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Abstract
Background—The physiological functions of neurotrophins occur through binding to two different
receptors: pan75 neurotrophin receptor (p75NTR) and a family of tropomysin receptor kinases (Trks
A, B, and C). Recently, we reported that expression of neurotrophins and TrkB were reduced in brains
of suicide subjects. Present study examines whether expression and activation of Trk receptors and
expression of p75NTR are altered in brain of these subjects.

Methods—Expression levels of TrkA, B, C, and of p75NTR were measured by quantitative RT-
PCR and Western blot in prefrontal cortex (PFC) and hippocampus of suicide and normal control
subjects. The activation of Trks was determined by immunoprecipitation followed by Western
blotting using phosphotyrosine antibody.

Results—In hippocampus, lower mRNA levels of TrkA and TrkC were observed in suicide
subjects. In the PFC, the mRNA level of TrkA was decreased, without any change in TrkC. On the
other hand, the mRNA level of p75NTR was increased in both PFC and hippocampus.
Immunolabeling studies showed similar results as observed for the mRNAs. In addition,
phosphorylation of all Trks was decreased in hippocampus, but in PFC, decreased phosphorylation
was noted only for TrkA and B. Increased expression ratios of p75NTR to Trks were also observed
in PFC and hippocampus of suicide subjects.

Conclusions—Our results suggest not only reduced functioning of Trks in brains of suicide
subjects but that increased ratios of p75NTR to Trks indicate possible activation of pathways that are
apoptotic in nature. These findings may be crucial in the pathophysiology of suicide.
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Introduction
Neurotrophins are a family of secreted proteins that include brain-derived neurotrophic factor
(BDNF), nerve growth factor (NGF), neurotrophin (NT)-3, and NT-4/5. These neurotrophins
are essential for regulating neuronal differentiation in the developing brain but also are crucial
for trophic support, maintenance of differentiated neuronal phenotypes, neurogenesis, synaptic
formation, and regulation of synaptic connections in adult neurons as well as in activity-
dependent plasticity, which is a defining feature of the brain throughout life (1-6).
Neurotrophins are unique in using two different classes of cell surface receptors to exert their
biological actions: 1) the tropomysin receptor kinase (Trk) and 2) pan75 neurotrophin receptor
(p75NTR), a member of the tumor necrosis factor α receptor superfamily (7). The dual receptor
system accounts for the diverse effects exerted by neurotrophins.

There are several subtypes of Trks, which are characterized by a specific affinity for the
different neurotrophins. For example, NGF binds preferentially to TrkA, whereas BDNF and
NT-4/5 show high affinity for TrkB. NT-3, on the other hand, binds to TrkC with high affinity
but can also bind to TrkA and TrkB with lower affinity (8,9). Structurally, the extracellular
domain of Trk receptors consists of a cysteine-rich cluster, followed by three leucine-rich
repeats, another cysteine-rich cluster and two immunoglobulin-like domains, involved in
ligand binding. The cytoplasmic domain consists of a tyrosine kinase domain surrounded by
several tyrosines. Ligand binding to Trk receptors causes their dimerization and results in
receptor autophosphorylation of kinases present in the cytoplasmic domain. Once
phosphorylated, Trk receptors become scaffolding structures that recruit adaptor proteins that
couple the receptor to downstream signaling pathways, resulting in alterations in gene
expression and neuronal functioning (10). Tyrosine kinase activity is thus essential for the vast
majority of Trk receptor-mediated responses to neurotrophins (1,11,12). Both Trk receptors
and p75NTR are expressed highly in human cortical and hippocampal brain areas (13-16).

p75NTR initially discovered as a low-affinity receptor for NGF, is now known as a class of
receptor that can bind to all neurotrophins with equivalent nanomolar affinities (17). The 3.8
kb mRNA for p75NTR encodes a 427 amino acid protein containing a 28 amino acid single
peptide, a single transmembrane domain, and a 55 amino acid cytoplasmic domain (18).
Although p75NTR receptors do not contain a catalytic motif, they interact with several proteins,
including Trk receptors, which causes enhancement of ligand specificity and ligand affinities
for Trk receptors (19-21).

Several studies suggest that BDNF may be involved in stress and depressive behavior
(22-27), and that the beneficial effects of antidepressants are associated with an upregulation
of BDNF expression (28-30). In a previous study, we reported that expression of BDNF is
lower in postmortem brains of suicide subjects (31), which was associated with decreased
expression of its cognate receptor TrkB (31). In addition, we recently reported altered
expression of NGF, NT-3, and NT-4/5 in suicide subjects in a brain region-specific manner
(32). The role of neurotrophins in suicide is further substantiated by other investigators who
showed altered levels of neurotrophins in suicide brains or in peripheral tissues of suicidal
patients (33-35).

Since the physiological functions of neurotrophins require binding to Trk receptors and their
successive phosphorylation, examining the expression and functional activation of
neurotrophin receptors is an important step in understanding the significance of the role of
neurotrophins in a disease state. Therefore, in the present investigation, we examined activation
of Trks A, B, and C in the postmortem brains of suicide subjects. In addition, we examined the
expression levels of TrkA, TrkC, and p75NTR in these brain areas. Our study provides further
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insight into the role of neurotrophins and their receptors in the pathophysiologic mechanisms
of suicide.

Methods and Materials
Subjects

Brain tissues were obtained from the Maryland Brain Collection at the Maryland Psychiatric
Research Center, Baltimore, MD. We used the same brain samples in which we had studied
expression of neurotrophins and TrkB (31,32). The study was performed in the PFC
(Brodmann’s area 9) and hippocampus obtained from suicide subjects (n = 28) and
nonpsychiatric control subjects (n = 21), hereafter referred to as normal controls. The
demographic characteristics of suicide subjects and normal controls are provided in
supplemental Table 1 and dissection of the brains are described in our earlier publications
(31,32). Toxicology and presence of antidepressants were examined by analysis of urine and/
or blood samples. pH of the brain was measured in cerebellum (36). All the subjects were
diagnosed based on the Diagnostic Evaluation After Death (37) and the Structured Clinical
Interview for the DSM-IV (38) as detailed in our earlier publications (31,32,39,40). This study
was approved by the Institutional Review Board of the University of Illinois at Chicago.

Determination of mRNA Levels of TrkA, TrkC, and p75NTR

Total RNA was isolated by CsCl2 ultracentrifugation as described earlier (39,40). Samples
showing an absorbance ratio (260/280) greater than 1.8 and exhibiting strong 28S and 18S
rRNA bands were used. In addition, all the samples showed RNA integrity number >7, which
is an excellent value for mRNA studies.

The mRNA levels of TrkA, TrkC, p75NTR, and of housekeeping genes neuron-specific enolase
(NSE) and cyclophilin were determined using competitive RT-PCR as described earlier (39,
40). The sequences of external and internal primers are given in Table 1. Decreasing
concentrations of TrkA (1.5-0.05 pg for PFC and 6.25-0.19 pg for hippocampus), TrkC
(200-12.5 pg), or p75NTR (12-0.75 pg for PFC and 6.25-0.39 pg for hippocampus) internal
standard cRNAs and 1.5 μCi [32P]dCTP were added to 1 μg of total RNA. The PCR mixture
was amplified for 28 cycles. Following amplification, aliquots were digested with Xho I in
triplicate and run by 1.5% agarose gel electrophoresis. The results are expressed as attomoles/
μg of total RNA.

Preparation of Samples for Immunoprecipitation and Western Blot
Proteins from PFC or hippocampal tissues were extracted using RIPA buffer [20 mM Tris-
HCL (pH 8), 150 mM NaCl, 1mM EDTA, 50 mM NaF, 1 mM Na2MoO4, 0.5 mM Na3VO4,
5 mM Na2P2O7, 1% Triton X-100, 0.5% Na deoxycholate, 0.1% SDS, 10% glycerol, 10 μg/
ml leupeptin, 10 μg/ml aprotinin, 0.01 mM phenylmethyl sulfonyl fluoride (PMSF), 1 mg/ml
pepstatin A, and 10 mM benzamidine]. S1 fraction was prepared by centrifugation at 1,000
rpm for 10 min at 4°C. Protein content was determined by the Bradford method (Bio-Rad, CA,
USA).

Immunoprecipitation of TrkA, TrkB, and TrkC and Immunolabeling with Phosphotyrosine
Supernatant containing 100 μg protein was incubated with antibodies against TrkA, TrkB, or
TrkC (100:1 dilution; Santa Cruz Biotechnology, CA, USA) for 2 h at 0°C. The samples were
added to a suspension of protein-A sepharose beads (Amersham, NJ, USA) in Tris-buffered
saline and incubated at 4°C for 1h. The pellet was collected by centrifugation at 2,500 rpm for
30 s at 4°C and washed four times with TBS containing 0.5 mM Na3VO4 and 0.01 mM PMSF.
The pellet was resuspended in 15 ml of 2X sample buffer, boiled for 5 min, and subjected to
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10% SDS-polyacrylamide gel electrophoresis as described earlier (39). The blots were
incubated overnight at 4°C with anti-mouse phosphotyrosine (1 μg/ml, Chemicon
International, Temecula, CA, USA), followed by horseradish-peroxidase-linked secondary
anti-mouse IgG (0.3 μg/ml; Bio-Rad) for 5 h at room temperature. The bands on the
autoradiograms were quantified using the Loats Image Analysis System (Westminister, MD,
USA).

Immunolabeling of TrkA, TrkC, and p75NTR

Equal volumes (20 μl) of samples containing 60 μg of protein were electrophoresed on 10%
(w/v) polyacrylamide gel. The blots were incubated overnight at 4°C with primary antibodies
for TrkA (1:650), TrkC (1:1,000), or p75NTR (1:200, NeoMarkers, Fremont, CA, USA)
followed by horseradish-peroxidase-linked secondary anti-goat IgG (TrkA, 1:1000 dilution),
anti-rabbit IgG (TrkC, 1:5,000 dilution) or anti-mouse IgG (p75NTR, 1:800 dilution) for 5 h at
room temperature. The membranes were stripped and re-probed with β-actin monoclonal
primary (1:5000 for 1 h, Sigma Chemical Co., St. Louis, MO, USA) and anti-mouse secondary
antibody (1:5000 for 1 h). The optical density (O.D.) of each protein was corrected by the O.D
of the corresponding β-actin band. The antibody for p75NTR has been well characterized in
human brain for Western blotting (41,42,43). We characterized TrkA and TrkC antibodies
using positive controls (H4 cell lysate, SK-N-SH cell lysate for TrkA; EOC20 whole cell lysate
for TrkC). Also, the specificity for TrkA and TrkC was confirmed by pre-incubating the
antibodies with the corresponding antigenic peptides (100-fold excess) (Santa Cruz
Biotechnology, CA, USA).

Statistical Analysis
Data analyses were performed using the SPSS version 15 (Chicago, IL, USA). All the
dependent variables were first subjected to tests of normality. The assumption of normality
was tested using the Shapiro-Wilk test. To adjust for multiplicity of testing based on multiple
endpoints (i.e., dependent variables), a multiple analysis of covariance (MANCOVA) was
applied to the data for each brain area. Age, gender, pH of the brain, race, and postmortem
interval (PMI) were used as covariates. The assumption of homogeneity of variance was tested
using Box’s test of equality of covariance matrices. In the presence of a significant MANCOVA
for a given brain area, ANCOVAs were performed for each dependent variable. For the two-
group analysis (normal controls vs. suicide subjects) MANCOVA was followed by ANCOVA.
For the three-group analysis (normal controls, depressed suicide subjects, suicide subjects with
other psychiatric disorders), if the ANCOVA for that dependent variable was significant,
pairwise between-group comparisons were performed for each dependant variable.

The differences in age, gender, pH of the brain, and PMI between suicide subjects and normal
controls were analyzed using the independent-sample “t” test. The relationships between Trk
receptor activation and their respective mRNA and protein levels; mRNA and protein levels
of p75NTR; and measures of Trk receptors and p75NTR with PMI, age, and pH of the brain were
determined by Pearson product-moment correlation analyses. The effects of gender and
comparison between depressed subjects who showed antidepressant toxicity at the time of
death with depressed subjects who did not were determined by an independent sample “t” test.

Results
There were no significant differences in age (t = 0.63, df = 47, P = 0.53), PMI (t = 0.11, df =
47, P = 0.91) or pH of the brain (t = 1.00, df = 47, P = 0.32) between suicide subjects and
normal control subjects (supplemental Table 1).
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Overall Analysis of Data
All dependent variables in the 2 brain areas were first subjected to tests of normality using the
Shapiro-Wilk test. We found non-significant P values (>0.05) for tests of normality for all
dependent variables in PFC and hippocampus of both normal control and suicide groups which
indicated that we cannot reject the null hypothesis that the data are normally distributed. We
used Box’s test of equality of covariance matrices to test the assumption of between-group
equality. No significant between-group differences were found for covariance matrices in PFC
(P = 0.25) or hippocampus (p = 0.38). The overall MANCOVA for all 11 dependent variables
adjusted for covariates was significant for PFC (F = 17.84, df = 11, 32, P <0.001) and
hippocampus (F = 40.96, df = 11, 30, P <0.001) when the normal control group was compared
with the suicide group. In the following sections, we describe the results of the individual
ANCOVAs for each dependent variable for PFC and hippocampus. Also, the percent change
in various measures of Trks and p75NTR are summarized in Table 2.

mRNA Levels of TrkA, TrkC, and p75NTR

Representative gel electrophoreses of the competitive RT-PCR for TrkA, TrkC, and p75NTR

mRNA in the PFC from one control subject are given in Figure 1a, b, and c respectively. We
found the amplification product arising from the TrkA, TrkC, and p75NTR mRNA template at
267, 464, and 311 bp respectively, and the corresponding digestion products from the cRNA
at 135+132, 223+241, and 144+167 bp respectively. Competitive PCR analyses are presented
in Figures 1d, e, and f, where the points of equivalence represent the absolute amounts of TrkA,
TrkC, and p75NTR mRNA present. The absolute amounts (attomoles/μg total RNA) of Trk
receptor and p75NTR mRNAs in PFC and hippocampus of normal controls were as follows:
PFC: TrkA, 2.5 ± 0.6; TrkC, 73.17 ± 12.7; p75NTR, 12.3 ± 2.4; hippocampus: TrkA, 5.1 ± 0.9;
TrkC, 98.3 ± 20.9; p75NTR, 4.4 ± 1.4. As can be seen in Figure 2, the expression of TrkC was
highest compared with that of TrkA and p75NTR in both PFC and hippocampus. The expression
levels of both TrkA and TrkC were greater in hippocampus than PFC. On the other hand, the
expression of p75NTR was greater in PFC than hippocampus.

When compared between normal controls and suicide subjects, the mRNA expression of TrkA
was significantly decreased in PFC of suicide subjects without any change in mRNA level of
TrkC. On the other hand, mRNA levels of TrkA and TrkC were significantly lower in
hippocampus of suicide subjects. In contrast, the mRNA level of p75NTR was significantly
increased in both PFC and hippocampus of suicide subjects compared with normal controls
(Figure 2).

We used NSE and cyclophilin as housekeeping genes. As reported earlier (31,32,39), we did
not find a significant difference in mRNA levels (attomoles/μg total RNA) of cyclophilin
between normal controls and suicide subjects, either in PFC (controls: 776.6 ± 112.5, suicide:
801.5 ± 117.34; df = 1,42, F = 0.3, P = 0.57) or in hippocampus (controls: 783.5 ± 110.1,
suicide: 768.3 ± 102.8; df = 1,40, F = 0.001, P = 0.98). Similarly, no significant differences
were observed in mRNA levels of NSE in PFC (controls: 360.2 ± 47.7, suicide: 344.0 ± 43.9;
df = 1,42, F = 0.7, P = 0.39) or hippocampus (controls: 349.8 ± 38.2, suicide: 345.9 ± 81.4; df
= 1,40, F = 0.2, P = 0.62) between normal controls and suicide subjects. We found similar
results when the changes in mRNA levels of TrkA, TrkC, and p75NTR were calculated as ratios
to cyclophilin or NSE.

Protein Levels of TrkA, TrkC, and p75NTR

Western blot revealed that TrkA and TrkC migrated to 140 kDa, whereas p75NTR migrated to
75 kDa (Figure 3a and 3b). β-Actin was used as a housekeeping protein, and ratios of TrkA,
TrkC, and p75NTR vs. β-actin were calculated. Immunolabeling of β-actin was not significantly
different in suicide subjects (1.3 ± 0.3 AU) compared with normal controls (1.2 ± 0.3 AU).
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Bar diagrams showing ratios of protein levels of neurotrophin receptors and β-actin in PFC
and hippocampus are shown in Figure 3c and 3d, respectively. Comparison analysis revealed
that immunolabeling of TrkA was significantly decreased in both PFC and hippocampus of
suicide subjects. Protein levels of TrkC were significantly decreased in hippocampus but not
changed in the PFC of suicide subjects. In contrast, the levels of p75NTR were increased in
both PFC and hippocampus of suicide subjects compared with normal controls.

Correlations between mRNA and Protein Levels of TrkA, TrkC, and p75NTR

To examine whether the altered protein levels of neurotrophin receptors were associated with
their respective mRNAs, we examined the correlations between the mRNA and the protein
levels of the neurotrophic receptors in the combined normal control and suicide groups. We
observed significant correlations between mRNA and protein levels of TrkA in PFC (r = 0.39,
P = 0.006) and hippocampus (r = 0.42, P = 0.003). Significant correlations were also observed
between mRNA and protein levels of TrkC in hippocampus (r = 0.52, P<0.001), and of
p75NTR in both PFC (r = 0.42, P = 0.002), and hippocampus (r = 0.47, P = 0.001).

TrkA, TrkB, and TrkC Phosphorylation
Phosphorylation states of Trks were determined by immunoprecipitation with specific
antibodies followed by immunoblotting with phosphotyrosine antibody. Autoradiograms
showing the phosphorylation in PFC and hippocampus are given in Figure 4a and 4b
respectively and diagrammatically presented in Figures 4c and d respectively. MANCOVA
followed by ANCOVA tests showed that there were significant decreases in the
phosphorylation of TrkA and TrkB in both PFC and hippocampus of suicide subjects, whereas
the phosphorylation of TrkC was decreased only in hippocampus without any change in PFC.

Ratios of p75NTR vs. mRNA and protein levels and phosphorylation of TrkA, TrkB, and TrkC
To examine whether there is an imbalance in the expression and activation of TrkA, B, and C
in relation to p75NTR expression, we determined the mRNA and protein expression ratios of
p75NTR vs. TrkA, TrkB, and TrkC. In addition, we also determined the ratios of protein
expression of p75NTR vs. phosphorylation levels of TrkA, TrkB, and TrkC. As shown in Table
3, we observed significant increase in expression ratios of p75NTR vs. TrkA, B, and C.
Similarly, ratios of protein expression of p75NTR vs. phosphorylation of TrkA, TrkB, and TrkC
were also increased.

Effects of age, PMI, pH, Means of Death and Antidepressant Toxicology (provided as
supplemental material)

We found no significant effects of age, PMI, or pH of the brain on any of the measures in which
we found significant differences between normal controls and suicide subjects (supplemental
Table 2). We also did not find significant effects of means of suicide (violent vs. nonviolent)
or the presence of antidepressant toxicology at the time of death on various measures.

Effects of Major Depression
We next examined whether the differences in the mRNA and protein levels of neurotrophin
receptors and in the phopsphorylation states of Trk receptors were related to depression or were
present in all suicide subjects. ANCOVA followed by pairwise between-group comparisons
revealed that the mRNA and protein levels of TrkA, TrkC, and p75NTR, as well as the activation
of TrkA, TrkB, and TrkC, were not different between suicide subjects with major depression
(n = 12) and suicide subjects with other psychiatric disorders (n = 16) in both PFC (Table 4)
and hippocampus (Table 5). However, the groups of suicide subjects with major depression
and of suicide subjects with other psychiatric disorders both showed significant differences in
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these measures in both PFC (Table 4) and hippocampus (Table 5) when compared separately
with normal control subjects.

Discussion
In the present study, we found reduced expression of TrkA, C, and increased expression of
p75NTR in hippocampus and reduced expression of TrkA and increased expression of
p75NTR in PFC of suicide subjects. Decreased phosphorylation of TrkA and B in PFC and
TrkA, B, and C in hippocampus was also noted. Our present study provides evidence for the
first time that not only Trk receptors are less expressed but also that their activation is
compromised in postmortem brains of suicide subjects. In our earlier studies, we found that
expression levels of neurotrophins, i.e., BDNF, NGF, NT-3, and NT4/5, as well as TrkB were
decreased in the postmortem brains of suicide subjects (31,32). Our previous studies together
with the present results clearly demonstrate that there is an overall decrease in expression and
functioning of neurotrophins in the brains of suicide subjects.

Our study also indicates that the levels of the receptors for neurotrophins are regulated at the
level of transcription, as significant correlations between mRNA and protein levels of these
receptors were noted. Promoter sequences for all neurotrophin receptors have been identified,
and multiple transcription factors are implicated in the regulation of the expression of these
receptors (44,45). For example, many putative transcription factor binding sites within the
5’flanking region of the human TrkA gene have been identified. These include Sp1 and AP-1.
Interestingly, the AP-1 site is bound by c-Jun homodimers, which is blocked by methylation.
In many cell lines, it has been shown that activation of Trk A expression is caused by direct
interference with c-Jun binding to the negative AP-1-like sequence and that the AP-1 binding
site plays a crucial epigenetic role in activating TrkA expression. In addition, the 138-bp region
located upstream of the transcription initiation site is also crucial for the human TrkA gene.
On the other hand, p75NTR transcription is regulated by transcription factor Egr-1. The TrkC
gene is regulated by transcription factors AP-1, AP-2, GC, ATF, and Brn2, AML1, and Nkx2.5.
Whether these transcription factors and/or epigenetic regulation are involved in the altered
expression of neurotrophin receptor genes in the brains of suicide subjects needs to be studied.

Functionally, in contrast to Trk receptors, which contain autophosphorylation sites and are
involved in cell survival, p75NTR lacks intrinsic enzymatic activity and can transmit both
positive and negative signals (46). It has been shown that p75NTR acts as a positive regulator
of TrkA activity in a number of neuronal cell lines (20,47-49). Coexpression of p75NTR and
TrkA receptors increases TrkA high affinity binding sites for NGF (19,50) and NGF-mediated
TrkA activation (47,49,50). Ligand binding to p75NTR can potentiate TrkA
autophosphorylation at a sub-saturating concentration of NGF; this depends upon the relative
levels of p75NTR and TrkA (47,50,51). Also, in the presence of p75NTR, NT-3 is less effective
in activating TrkA, and NT-3 and NT-4 are much less effective in activating TrkB, which thus
enhances the affinity for NGF and BDNF to bind to TrkA and TrkB respectively (20,52-54).
In contrast to these positive actions, p75NTR can mediate neuronal apoptosis when the cognate
Trk receptor is less activated or not activated. For example, in neuronal cell lines, expression
of p75NTR in the absence of TrkA receptors induces cell death (55). Similarly, p75NTR can
cause developing hippocampal neuronal death induced by any of the neurotrophins in the
absence of a Trk receptor (56-58). On the other hand, mice lacking p75NTR show an increased
number of cholinergic neurons in the basal forebrain (59). In adult CNS, it has been shown
that excitotoxin-induced neuronal apoptosis is accompanied by the induction of p75NTR in the
dying neurons (60), which suggests that p75NTR may represent a general stress-induced
apoptotic mechanism (44). However, it is pertinent to note that apoptotic mechanisms of
p75NTR are active only when Trk receptors are less expressed or less active. Moreover, ectopic
expression of the appropriate Trk receptor can convert a proapoptotic neurotrophin to a pro-
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survival neurotrophin. Thus it appears that the ratio of expression levels and/or activation states
of Trk receptors and p75NTR is quite relevant in neurotrophin-mediated functions. Given that
many physiological functions are associated with Trk receptor activation, including cell
survival and enhancement of the efficacy of synaptic neurotransmission, and, therefore, neural
plasticity, and the strong evidence of a role of p75NTR in the mediation of cell death, our
findings of increased expression ratios of p75NTR to Trks appear to be of great relevance to
the pathophysiology of mood disorders and suicide. The PFC plays a major role in mood
regulation and has been implicated in the pathophysiology of affective disorders and suicide
(61). On the other hand, the hippocampus is involved in cognition (62) and is the primary brain
area affected by stress (63), one of the major factors in suicidal behavior (64,65). Interestingly,
structural abnormalities in cortical and hippocampal brain areas and reduced hippocampal
plasticity have been demonstrated in affective disorder patients and during stress (66-72). Some
studies even suggest structural abnormalities in the brains of suicide subjects (73,74). Our
previously observed reduced expression of neurotrophins (31,32) together with the present
findings of reduced expression and activation of Trks and concomitant increased expression
p75NTR indicate that the possible consequences is a tipping of the balance away from cell
survival, which could be associated with structural abnormalities and reduced neuronal
plasticity in suicide brains. In addition to the modulation of hippocampal plasticity (75),
recently, Greferath et al (76) and Hennigan et al (77) showed that p75NTR is involved in
negative regulation of plasticity, such that mice lacking p75NTR display intact long-term
potentiation but impairment in long-term depression. It is pertinent to mention that recently
Saarelainen et al (78) demonstrated that normal TrkB signaling is required for antidepressant
action and that the phosphorylation of TrkB in response to antidepressants is greater in cortical
and hippocampal brain areas after chronic treatment, suggesting that TrkB activation is
required to produce the effects of antidepressants. Moreover, stress, a major risk factor of
suicide (79-81) causes a decrease in the expression of TrkA, TrkB, and TrkC in rat brain
(27). A recent genetic study suggests that the S205L polymorphism, which substitutes serine
with leucine residue, of the p75NTR gene is associated with attempted suicide (82), revealing
the crucial role of p75NTR in suicide.

The physiological relevance of Trk receptors is further substantiated by the fact that Trk
receptors and p75NTR cross talk to each other at the level of the signal transduction mechanisms
that they activate transautophosphorylation of tyrosine leads to the recruitment of proteins
containing PTB and SH2 domains. The two major signaling pathways, activated by Trks
through these domains, are Ras-Raf-extracellular signal regulated kinase (ERK) and
phosphoinositide 3-kinase (PI 3-kinase)-Akt. In addition, phospholipase Cγ binds to activated
Trk receptors and initiates an intracellular signaling cascade that results in the activation of
protein kinase C. On the other hand, p75NTR stimulates several proapoptotic pathways, which
include Jun kinase signaling, sphingolipid turnover, and association with adaptor proteins, such
as neurotrophin receptor-interacting MAGE homolog (NRAGE) and p75NTR-associated cell
death executor (NADE), that directly promote cell cycle arrest and apoptosis (83-86). Trk
receptors suppress the major proapoptotic signaling pathway, c-Jun kinase, initiated by
p75NTR (87). In sympathetic neurons, Ras-mediated activation of PI3-kinase is required to
suppress this signaling pathway (88). Activation of Trk receptors completely suppresses the
activation by p75NTR of sphingomyelinase through the association of activated PI3-kinase with
acidic sphingomyelinase (89,90). Sphingomyelinase activation results in generation of
ceramide which promotes apoptosis by inactivating ERK and PI3-kinase pathways (91-93).
Contrary to their proapoptotic action, p75NTR enhances cell survival by activating NF-κB
signaling in the presence of Trk receptor activation. Thus, p75NTR acts as a switch between
pro- and antiapoptotic actions in neurons. Interestingly, we have reported less-activated
ERK1/2 (39), B-Raf (94), and PI-3 kinase (95) in both PFC and the hippocampus of suicide
subjects. These findings could be associated with less activation/expression of Trks. These
findings also indicate suboptimal activation of prosurvival pathways. Conversely, if p75NTR

Dwivedi et al. Page 8

Biol Psychiatry. Author manuscript; available in PMC 2010 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is more abundantly expressed, this may lead to proapoptotic signaling. Further studies are
required to determine whether proapoptotic pathways are activated in brains of suicide subjects
and how Trk - and p75NTR-mediated signal transduction pathways interplay in the
pathophysiology of suicide.

In the present study, we observed that the changes in Trk and p75NTR were present in all suicide
subjects regardless of psychiatric diagnosis, suggesting that these changes could be associated
with suicide. However, one should be cautious to draw such a conclusion. One of the limitations
of the present study is that the study population did not have subjects who had psychiatric
disorders and died naturally. In addition, a majority of suicide subjects had some form of mental
illness. As mentioned in Introduction, several studies demonstrate alterations in expression of
neurotrophic factors and Trk receptors in mood disorders and during stress. For example,
decreased expression of neurotrophins or TrkB receptors in depressed patients as well as in
animals subjected to several types of stresses have been reported (22-27). Likewise, several
genetic studies indicate a linkage of BDNF to bipolar disorder (96-98). Thus, whether the
observed changes in Trks and p75NTR are specifically related to suicide or are associated with
mental disorders, need to be further clarified.
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Figure 1.
Representative gel electrophoreses showing competitive PCR analysis for TrkA (a), TrkC (b),
or p75NTR (c) mRNA contents in PFC obtained from one normal control subject. Decreasing
concentrations of internal standard cRNA (TrkA, 1.5-0.05 pg; TrkC, 200-12.5 pg; p75NTR,
12-0.75) were added to a constant amount (1 μg) of total RNA. The mixtures were reverse
transcribed and PCR-amplified in the presence of trace amounts of [32P]dCTP; aliquots were
electrophoresed on 1.5% agarose gel. The higher molecular size band corresponds to the
amplification product arising from the mRNA, whereas the lower bands arise from cRNA
generated from the internal standard. Data derived from the agarose gel are plotted as the counts
incorporated into the amplified TrkA (d), TrkC (e), or p75NTR (f) cRNA standard divided by
the counts incorporated into the corresponding mRNA amplification product versus the known
amount of internal standard cRNA added to the test sample. The point of equivalence represents
the amount of the respective mRNA.
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Figure 2.
mRNA levels TrkA, TrkC, and p75NTR in PFC and hippocampus of suicide subjects and normal
controls. Data are the mean ± S.D. PFC samples were from 21 normal controls and 28 suicide
subjects; hippocampus samples were from 21 normal controls and 26 suicide subjects. Hip,
hippocampus. Overall ANCOVA in PFC and hippocampus were as follows: PFC: TrkA, df =
1,40, F = 37, P <0.001; TrkC, df = 1,42, F = 0.5, P = 0.47; p75NTR (df = 1,42, F = 33.6, P
<0.001); hippocampus: TrkA, df = 1,40, F = 37, P <0.001; TrkC, df = 1,40, F = 52.1, P <0.001;
p75NTR, df = 1,40, F = 72.4, P <0.001). * P <0.001.
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Figure 3.
Western blots showing the immunolabeling of TrkA, TrkC, p75NTR and β-actin in PFC (a) and
hippocampus (b) of 3 normal controls and 3 suicide subjects and the mean ± S.D. of
immunolabeling of TrkA, TrkC, or p75NTR in PFC (c) and hippocampus (d) from normal
controls and suicide subjects. Protein samples were subjected to 10% polyacrylamide gel
electrophoresis and transferred to ECL-nitrocellulose membranes, which were then incubated
with primary antibody specific for TrkA, TrkC, p75NTR, or β-actin and corresponding
secondary antibody. The bands were quantified as described in Methods. Ratios of the optical
density of TrkA, TrkC, or p75NTR to that of β-actin were calculated. PFC samples were from
21 normal controls and 28 suicide subjects; hippocampus samples were from 21 normal
controls and 26 suicide subjects. Suicide group was compared with control group.* Overall
ANCOVA: PFC: TrkA, df = 1,42, F = 20.1, P <0.001; TrkC, df = 1,42, F = 0.001, P = 0.98;
p75NTR, df = 1,42, F = 18.9, P <0.001; hippocampus: TrkA, df = 1,40, F = 21.7, P <0.001;
TrkC, df = 1,40, F = 40.3, P <0.001; p75NTR, df = 1,40, F = 13.9, P = 0.001. *P = 0.001, ** P
<0.001.
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Figure 4.
Activation of TrkA, TrkB, and TrkC in PFC and hippocampus of suicide subjects and normal
controls. Autoradiograms showing immunolabeling of phosphotyrosine in PFC (a) and
hippocampus (b) determined after immunoprecipitation using TrkA, TrkB, or TrkC antibody.
Mean ± S.D. of O.D. of bands of phosphotyrosine depicting activation of TrkA, TrkB, or TrkC
in PFC (c) and hippocampus (d) of suicide subjects and normal controls. PFC samples were
from 21 normal controls and 28 suicide subjects and hippocampus were from 21 normal
controls and 26 suicide subjects. Overall ANCOVA: PFC: TrkA, df = 1,42, F = 26.5, p <0.001;
TrkB: df = 1,42, F = 38.5, p <0.001; TrkC, df = 1,42, F = 0.03, p = 0.86; hippocampus: TrkA,
df = 1,40, F = 33.7, p <0.001; TrkB, df = 1,40, F = 28.2, p <0.001; TrkC, df = 1,40, F = 27.7,
p <0.001. * P <0.001. Ab, antibody; IP, immunoprecipitation.
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Table 1
External and internal primer sequences of Trks and p75NTR for Amplification

Primer Primer sequence GenBankAccession No. Nucleotide Position (bp)

External

TrkA F: 5’GTGGAGAAGAAGGACGAA ACAC NM_002529 1222-1243

R: 5’GTATTGTGGGTTCTCGATGATG 1467-1488

TrkC F: 5’TACAAGCTTTAACCGGCTCACCACACT CTC S_76475 408-428

R: 5’TACGAATTCCCACCACGT TCTCTGCAA TGC 851-871

p75NTR F: 5’CTGCAAGCAGAACAAGCAAGGAGC NM_002507 831-854

R: 5’AGGCCTCATGGGTAAAGGAGT 1121-1141

NSE F: 5’GGGACTGAGAA CAAATCCAAG NM_001975 295-315

R: 5’CTCCAAGGCTTCACTGTTCTC 655-675

Cyclophilin F: 5’AGCACTGGAGAGA AAGGATTTG XM_371409 118-139

R: 5’CCTCCACAAT ATTCATGCCTTC 400-421

Internal

TrkA F: 5’TGGGATCAACCTCGAGGCTGTGC TGG 1344-1369

TrkC F: 5’GTGTGACCTTCTCGAGATCAGCGTG 618-642

p75NTR F: 5’ACGCAGACAGCCTCGAGCCAGGCCCT 961-990

NSE 5’GGCAACAAGCTC GAGATGCAGGAGTTC 478-504

Cyclophilin F:5’GGTGGCAAGTCCATCTAT/AAATGCTGGACCCAACAC 220-237/303-320

F, forward; R, reverse; bold and italicized letters indicate the mutated bases. Underline bases indicate the Xho I cleavage site.
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Table 2
Percent change in various measures of Trks and p75NTR in PFC and hippocampus of suicide subjects

Brian area Variables % Change

PFC

mRNA

 TrkA ↓ 26*

 TrkC (No change)

 p75NTR ↑ 37**

Immunolabeling

 TrkA ↓ 28**

 TrkC (No change)

 p75NTR ↑ 31**

Phosphorylation

 TrkA ↓ 29**

 TrkB ↓ 30**

 TrkC (No change)

Hippocampus

mRNA

 TrkA ↓ 34**

 TrkC ↓ 39**

 p75NTR ↑ 80**

Immunolabeling

 TrkA ↓ 29**

 TrkC ↓ 30**

 p75NTR ↑ 30**

Phosphorylation

 TrkA ↓ 33**

 TrkB ↓ 32**

 TrkC ↓ 34**

*
p = 0.001;

**
p < 0.001.
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Table 3
Ratios of p75NTR/Trks in PFC and hippocampus of normal controls and suicide subjects

Group Mean SD

PFC

 mRNA

  TrkA Control 5.18 1.62

Suicide 9.84 2.74**

  TrkB Control 0.02 0.008

Suicide 0.05 0.013**

  TrkC Control 0.17 0.04

Suicide 0.25 0.05**

 Immunolabeling

  TrkA Control 1.03 0.31

Suicide 1.95 0.59**

  TrkB Control 1.05 0.36

Suicide 2.12 0.47**

  TrkC Control 1.03 0.25

Suicide 1.42 0.40**

 Phosphorylation

  TrkA Control 1.04 0.31

Suicide 2.02 0.69**

  TrkB Control 1.04 0.32

Suicide 1.97 0.64**

  TrkC Control 1.07 0.42

Suicide 1.38 0.43*

Hippocampus

 mRNA

  TrkA Control 0.91 0.35

Suicide 2.55 0.74**

  TrkB Control 0.002 0.001

Suicide 0.007 0.002**

  TrkC Control 0.05 0.02

Suicide 0.14 0.04**

 Immunolabeling

  TrkA Control 1.05 0.37

Suicide 1.93 0.60**

  TrkB Control 1.02 0.24

Suicide 2.31 0.61**

  TrkC Control 1.03 0.29

Suicide 1.91 0.41**

 Phosphorylation

  TrkA Control 1.05 0.34
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Group Mean SD

Suicide 2.00 0.51**

  TrkB Control 1.03 0.30

Suicide 1.99 0.57**

  TrkC Control 1.04 0.29

Suicide 2.10 0.60**

*
p = 0.013,

**
p < 0.001,

SD = standard deviation
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