
overlapping data sets. Also of interest are data sets that are by nature distributed, for example
data of the same type that is owned by different companies. They might be willing to share
their central tendencies, but could not/would not share the data itself. Figure 1 illustrates the
problem of creating a final partition from all of the data. Another example is when very large
data sets of the same type are geographically distributed. The distributed solutions must be
combined and we will analyze two approaches to combining centroids. The cluster to which
any given example belongs can be determined by using the nearest centroid using any similarity
metric (e.g. Euclidean distance). Certainly cluster centroids can be easily distributed to
different companies or computers for determining to which cluster the examples belong.

We do not require the feature values of examples to produce the final clustering solution. Hence,
we have a knowledge reuse and privacy preserving data mining framework which can be used
to merge already clustered solutions without knowing the underlying data.

The main focus of this paper is to show how an ensemble of centroids created from object
distributed data, using fuzzy k means and hard k means algorithms, can be merged in a scalable
framework. We have proposed two methods to merge ensembles of centroids. We show a
robust, quality final clustering solution was obtained compared to a relevant multiple partition
combining algorithm (MCLA) [1], while providing superiority in terms of time and space
complexity. The quality of our ensemble merging algorithms was also compared to the quality
of clustering all the data at once in memory, the average base clustering solutions in the
ensemble, and to a scalable single pass algorithm.
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2 RELATED WORK

Creating and combining multiple partitions of a given data set has been examined in several
ways [1,2,5,6,7,8,12 14 34 42 45 47 48 49]. In [7], it has been pointed out that existing merging
algorithms suffer from a time complexity problem. In most of the approaches which use high
resolution representations, each clustering solution in the ensemble will have n, the number of
examples, in its time and memory complexity equations. In [48,49], to speed up their multiple
partition combining algorithm they used a sample of the original data set and then extended
the results to global data. However, for large or extreme data sets even a subsample may be
quite large.

In [1] hyperedges were formed from each clustering solution represented as a label vector.
Using these hyperedges a final partition was obtained by using graph partitioning algorithms
like Cluster-based Similarity Partitioning (CSPA), Hypergraph-Partitioning (HGPA), and
Meta-Clustering (MCLA). In [2] clustering solutions in the ensemble were represented by
membership matrices of size n by k, where n is the number of examples in the data set and k
is the number of clusters. A final clustering solution was then obtained by soft correspondence,
where each cluster from one partition corresponded to clusters in other partitions with a
different weight. In [12,42], weak clusters of a data set were formed by using random
hyperplanes and multiple views of a sample of the data. By creating many views of the data
and merging them, they were able to show the final partitions were better. However, the
representation of base clusterings were in the form of label vectors, and the approach might be
complicated for large data sets because a large number of partitions might have to be created
to get a good overall partition. In [14,41] clusters have been merged using co-association
matrices, but the approach is computationally expensive. In [6,8,22] combining clustering
solutions from multiple bootstrap samples was discussed. In [50], a method for fast and efficient
ensemble clustering was proposed using the Leader algorithm [51]. However, both the
ensemble creation and merging algorithm uses parameters particular to the Leader algorithm,
and the method may not generalize to ensembles created from the k means family or other
clustering algorithms.

As inour framework, disjoint subsets of data can be clustered in parallel and used independently
or merged to allow clustering to scale for large data sets, so we also survey scalable clustering
algorithms. In recent years a number of new clustering algorithms have been introduced to
address the issue of scalability [13,15,16,17,18,19,20,21]. All the algorithms assume that the
clustering algorithm was applied to all the data centrally pooled in a single location. Various
methods for expediting fuzzy-k-means have been explored. In [31] data subsampling was
proposed and a good speedup of fuzzy-k-means was obtained. Similarly, in [32] a multistage
random sampling algorithm was proposed to speed-up fuzzy-k-means. In [33], a density based
data reduction method has been discussed, which condenses a data set into fewer examples.
Recently two online clustering algorithms have been proposed [44]. A parallel implementation
of k-means [24] or other similar algorithms is not applicable to cluster ensembles as they do
not combine multiple clusterings.

In [25,26] distributed clustering has been discussed under limited knowledge sharing. In [26]
a clustering solution has been represented by labels while in [25] generative or probabilistic
model parameters were sent to a central site, where “virtual samples” were generated and
clustered using an EM algorithm [23] to obtain the global model. In [27], data at local sites
were first clustered using the DBSCAN algorithm and then representatives from each local site
were sent to a central site, where DBSCAN was applied again to find a global model. Another
density estimation based distributed clustering algorithm has been discussed in [28]. In [4],
local models or prototypes were detected using EM [23] in a distributed environment and later
merged by computing mutual support among the Gaussian models. In [43] a method for
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speeding up the EM algorithm by aggregating subclusters obtained from a data set was
discussed. However, the objective functions optimized by the above algorithms are different
from those optimized by the hard ¢ means and the fuzzy ¢ means algorithms. Moreover, the
above algorithms are not known to have been studied in the context of merging cluster
ensembles for large or very large data sets in terms of time and space complexity.

Recently in [46], improving the clustering solution by weighting examples in a concept
analogous to boosting in supervised learning was addressed, where less efficiently clustered
points are given more weight. However, it does not fall under the class of multiple partition
combining algorithms.

The contribution in this paper is two fold. First, we study scalability issues, in terms of time
and space complexity, for merging ensembles for large or very large data sets. To our
knowledge, algorithms for merging cluster ensembles have not been studied for large or very
large data sets. Here, we address the merging of multiple partitions formed from the widely
used fuzzy k means and hard k means algorithms in a scalable framework. Second, we propose
an algorithm to filter noisy clusters to prevent “blind” merging of base clustering solutions,
which to our knowledge has not been previously addressed. The performance of algorithms
under noise was studied in [1].

An algorithm which merges clusters from multiple partitions by doing the best possible match
without filtering may be said to do blind merging. We’ll discuss a simple method to remove
outlier or noisy clusters which allows only a subset of clusters to be used to produce a final
partition. As an example, if there are 5 partitions in an ensemble, each of 3 clusters, there are
15 clusters in the ensemble. One final centroid may be created from centroids from 2 of the 5
partitions, another from 4 of 5 and the last from all 5. The unused centroids will be considered
outliers or noisy. This approach provides a mechanism to deal with noise in the data or an
unbalanced distribution (e.g. one or more classes is mostly missing in one data set). The
essential idea is to identify the closely matching centroids and then filter out the outliers or
“bad” centroids.

Although the concept of filtering and merging multiple clustering solutions (Bipartite Merger
algorithm) have been introduced in our earlier work [11,34], in this work we propose and
evaluate another merging algorithm, the Metis merger. We perform experiments on large or
very large data sets from several domains, and quantitatively evaluate the performance of all
of them compared to a well known multiple partition combining algorithm, clustering all data
at once in memory, the average base clustering solution, and a single pass algorithm.

3 ENSEMBLE MERGING

Our first algorithm, Bipartite Merger, uses the assumption that the number of clusters in the
base clusterings, the clustering solutions in the ensemble, are the same for all partitions.
However, the true number of classes in each partition may not always be the same.

So, if we set the number of clusters to k, the maximum number, what effect it will have on
different mixtures?

Case A: If less than k classes are present in a subset, then we are overclustering. Overclustering
may not cause any information loss as it will likely split homogeneous clusters. Information
loss only occurs when we undercluster, which might group non-alike examples together.

Case B: If exactly all k classes are present, then we are neither overclustering nor
underclustering.
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The above holds if in each subset there exist enough examples of a class to form a cluster. In
the case that a base clustering had a very small number of examples from a class which were
not enough to form their own cluster, they will get mixed in with a cluster of another class. So,
setting the number of clusters always equal to k, the maximum number of classes in the data
set, may not cause any information loss in generating cluster ensembles in the cases that there
are adequate numbers of each class present in a base clustering or classes are absent from a
base clustering. Thus, we set the number of clusters to the maximum number of classes in all
our experiments for generating ensembles for Bipartite merger. Our second algorithm, Metis
Merger, does not use the assumption that the number of clusters in each base clustering is the
same. So for Metis Merger, one may also generate an ensemble with different numbers of
clusters in the base clustering, provided the knowledge of true number of classes is available.
If that knowledge is not available, one may generate an ensemble by using the maximum
possible number of classes, which should minimize any information loss. The knowledge of
the true number of classes may not always be easily available. This is especially true for data
divided in an unbalanced way. For example, knowing a data set has 12 clusters we may attempt
to divide it into 10 disjoint subsets for generating ensembles. Now, if the data is divided
randomly into 10 subsets, it is likely that the number of classes in each disjoint subset will also
be 12; however, if the data is divided in an unbalanced way, it is difficult to know how many
classes are in different subsets. We are certain that the maximum possible in any subset is 12.

In a graph theoretical formulation, if the centroids of each partition are represented by non-
adjacent vertices of a graph and the Euclidean distance between a centroid of a partition and
other partitions as a weighted edge, then it becomes a r-partite graph, where r is the number of
partitions to combine. Our objective is to partition this r-partite graph into final target clusters,
such that “similar” centroids are grouped together. If the base clusterings/partitions have an
equal number of clusters and meaningful correspondences exist among them, the group size
will tend to be equal. The centroids in each group will then be used to compute a global centroid.
The partitioning of this r-partite group is like clustering the clustering solutions, and optimizing
it is generally an NP hard problem.

So, our two heuristic algorithms, Bipartite Merger and Metis Merger, attempt to partition the
ensemble of centroids, the r-partite graph. The Bipartite Merger algorithm partitions the
ensemble of centroids into exactly equal size groups using the constraint of one to one centroid
mapping between any two partitions. Hence, the number of target clusters must be the same
as the number of clusters in each base partition. Although this assumption is somewhat
restrictive, it has also been used for re-labeling purposes [6,8]. In many cases the underlying
distributions of data in subsets slowly changes or is similar, and in those cases assumption of
one to one correspondence generally holds. Metis Merger tends to partition ensembles of
centroids, using the graph partitioning package METIS [35,36,37], into approximately equal
size groups. Note, in Metis Merger the group sizes may not be the same and it does not require
the number of clusters in the base clustering to be the same as the target clustering.

The assumption of an equal number of clusters in all base clustering solutions, especially in
Bipartite Merger, will not cover all cases, for example the base clustering solutions may already
exist with a different number of clusters, and in this case only a knowledge reuse framework
is needed for merging. We do not specifically address this type of scenario for Bipartite Merger
in this work. However, one may use our Metis merger approach for an unequal number of
clusters in the partitions.

The focus of this paper is on scalability, and we will show that for the same ensembles, a
centroids based representation is better than or as good as the label vector based representation,
while providing significant superiority in terms of time and space complexity.

Pattern Recognit. Author manuscript; available in PMC 2010 May 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hore et al.

Page 6

In the first method, we merged the ensemble using the bipartite matching algorithm, and named
it the Bipartite Merger (BM). The second method uses the graph partitioning package METIS
[35,36,37], and is called the Metis Merger (MM). METIS was also used by Strelh and Ghosh
[1] in their multiple partition combining algorithm, MCLA, to merge base clusterings
represented in the form of label vectors. We have used METIS to merge base clustering
solutions represented in the form of centroids. To our knowledge, we are the first to use this
graph partitioning package to merge an ensemble of centroids. Below, we describe our two
ensemble merging algorithms.

Between any two partitions, Bipartite Merger optimally matches clustering solutions, but the
constraint of one to one mapping may force a matching of clusters without meaningful
correspondence. This might happen if one or more base clusterings are relatively noisy or have
originated from an unbalanced distribution. To address this problem and make our framework
robust, we have proposed a filtering algorithm, described later, that filters out “bad centroids”
from merging. The filtering concept has also been applied to Metis Merger to remove spurious
centroids, if any.

We will evaluate our algorithms on ensembles created from both a balanced distribution,
created by randomly dividing a data set, and an unbalanced distribution. The number of clusters
has been kept at the maximum possible, k, for each clustering solution and is the same as the
target number of clusters. We will be comparing Bipartite Merger with Metis Merger and also
to MCLA, a well known relevant ensemble merging algorithm. Thus to provide a fair
comparison, the same base clustering solutions were used both for Metis Merger and MCLA.

3.1 Bipartite Merger

After clustering was applied to each disjoint subset, there was a set of centroids available which
described each partitioned subset. Clustering or partitioning a subset {S;} produces a set of

centroids, base clustering solutions {Ci.j}le, where k the number of cluster. When r subsets are

chosen there will be r sets of centroids i.e. {C1,;¥i_ . {Ca }5_y. .. {C, 5., forming an
ensemble of centroids. To produce the final partition, we need to reach a consensus of the
position of the centroids in the target clustering.

One way to reach a global consensus is to partition the ensemble of centroids into k consensus

chains, where each consensus chain will contain r centroids { c’l, ..., '}, one from each of the
subsets, where | runs from 1 to k. The aim is to group similar centroids in each consensus chain
by solving the cluster correspondence problem. The objective is to globally optimize the
assignment w* out of the set f of all possible families of centroid assignments to k consensus
chains:

¢ =arg min {/}
wef (1)

k
lp:Zcost (consensus _ chain(l))
=1 (2)
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i=1 3)

p
cost (consensus _ chain(l))=

D’(i):%zrld AN
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where d(.,.) is the distance function between centroid vectors in a consensus chain. We used
the Euclidean distance in computing the cost (4), as the underlying clustering solutions were
also obtained using the Euclidean distance metric. So, in a graph theoretical formulation finding
the globally optimum value for the objective function (1) reduces to the minimally weighted
perfect r-partite matching problem, which is intractable for r>2. Because the optimization
problem is intractable (NP-Hard), a heuristic method was used to group centroids.

We know that for 2 partitions, r=2, there is a polynomial time algorithm i.e. minimally weighted
perfect bipartite matching to globally optimize the above objective function. For optimally
matching centroids of 2 partitions we used the Hungarian method of minimally weighted
perfect bipartite matching [10]. After matching a pair of partitions, we keep the centroids of
one of the pair as the reference and a new partition is randomly chosen and matched i.e.
minimally weighted bipartite matching. Now, the centroids of this new matched partition are
in the same consensus chain in which the centroids of the reference partition belong. In this
way we continue grouping the centroids of new partitions into consensus chains one by one
until they are exhausted. After the consensus chains are created, we simply compute the
weighted arithmetic mean of centroids in a consensus chain to represent a global centroid,
where the weights of a centroid are determined from the size of the subset from which it was
created. In some cases, especially in the knowledge reuse framework, weights/importance of
base clustering solutions may be difficult to obtain. In those cases, all the base clustering
solutions may be considered to have the same weight/importance. Each consensus chain tells
us which centroid from which subset is matched to a centroid in another subset. A final partition,
in the form of label vectors, may be obtained by assigning an example to the nearest global
centroid. It should be noted that the Bipartite merger algorithm partitions the ensemble of
centroids into k perfectly balanced chains, that is, each chain has the same number of centroids
(one from each base clustering solution). More about consensus chains can be found in our
earlier work [11,34].

In [5,45], both examples and clusters were modeled as a graph in which an example vertex can
connect only to a cluster vertex, thus formulating the problem of finding a consensus partition
as a bipartite matching problem. In our case, we formulated it using the centroids only, thus
the time and space complexity will not involve n, the number of examples in a data set.

Example—Consider the case that there are 3 subsets S1, S2, and S3 of a data set and each
subset is grouped into 2 clusters. Then 3 partitions are produced as shown in Figure 2. To later
also use this figure as an example for our Metis merger algorithm, we have included some extra
detail. For now, please ignore the dotted lines with weights. The edges are between each
centroid (Cjj) from different partitions where i is the partition number and j is the cluster number
for the partition. The weights on the edges are the inverse of the distances between the centroids.
If we do the matching starting with partitions one and two and then matching partitions two
and three we will get a consensus chain of similar centroids as shown in Figure 3. It is clear
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from the edges that the highest weights (i.e. shortest distances) indicate which clusters would
be grouped together.

3.2 Metis Merger

In Metis merger, the ensemble of centroids, the r-partite graph, is partitioned into k groups
(target clusters). Figure 2 shows an example of a weighted r-partite graph obtained from
partitioning 3 subsets of data into two clusters. The Metis merger algorithm is so named because
it uses the graph clustering algorithms of the METIS package.

The algorithm does a multilevel k-way partitioning of the graph by coarsening the graph to
reduce its size at each stage. It randomly selects a vertex and then adds an edge, which has the
largest weight, to a vertex yet to be matched. This is continued until all vertices have been
visited. Paired vertices are collapsed into a single vertex maintaining their edge weights. It is
fast, O(|E|). The coarsened graph is then k-way partitioned such that each partition contains
approximately L of the weight of the original graph. A fast multilevel bisection algorithm is
used together with some refinements to produce the partition and is O(k * m) for a graph with
m edges. Details can be found in [35,36]. Note that our r-partite graph will have just r * k
vertices, where k is the number of clusters. Metis partitions the ensemble of centroids into
approximately equal size groups; however, the groups may not be perfectly balanced, that is,
the number of centroids in each group may not be the same. For example, consider a case in
which a set of partitions had 2, 3, 2, and 3 clusters respectively. We could require METIS to
create three groups, by necessity, of unequal size. This is an important difference from Bipartite
merger, which guarantees a perfectly balanced grouping. We call each group from Metis
merger a consensus group. Similar to the concept of consensus chain in Bipartite Merger, it
contains similar centroids grouped together. For our purposes the ability of Metis merger to
create groups of unequal sizes allows for classes of data that are split into 2 or more clusters
to be handled properly, which can occur when one or more classes are not actually present in
a particular data set.

For partitioning the ensemble of centroids using Metis, the weights of the r-partite graph have
to be normalized so that the edge weights are proportional to the similarity between centroids,
that is, similar centroids should be connected by high weighted edges and vice versa. The initial
similarities can simply be the inverse of the Euclidean distance between centroids.
Normalization is done by finding the maximum weight, maxWeight, of the r-partite graph and
then all edge weights are subtracted from it. This will ensure that edge weights are proportional
to the similarity between centroids. All edge weights are ensured to be non zero by adding 1
to all weights so that the minimum weight is 1 and the maximum maxWeight + 1. After
partitioning the centroids into k consensus groups, a global centroid is found by computing the
weighted arithmetic mean of centroids in each group. Similar to Bipartite merger, weights of
acentroid are determined from the size of the subset from which it was created. A final partition,
in the form of label vectors, may be obtained by assigning an example to the nearest global
centroid.

In Bipartite Merger, we are optimally matching the centroids of two randomly picked partitions
at a time. But the question arises, in which order should the partitions be matched so that the
overall matching cost is minimum. We have found it to be equivalent to solving the traveling
salesman problem. This is because we are optimally matching two partitions at a time and if
we could also optimally select their order of selection then we would be optimizing the whole
objective function (1), which is an intractable problem. The implication of random pair-wise
matching is that in a consensus chain between any three centroids there is a transitive relation
i.e. if centroid C1 is matched to C2, and C2 is matched to C3, then C1 is matched to C3. We
believe for the cluster correspondence problem the assumption of transitive relations is quite
valid. One could also use an approximate traveling salesman algorithm to determine a sub-
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optimal minimum cost order. However, we will show sensitivity to different orders is low,
implying the current algorithm is minimizing its objective function quite effectively. Many
approximate algorithms may exist for solving the minimally weighted perfect r-partite
matching problem, but we chose the bipartite matching algorithm because it is well known and
has been used to solve correspondence problem in clustering [6,8,34].

Metis Merger uses the graph partitioning package METIS, which is a randomized algorithm.
So, it is also sensitive to the order the vertices are numbered in the r-partite graph. We have
conducted experiments to estimate the sensitivity of our algorithms. METIS is also a well
studied graph partitioning package, and it has been used to combine multiple partitions
represented by label vectors or their variants.

4 FILTERING BAD CENTROIDS

Example

For very large data sets, it is possible for a class of data to get split into more than one cluster.
It is also possible that an unfortunate initialization and the usual noise that will exist in any
data set can cause a cluster to be formed that is not representative of any class of data. The
centroid of that cluster will not fit well in any chain [34].

In Bipartite Merger and MM, each consensus chain/group contains matched centroids, and the
problem is equivalent to removing outliers/noise from it, if present. Clusters are typically
compact because this is a feature built into most clustering algorithms and particularly built
into the k-means family of algorithms. In the rare case we have a very non-compact cluster, it
is possible the centroid will fit into a chain to which it does not belong.

With a limited number of centroids in a consensus chain and no knowledge about the
distribution of noise, detecting outliers is a non trivial task. It seems reasonable to assume that
“good” centroids are spatially close to each other. So, we expect a set of centroids that represent
the same class to form a reasonably compact cluster. Thus for a consensus chain or, more
broadly, a group of centroids believed to represent the same class we search for a compact
cluster and any centroids that are distant from the rest would be classified as outliers/noise. So,
for each consensus chain we built a minimally weighted spanning tree from a complete graph
whose vertices are the centroids in a consensus chain and the Euclidean distance between
centroids was the weight of the edges. Next, we sorted the edges of the tree and found the
statistical median. Now, if all edges of intermediate or high lengths are removed, this will reveal
clusters [30] in the consensus chain. We have set the threshold to cut edges as: median
+2.5*median. After cutting the edges of the spanning tree, it becomes a forest. Now, we take
vertices of the largest tree/cluster from this forest for merging and the rest as outliers. This
largest connected component/tree is found using a depth-first search algorithm. As stated
earlier merging is then done by computing the weighted arithmetic mean of these centroids in
a consensus chain, where the weights of a centroid are determined by the size of the subsets it
represents. Thus, each filtered consensus chain/group will result in a final centroid. In the case
of Metis Merger, the consensus groups, formed after partitioning the r-partite graph, are similar
in concept to the consensus chain in the Bipartite Merger. So, the concept of filtering is the
sahme with a spanning tree built for each of the k consensus groups from the centroids in the
k" group.

Let each consensus chain (consensus group in the case of Metis Merger) have 4 centroids. As
mentioned earlier, for Metis Merger the consensus group is not guaranteed to be of equal size;
nevertheless, in this example we assume they are of equal size, that is, 4 centroids in each
group. Figure 4a shows an example of building a spanning tree from such a consensus chain/
group and Figure 4b shows the resulting forest after cutting edge(s) from such a minimally
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weighted spanning tree. The largest connected component C1, C2, and C3 is then selected for
merging.

5 EXPERIMENTAL SETUP

In [2] an extensive comparison of Soft-Correspondence Ensemble Clustering (SCEC) was done
with four other state of the art algorithms on three real data sets Iris, Pen digits, and Isolet6.
The algorithms compared with were CSPA [1], MCLA [1], QMI [12], and MMEC [7]. CSPA
and MCLA are graph partitioning algorithms while QMI uses k-means, and MMEC is based
on mixture model based clustering. Although no single algorithm was a clear winner on all
data sets, overall SCEC performed better in a majority of the cases followed closely by MCLA,;
however, they also reported that MCLA tends to give better partitions when each partition has
the true number of clusters because that tends to result in nearly balanced clusters in the
ensemble. In [1], it was stated that MCLA performs best, compared to HGPA and CSPA, when
meaningful cluster correspondence is likely to exist. In [48], it was also reported that MCLA
was a strong competitor to the PLA (Probabilistic Label Aggregation) and wPLA (weighted
Probabilistic Label Aggregation) algorithms as compared to the three other algorithms CSPA
[1], HGPA[1], and a mixture model based approach [7]. In our framework, we fixed the number
of clusters in the base clustering solutions and target clustering to be the same, k (maximum
possible). Hence, it is likely that cluster centroids in the ensemble will have meaningful
correspondence (especially for a balanced distribution) in the base clustering solutions. So, we
chose to compare our algorithms with MCLA, which is likely to perform well in this setting.
Since Metis merger and MCLA use the same graph partitioning package, METIS, a good
framework was available for evaluating the quality of the ensemble formed from centroids
versus an ensemble formed from label vectors. We re-implemented our algorithms in C. The
METIS package (in C code), which MCLA and MM uses, is available at
http://glaros.dtc.umn.edu/gkhome/views/metis.

MCLA requires representation of clustering solutions in the form of label vectors over all
examples (global data) because the label vectors created from examples of disjoint subsets will
not have any overlap and hence no meaningful correspondence. For MCLA a label vector
equivalent representation of a base clustering solution in an ensemble was created, assigning
an example to the nearest centroid in that partition, over all the examples.

It is well known that even if a data set is centrally available, loading all the data into memory
and clustering it can be time consuming for large data sets. If we cannot load all data into
memory, hard-k-means or fuzzy-k-means will have to make disk accesses every iteration. To
address this problem, in [15] a single pass clustering algorithm (SP) was described for hard-
k-means, where only part of the data was loaded into memory at a time and the whole data set
was clustered in one disk access. We compare to this approach because merging clustering
solutions created from disjoint data is a way of scaling the clustering process of the full data
set. It allows independent processors to cluster subsets simultaneously. Obviously, if data is
geographically distributed (assuming centrally pooling the data is difficult) or have already
been clustered (knowledge reuse), multiple partition combining algorithms must be used. The
code for the single pass hard k means algorithm [15] is available at
http://www-cse.ucsd.edu/users/elkan/skm.html.

Measuring cluster quality is a non trivial task. Unlike supervised learning, where the learning
algorithm uses real class labels to minimize error over training examples, the true labels are
not used to group data into different clusters. The sole purpose of a clustering algorithm is to
try to optimize its objective function, which may result in a good set of clusters. Moreover,
true labels will not typically be available. One way of evaluating cluster quality without using
true labels is the sum of squared error criterion, which is, sum of the square of the Euclidean
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distance of the examples in a cluster from their geometric mean. It intuitively indicates how
compact or scattered the examples are in clusters. We have used this metric to evaluate and
compare clustering quality in our experiments.

It is defined as follows [30]: For a data set D = {xy,..., X} of n examples, the task of clustering
is to partition it into k disjoint subsets D;,......Dx. The sum of squared error (SE) of examples

k
SE=Y" 3" llx—mP oo M=% D mi=ID)

in the clusters is then =1 xeD; , Where =
variant are minimized in many iterative clustering algorithms.

. Generally, this or a

In summary, using the SE metric we compared the quality of our multiple partition combining
algorithms, BM and MM, with MCLA against clustering with all the data at once in memory
(global clustering). The average quality of base clustering solutions (BC), and a single pass
algorithm (SP) (for hard clustering only) were also compared to global clustering. We will
show the ensemble formed by our centroid based approach has almost the same quality
(sometimes even better) compared to the label vector based approach, MCLA. Further, it
provides a speed up of the order of hundreds of thousand times on medium or large data sets.
We will also show that compared to global clustering (GC), the average base clustering solution
(BC), and a single pass clustering algorithm (SP), our centroids based approach performs better
than or as good as the label vector based algorithm MCLA. We will quantitatively evaluate the
difference in quality in each case. Filtering (Section 4) was used to produce all results with
BM and MM unless otherwise stated.

6 DATA SETS USED

While this clustering approach is designed for data sets that are too large to fit in main memory,
for comparison purposes we show results on tractable sized data sets for which we can compare
against clustering all of the data. Some data sets were chosen to allow for comparison with
published results. Table 1 describes the six data sets.

The Iris data set [29] has been heavily studied and has one class linearly separable from the
other two. The ISOLET®6 Data set is a subset of the ISOLET spoken letter recognition training
set and has been prepared in the same way as in [2] with 6 classes out of 26 randomly selected.
Pen digits is the pen-based recognition of handwritten digits from the UC Irivne repository
[29].

The plankton data consists of 419,358 samples of plankton from the underwater SIPPER
camera which records 8 gray levels. The samples were taken from the twelve most commonly
encountered classes of plankton during the acquisition in the Gulf of Mexico. The class sizes
range from about 11,337 to 74,053 examples. The KDD98 data set is the 1998 KDD contest
data set [38]. This data set is about people who gave charitable donations in response to direct
mailing requests and was processed as done in [15]
(http://www-cse.ucsd.edu/users/elkan/skm.html).

The large MRI-1 data set was created by concatenating 45 slices of MR images of a human
brain each of size 256x256 from modalities T1, PD, and T2. The magnetic field strength was
3 Tesla. The largest data set, MRI-2, was created by concatenating 48 slices of MR images of
a human brain each of size 512x512 from modalities T1, PD, and T2. The magnetic field
strength was 1.5 Tesla. Air was removed from both MRI-1 and 2 using a threshold.

The values of m used for fuzzy clustering were m = 2 for Iris, Plankton, MR1-1, MRI-2; m =
1.2 for ISOLET6, KDD98, and m = 1.5 for the pen digits data set. The different values enabled
repeatable partitions with the full data to be obtained.
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Experiments on the 3 small data sets, Iris, Pen Digits, and Isolet6 were run on an UltraSPARC-
[11+ with one 900 MHz processor with 1024 MB memory. As memory requirements with the
other 4 medium or large data sets were greater, they were run on an UltraSPARC-111 with 8
processors each of 750 MHz with 32GB of shared main memory. None of the programs were
multi-threaded.

7 Results for Ensembles Created from a Balanced Distribution

In this section, we evaluate performance of algorithms on an ensemble created by randomly
dividing the data into disjoint subsets. On the small data sets, Iris, ISOLET®, and Pendigits,
two types of experiments have been conducted. For the Iris data set, we used r € {3,5} i.e.
divided randomly into 3 and 5 disjoint equal size subsets. In the first experiment, an ensemble
of base partitions from 3 subsets, will be merged, and in the second experiment base partitions
from 5 subsets will be merged. Similarly, for ISOLET6 and Pendigits it was r=5 and 10. As
the clustering time is larger for the other 4 large/medium large data sets, we split them in only
one way. Plankton and KDD98 were divided into 15 disjoint equal size subsets (r=15), while
MRI-1 and MRI-2 were divided into 20 disjoint equal size subsets (r=20). We chose these
values because we believe a 10% (r=10) to 20% (r=5) sample size to be reasonable for small
data sets and 5% (r=20) for medium or large data sets. In each experiment, all the base
clusterings/partitions in an ensemble were formed either using hard-k-means or fuzzy-k-means.
When all base clusterings in an ensemble were formed by hard-k-means, we will denote that
experiment as a hard ensemble experiment, and when the ensemble was formed by fuzzy-k-
means, we will call it a fuzzy ensemble experiment. All experimental results were the average
over 50 random initializations.

The evaluation of our experiments was done by the difference in quality as shown in Eq. 5.

(XSE B YSE) « 100,
SE (5)

DO(X,Y)=

where Xgg and Ysg are the squared error for algorithm X and Y, respectively. For example,
DQ(BM,MCLA), means we are comparing the squared error (SE) of the bipartite merger
(BMgg) and MCLA (MCLAGgg) algorithms, respectively.

7.1 Hard Ensemble experiments

Table 2 shows the difference in quality of all approaches when compared to clustering with all
the data (GC). We also show how the average base clustering in the ensemble (BC) compares
to GC. The first column of the table is a data set name followed by the number of disjoint
subsets into which it was divided. For example, Iris 3S means that a row contains results of
the Iris data divided into 3 subsets.

For the single pass experiment (SP), each time the number of examples loaded was equal to
the number of examples present in a subset. For example, for Iris 3S, SP will load exactly 1/3
of the examples into memory at a time.

A bold negative value in Table 2, which shows the difference in quality values, indicates that
the squared error criterion was less than the value achieved by clustering all the data for a
particular algorithm. We can see that the single pass algorithm was generally not as good as
the others. However, its average percentage difference from global clustering was only 1.79%
making it comparable. The average quality of the base clustering solution in the ensemble is
not as good as was achieved after combination with bipartite merger or Metis merger. Hence,

Pattern Recognit. Author manuscript; available in PMC 2010 May 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hore et al.

Page 13

the combination approaches show utility. It is also the case that the final partitions produced

after bipartite merging and Metis merging were comparable to that produced by MCLA. On

average, all three combination methods were slightly better than GC with MM slightly better
than BM.

It should be noted that getting better results, compared to GC, for a multiple partition combining
algorithm may depend on the ensemble size and how the ensemble was created. In [2], the
ensemble size was much bigger than we used. Our purpose is to show our algorithms using a
low resolution representation of an ensemble produced quality which approximates that
produced by a high resolution ensemble representation algorithm, MCLA.

In Table 3 the average speed up of our centroids based ensemble algorithms, BM and MM,
compared to the label vector based algorithm, MCLA, is shown. We excluded the very small
Iris data set. The results in Table 3 show that the speed-up from BM and MM is thousands of
times on medium or large data sets. On the MRI-2 data set, which contains about 4 million
examples, BM was more than six hundred thousand times faster than MCLA, while MM was
over two hundred thousand times faster. It seems from the results that BM and MM have almost
constant time complexity, that is, independent of data set size, while with MCLA it grows with
data size. Theoretical time complexity analysis will be given later. It should be noted that for
MRI-2, the largest data set, MCLA on average took about 3.84 hours, while BM and MM took
only 0.02 and 0.06 seconds respectively. Looking at the contrast, it seems MCLA and other
similar label vector based multiple partitioning algorithms, having similar time complexity,
might not be scalable for large or very large data sets.

7.2 Fuzzy Ensemble experiments

The base partitions of the ensemble were generated using the fuzzy-k-means algorithm. We
conducted comparison experiments similar to those with the hard ensembles. The difference
in quality (DQ) of the fuzzy results is evaluated using the same formula as used in the hard-
ensemble experiments (5). We do not compare with SP because it is a crisp variant of the hard-
k-means algorithm.

As MCLA can only merge partitions in the form of label vectors, a crisp partition of the fuzzy
centroids in the ensemble was obtained after assigning an example to the nearest centroid. For
BM and MM, the fuzzy centroids in the ensemble were merged to obtain k global centroids.
A crisp partition was then obtained by assigning an example to the nearest centroid. The quality
of MCLA, BM, and MM was then evaluated using the SE metric.

Table 4 shows the quality difference in percentage of BM, MM, MCLA and BC compared to
GC. In the case that one of the algorithms had a lower SE value than GC the number is negative
inbold. Metis merger was better than MCLA on average. It was quite a bit better on the plankton
data set. Again, the average base clustering was the approach most different from clustering
all the data. In the fuzzy case, all of the combination approaches resulted in slightly larger
squared error criterion values than clustering all the data at once. However, they were all less
than 1.3% different and hence were comparable final partitions.

We also empirically evaluated the average speed up of BM and MM when compared to MCLA.
Similar to the hard ensemble experiments, the results in Table 5 show that speed-up for BM
and MM was thousands of times.

7.2.1 Experimental Summary—In summary, we compared the three multiple partition

combining algorithms, BC and SP (for hard ensemble experiments only) with GC. On average
for all experiments BM, MM and MCLA were better than BC and SP. For the hard ensemble
experiments MCLA was slightly better than MM, and BM. For the fuzzy ensemble experiments
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MM was slightly better than MCLA and BM. For both hard ensemble and fuzzy ensemble
experiments, in all cases, our centroids based algorithms (MM and BM) produced similar
quality to that of MCLA (a label vector based algorithm); however, our algorithms were
hundreds of thousands times faster on medium/large data sets.

Looking at the time taken and speed up from using the centroids based algorithms, BM and
MM, it seems that for very large or extreme data sets label vector based approaches may not
be scale. It is true that in many cases base clusterings in the form of a centroid vector may not
exist (nominal features); however, there are many domains for which all features are numeric.
For example, besides many generic data sets, image processing and many other multispectral
imaging domains, including magnetic resonance and satellite imaging almost always have only
numeric features. We have shown that our centroid based ensemble merging algorithms are
better than or as good as a label vector based ensemble merging algorithm, MCLA, while being
scalable. A centroid representation is likely to be a low resolution representation as the number
of clusters is typically much less than number of examples in large or very large data sets. So,
in all cases, for ensembles created from balanced distributions, the performance of our
algorithms approximates MCLA’s.

In some applications, a final partition in the form of label vectors may need to be created from
the centroids, which would require another linear scan through the data on the disk. We
empirically computed the time taken to create label vectors on the largest two data sets, MRI-1
and MRI-2. On average over 50 random experiments MRI-1 and MRI-2 took 2.3032 and 8.1654
seconds respectively. If we add this time to the time taken by the BM and MM in Table 3, the
speed up compared to MCLA is still more than a thousand times, that is, 1611.18 and 1583.12
for BM and MM respectively on the MRI-1 data set and 1690.39 and 1681.92 for BM and MM,
respectively on the MRI-2 data set. Similar results would be obtained if we add this label vector
creation time to the BM and MM times in Table 5. In summary, if one needs to create a final
clustering solution in the label vector form, BM and MM still result in very large speed ups.

8 Performance Under Unbalanced Distributions and the Effect of Filtering

In the previous section, data were randomly divided into equal size subsets i.e. each subset
contains a uniform/slowly changing distribution from all classes. Skewed distributions may
also exist in physically distributed data, and there may be no chance of homogenizing the
distributed sites due to privacy preserving issues [1,25,26]. Moreover, in some cases one or
more clustering solutions in the ensemble may be noisy. We created a type of unbalanced
distribution using the 3 small data sets Iris, Pen Digits, and Isolet as shown in Tables 6 to 8
respectively. We chose these data sets because being small they were easy to analyze plus they
have true labels, which can be used to create known unbalanced distributions. All three data
sets were divided into approximately equal sized subsets; r=5 for Iris, r=10 for Pen Digits, and
r=10 for Isolet6. For all the data sets, 80% of the subsets, 4 subsets for Iris, 8 for Pen Digits
and isolet6, have examples from at least one class missing, to create an unbalanced distribution
of examples. We arbitrarily created the unbalanced distribution for each data set. The purpose
is to provide an understanding of the performance of the algorithms under an unbalanced
distribution. Figures 5 to 7 show the average results from 50 random experiments on the Iris,
Pen Digits, and Isolet6 data sets respectively. Experimental results on ensembles formed from
both hard-k-means and fuzzy-k-means are provided. In the figures, BM” means the ensemble
was merged using the Bipartite Merger with filtering options turned off, MM” means Metis
merger with filtering option turned off, while BM and MM means the filtering option was on.
MCLA has no notion of filtering, so it is unchanged. We compared the results with BC and
GC. With the filtering option turned on, the quality of BM and MM improved in all experiments,
justifying the concept of filtering. Because the distribution was heavily skewed, as expected
the average SE value of BC is poor. In all hard ensemble experiments, among the 3 multiple
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partition combining algorithms, MM was the best on all data sets. It managed to recover good
partition quality, even better than GC on Iris, with the filtering option turned on. This is a non-
trivial accomplishment because the distribution is heavily skewed, which is indicated by the
poor SE value of BC. For fuzzy ensemble experiments, MM was the best except on Isolet6,
where MCLA was slightly better. BM with the filtering option turned on provided quality better
than BC on all data sets; however, it performed poorly, except on Iris, compared to MM and
MCLA. This might be because 80% of the subsets had an unbalanced distribution, which is
not a favorable condition for grouping centroids using a one to one mapping constraint. BM
optimally matches centroids between a pair of partitions by providing the best matches locally.
In many cases, this type of one to one constrained mapping might be useful, especially for
mapping clusters of partitions whose distribution is slowly changing/evolving. For example,
a one to one mapping constraint was used in [6] for addressing the clustering problem in
perceptual organization, which was used to provide additional knowledge about a 3D object.
They proposed path based clustering to group smooth curves and textured segmentations.

It should be noted that even without filtering, the quality of MM was always better (except on
the fuzzy ensemble of isolet6) than MCLA.

9 Analysis of Time and Space complexity

We analyzed the time complexity of the multiple partition combining algorithms. Let n be the
number of examples in the whole data set, k the number of clusters, and r the number of base
clusterings/partitions in the ensemble. Then, the time complexity of MCLA is O(nk2r2)[1]. For
BM and MM, centroids were used to represent the ensemble, thus the time complexity of our
algorithms is free from n. The time complexity for BM is O(rk2f + rk3 + kr2), where f is the
number of features in the data. The first term describing the time complexity of BM is the time
required to compute the distances between cluster centers in adjacent partitions for an
arbitrarily chosen ordering. The second term is the time required to apply the Hungarian
algorithm for the bipartite matching to each of the r — 1 pairs. The last term is the time required
to build a spanning tree (using an adjacency matrix) for filtering (or just retrieval of the
consensus chain) after bipartite matching has been done as there are r vertices. For filtering
one must do depth first search which is also O(|V|?) or O(|kr?|) for k consensus chains.

The time complexity for MM is O(r2k2f + kr2). The first-term describing the time complexity
of MM is the time required to obtain the distances between cluster centers and convert them
to weights. The second term is the time required to create the partition using METIS which is
bounded by the number of edges in the r-partite graph. It also is the time to do all of the filtering
as noted above (which only changes the constant).

The time complexity of other related label vector based multiple partition algorithms is also
of interest. For SCEC it is O(tnr2k), where t is the number of iterations required in SCEC and
CSPA is O(n2kr) [1]. It has been noted in [2] that the QMI and MMEC have the same time
complexity as SCEC. It seems that CSPA will be slower than MCLA as it depends on n?.
SCEC, hence QMI and MMEC, will be faster than MCLA if t, the number of iterations required
in their algorithm, is less than k, which is the number of clusters. So, all have n in their time
complexity equation, except BM and MM. However, it should be noted that if one needs to
create a final solution in the form of label vector, a linear scan through the data is required. We
have shown that our algorithms still produce significant speed up when the linear scan through
the data is required. The time complexity for creating a label vector for the full data set is O
(nkf).

We also analyzed the space complexity of the representation of the two types of ensemble, that
is, centroid based and label vector based. Assuming hyperedges are loaded in memory, the
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space complexity of the label vectors based algorithm, MCLA, is O(knr). For BM and MM it
is free from n, that is, O(kfr), assuming all centroids are loaded in memory for merging. We
did an empirical evaluation using our largest size data set, MRI-2. It contains 3,991,592
examples, 3 features, 9 clusters, and was divided into 20 subsets, that is, ensemble size r=20.
For representing hyperedges, an indicator vector, in MCLA, we used char type memory
allocation (1 byte). In MM and BM, floating point precision (4 bytes) was used to store cluster
centroids. For MCLA, 9*20=180 hyperedges were kept in memory for efficient construction
of the meta-graph. So, the total memory requirement to store the hyperedges are
180*3991592*1=718,486,560 bytes (approximately 685 MB). To keep the ensemble of
centroids in memory, we need 9*3*20*4 bytes, only 2160 bytes. Thus the memory requirement
of the label vector based algorithm, MCLA, is more than three hundred thousand times larger,
that is, 332,632.66. In a wide area network scenario, which might occur for merging clustering
solutions of physically distributed data, transferring centroids would also be efficient in terms
of network bandwidth cost. Thus, the centroid based ensemble algorithms not only provided
a speed-up of hundreds of thousands of times but also required hundreds of thousands of times
less memory compared to a label vector based algorithm, MCLA. As discussed earlier, if one
needs to create a label vector from the final centroids created by BM and MM, it can be done
by loading data incrementally based on available buffer size.

Compared to label vector based ensemble merger algorithms, our algorithm scales extremely
well, in terms of time and space complexity, as it doesn’t depend upon the size of the data, and
for most cases the number of centroids is not likely to be large. Even for very large dimensional
data sets if k remains relatively small our algorithm will be fast, provided f is not as large as
the size of data.

10 Sensitivity Estimation

Because the multiple partition combining algorithms are heuristic solutions to the r-partite
graph partitioning problem, they may be sensitive to the order of selecting partitions in the
ensemble. In [1], it was not stated that MCLA could be sensitive to the order in which the
hyperedges, actually the vertices, are numbered in the meta graph. Order matters because the
METIS graph partitioning package is a randomized algorithm. In this section some results from
experiments designed to estimate sensitivity of the multiple partition combining algorithms
are reported.

Each experiment with multiple combining algorithms consisted of 50 random initializations,
where the order of selecting partitions was random for each merging operation. We re-ran the
experiment 32 times with the same set of centroids obtained from 50 random initializations;
each time the centroid combination order was random to estimate how sensitive the algorithms
were to the random selection of order. Sensitivity was determined by computing the average
of the absolute difference of quality in squared error (SE) of each experiment from its mean.
As SE values vary by data sets, we normalized by dividing by the mean and then multiplying
by 100 to obtain a percentage. This will indicate how much the quality of partitions could vary
from their mean quality on average. Sensitivity is computed as:

Sensitivity:%Z;’:l (u) 100, where n is 32, pj is the average quality in SE of each
n

experiment, and ’""=Z,-:11’f-

Because each of the 32 experiments involved 50 random initializations, we used the 3 smaller
data sets Iris, Isolet6, and Pen Digits for the sensitivity estimation experiments. The value of
r, the ensemble size, chosen was maximum for each of the data sets, that is, 5 for Iris, 10 for
Isolet6, and 10 for Pen Digits. Tables 9 and 10 show the results expressed in percentage for
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the multiple partition combining algorithms on each data set for hard and fuzzy ensembles,
respectively. The average sensitivity of the algorithms over all data sets is also given. On
average, for both hard and fuzzy ensemble experiments, BM was the most sensitive compared
to MM and MCLA. In the hard ensemble experiments, MCLA was the least sensitive, while
on the fuzzy ensemble experiments MM was the least sensitive. Except on Iris, on which BM
was much more sensitive compared to MM and MCLA, all three algorithms have small
differences among them. On average the sensitivity of all the three algorithms was low, that
is, for MM and MCLA much less than 0.5%, while for BM slightly above 0.5%. Because on
average Bipartite Merger’s sensitivity was low and also comparable to MCLA and MM, the
order in which the partitions were matched in Bipartite Merger was not of significant
importance.

11 Conclusions

In this paper we proposed methods for merging an ensemble of clustering solutions in a scalable
framework in terms of time and space complexity. We evaluated our algorithms both under
balanced and unbalanced distributions. Under a balanced distribution, the centroids based
ensemble merger algorithms, Bipartite merger (BM) and Metis merger (MM), were shown to
result in partitions comparable to a label vector based ensemble merger algorithm, MCLA
when compared against clustering all the data at once, global clustering (GC). BM, MM, and
MCLA, were also compared against GC with BC (base clustering), and SP (a single pass
clustering algorithm for hard ensembles only). On average the performance of BM and MM
was better than BC, and SP. Quantitative evaluation on average indicates MM is slightly better
than BM.

The centroid based ensemble merging algorithms provided partitions of quality comparable to
the label vector based ensemble merging algorithm, MCLA, while providing very large speed
ups. The memory requirements of our algorithms were also hundreds of thousand times less
than MCLA. The speed of our algorithms coupled with small memory requirements will allow
them to scale to extremely large data sets. In fact, they can be successfully applied to data sets
which are distributed by necessity since they are too large to fit in any one main memory.

Under unbalanced distributions, our algorithms are also capable of detecting and removing
spurious clusters from the ensemble to provide a robust framework, and MM outperformed
MCLA in almost all cases. In this work, our focus was to show that using the same base
clustering solutions a centroid based ensemble was competitive or better than a label vector
based ensemble. It is not always necessary to create an ensemble from a disjoint data set, but
we did it to restrict the ensemble size as a way of scaling the clustering process for the full data
set. Future experiments could be done to create an ensemble in a different way, that is, from
the full data set or overlapped examples to see how they affect quality compared to global
clustering (GC), average base clustering solutions (BC), and single pass clustering algorithm
(SP). Future work could also include partitioning the ensembles using different graph
partitioning packages or methods, where grouping may be controlled more effectively.
However, the purpose in this work was to show, using identical subsets whose clustering results
were represented by low resolution (centroids) and by high resolution (label vector)
approaches, that comparable final partitions can be obtained with much lower time and space
complexity for the centroids based approaches.
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Figure 1.

An illustration of cluster ensemble creation and merging. Data may be extracted, with or

without replacement, from a central repository. Alternatively,

the data sets may exist already

(no feed in from above the dotted line). The number of clusters may vary. Data is finally

partitioned into three classes c1'—c3’.
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\ / /
. <, Partition 1 N Partition 2 \ + Partition 3

Figure 2.

Partitions to be matched with edges whose weights are inverses of the distances between the
centroids. For Bipartite merging the raw distances would be used. The dotted lines (links) are
only needed for Metis merger.
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Figure 3.
A consensus chain is shown for each of two clusters. The arrows show cluster correspondences
for the 3 partitions with Pi - Partition i.
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Figure 4.

a) Minimally weighted spanning tree formed from centroids in a consensus chain/group. b)
After cutting edge(s) above threshold, the largest connected component (C1, C2, and C3) will
be used for merging.
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Figure 5.
Experiment on unbalanced Iris data set. Experimental results in SE both from (a) hard-k-means
and (b) fuzzy-k-means are provided.
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Figure 6.
Experiment on unbalanced Pen Digits data set. Experimental results in SE both from (a) hard-
k-means and (b) fuzzy-k-means are provided.
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Figure 7.
Experiment on unbalanced Isolet6 data set. Experimental results in SE both from (a) hard-k-
means and (b) fuzzy-k-means are provided.
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Table 1
Data sets.

Name number of examples number of features number of classes
Iris 150 4 3
ISOLET6 1,440 617 6
Pen Digits 3,498 16 10
Plankton 419,358 26 12
KDD98 95,412 56 10
MRI-1 1,132,545 3 9
MRI-2 3,991,592 3 9
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Difference in quality of BM, MM, MCLA, and BC compared to GC. All values expressed in percentage.

Table 4

DQ(BM,GC) % DQ(MM,GC) % DQ(MCLA,GC) % DQ(BC,GC)%
Iris, 3S 1.73 1.97 1.78 3.72
Iris, 5S 0.42 0.66 0.34 9.22
Isolet6, 5S 0.69 1.26 0.28 0.54
Isolet6, 10S 1.20 1.19 0.98 0.99
Pen Digits, 5S 1.62 0.61 1.47 0.98
Pen Digits, 10S 3.01 —-0.50 —0.46 1.76
KDD, 158 1.30 1.45 1.23 —-0.01
Plankton, 15S 1.24 -1.45 1.03 -0.25
MRI-1, 20S 177 1.16 1.82 0.29
MRI-2, 20S 0.055 0.055 0.058 0.06
average 1.30 0.64 0.85 1.73
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Table 9
Sensitivity experiments of BM, MM, and MCLA on Hard-Ensembles. All values expressed in percentage change
of SE.
Iris, 5S (%) Isolet6, 10S (%0) Pen Digits, 10S (%) Average (%)
BM 1.304684 0.308255 0.453086 0.688675
MM 0.361843 0.145923 0.210061 0.239275
MCLA 0.096984 0.148035 0.369641 0.204886
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Table 10
Sensitivity experiments of BM, MM, and MCLA on Fuzzy-Ensembles. All values expressed in percentage change
of SE.
Iris, 5S (%) Isolet6, 10S (%0) Pen Digits, 10S (%) Average (%)
BM 1.139955 0.181290 0.315357 0.545534
MM 0.106712 0.178516 0.174228 0.153152
MCLA 0.040850 0.176785 0.254943 0.157526
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