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Abstract
When the number of projections does not satisfy the Shannon/Nyquist sampling requirement,
streaking artifacts are inevitable in x-ray computed tomography (CT) images reconstructed using
filtered backprojection algorithms. In this letter, the spatial-temporal correlations in dynamic CT
imaging have been exploited to sparsify dynamic CT image sequences and the newly proposed
compressed sensing (CS) reconstruction method is applied to reconstruct the target image sequences.
A prior image reconstructed from the union of interleaved dynamical data sets is utilized to constrain
the CS image reconstruction for the individual time frames. This method is referred to as prior image
constrained compressed sensing (PICCS). In vivo experimental animal studies were conducted to
validate the PICCS algorithm, and the results indicate that PICCS enables accurate reconstruction
of dynamic CT images using about 20 view angles, which corresponds to an undersampling factor
of 32. This undersampling factor implies a potential radiation dose reduction by a factor of 32 in
myocardial CT perfusion imaging.
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According to the standard image reconstruction theory in medical imaging, in order to avoid
view aliasing artifacts, the sampling rate of the view angles must satisfy the Shannon/Nyquist
sampling theorem. The universal applicability of the Shannon/Nyquist sampling theorem lies
in the fact that no specific prior information about the image is assumed. However, in practice,
some prior information about the image is typically available. When the available prior
information is appropriately incorporated into the image reconstruction procedure, an image
may be accurately reconstructed even if the Shannon/Nyquist sampling requirement is
significantly violated. For example, if one knows a target computed tomography (CT) image
is circularly symmetric and spatially uniform, only one view of parallel-beam projections is
needed to accurately reconstruct the linear attenuation coefficient of the object. Another
example is that if one knows that a target image consists of only a single point, then only two
orthogonal projections are sufficient to accurately reconstruct the image point. Along the same
line of reasoning, if a target image is known to be a set of sparsely distributed points, one can
imagine that the image may be reconstructed without satisfying the Shannon/Nyquist sampling
requirements. Of course, it is a highly nontrivial task to formulate a rigorous image
reconstruction theory to exploit the sparsity hidden in the above extremal examples.
Fortunately, a new image reconstruction theory, compressed sensing (CS), was rigorously
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formulated to systematically and accurately reconstruct a sparse image from an undersampled
data set.1,2 It has been mathematically proven that an N×N image can be accurately
reconstructed using on the order of SlnN samples provided that there are only S significant
pixels in the image.

Although the mathematical framework of CS is elegant, the relevance in medical imaging
critically relies on the answers to the questions: (1) Are medical images sparse? (2) If a medical
image is not sparse, can we use some transforms to make it sparse? In fact, a real medical image
is often not sparse in the original pixel representation. For example, in a contrast enhanced CT
exam, images before contrast injection or after contrast enhancement are not sparse as shown
by the histograms of the pixel values in Fig. 1(a). However, medical imaging physicists and
clinicians have known for a long time that a subtraction operation can make the resultant image
significantly sparser. In the newly proposed CS reconstruction theory, mathematical transforms
have been applied to a single image to sparsify the image. These transforms are referred to as
sparsifying transforms. For example, the image in Fig. 1(a) can be sparsified by applying a
discrete gradient operation which is defined as

(1)

where X(m,n) is the image value at the pixel (m,n) and DxX=X(m+l,n)−X(m,n) and DyX=X
(m,n+1)−X(m,n). This image specified by ▽m,nX(m,n) is referred to as the gradient image. As
shown in Fig. 1, the discrete gradient image is significantly sparser. To be more quantitative,
if we define a significant pixel as the one with more than 10% of the highest pixel value in an
image, then we can use a histogram to demonstrate the distribution of the number of significant
pixels in the original image and the discrete gradient image (Fig. 1). The discrere gradient
image is three times sparser than the original image. This example demonstrates that a medical
image can be made sparse even if the original image is not very sparse.

The basic idea in compressed sensing (CS) image reconstruction theory can be summarized as
follows: instead of directly reconstructing a target image, the sparsified version of the image
is reconstructed. In the sparsified image, significantly fewer image pixels have significant
image values. Thus, it is possible to reconstruct the sparsified image from an undersampled
data set without streaking artifacts. After the sparsified image is reconstructed, an “inverse”
sparsifying transform is used to transform the sparsified image back to the target image. In
practice, there is no need to have an explicit form for the inverse sparsifying transform. In fact,
only the sparsifying transform is needed in image reconstruction.

To be more specific, a sparsifying transform is denoted as Ψ. CS image reconstruction is
implemented by solving the following constrained minimization problem:

(2)

where  is the l1 norm of an N-dimensional vector z. The vector X is the vectorized
target image. The matrix A is the system matrix to describe the x-ray projection measurements.
The vector Y is the line integral values. Namely, the CS image reconstruction selects an image
which minimizes the  norm of the sparsified image among all images which are consistent
with the physical measurements AX=Y. Note that when the projection data are highly
undersampled, the available number of equations in Eq. (2) is much less than the number of
unknowns in the image vector X. In CS image reconstruction, frequently used sparsifying
transforms are discrete gradient transforms3 and wavelet transforms.4 The discrete gradient
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sparsifying transform has recently been utilized in the CS method to reconstruct CT images.
5,6

In this letter, the CS image reconstruction algorithm was generalized to reconstruct dynamic
CT image sequences. In dynamic CT imaging, the same image slice or the same image volume
is sequentially scanned many times in order to measure the dynamical change in the image
object. Dynamic data acquisitions may be prescribed in an interleaved pattern such that the
union of the dynamic data sets form a composite data set which satisfies the Shannon/Nyquist
sampling requirements. In this letter, a prior image (XP), reconstructed using the standard
filtered backprojection (FBP) reconstruction algorithm from the union of the interleaved
dynamic projection data sets, was utilized to constrain the CS image reconstruction method.
Thus, the proposed method is referred to as prior image constrained compressed sensing
(PICCS). In the reconstructed prior image, the dynamical information is lost but the static
structures in the image are well reconstructed without undersampling streaking artifacts. The
subtraction of the target image at each time frame from this prior image will cancel all of the
static structures in the target image. Therefore, the target image can be sparsified by the
subtraction operation: X−XP. After the subtraction, the known sparsifying transforms, Ψ1, used
in CS are utilized to further sparsify the subtracted image X−XP. Namely, the PICCS image
reconstruction algorithm is implemented by solving the following constrained minimization
problem:

(3)

Here the sparsifying transforms, Ψ1 and Ψ2, can be any transform including those previously
used in the CS literature.1,2 In this letter, for simplicity, the discrete gradient in Eq. (1) is
selected for both Ψ1 and Ψ2 to demonstrate the performance of the PICCS algorithm. In order
to mitigate the effect of potential artifacts in the prior image on the final reconstructed image,
the conventional CS objective function  has been incorporated into the PICCS algorithm
with a relative weight of (1−α). In this letter, the control parameter α was selected to be 0.91.
When α is set to be 0, the PICCS algorithm [Eq. (3)] reduces to the conventional CS algorithm
[Eq. (2)].

The above constrained minimization was numerically implemented in two separate steps: In
the first step, the standard algebraic reconstruction technique (ART)7 was used to reconstruct
image X(k) based on equation AX=Y. In the second step, the weighted summation [Eq. (3)] of
the total variation (TV), viz., the  norm of the discrete gradient image, of the subtracted image
X−XP and the TV of the image X is minimized using the standard steepest descent method.8
These two steps were iteratively implemented in an alternating manner. The final image is
displayed after the squared difference of reconstructed images at two neighboring ART and
TV minimization steps is smaller than a predetermined threshold value. In order to compare
the performance of the PICCS and CS algorithms, the control parameter α was set to be zero,
yielding the CS algorithm, while the other reconstruction parameters remain the same.

The proposed PICCS image reconstruction algorithm was validated using x-ray projection data
acquired from an anesthetized 47 kg male swine. The scanning protocol utilized in this animal
study was approved by the Institutional Review Board, and complies with the guidelines for
care of animals given by the National Institutes of Health. A state-of-the-art clinical 64-slice
scanner (GE Healthcare Lightspeed VCT, Waukesha, Wisconsin) was used to scan the animal.
A “cine mode” with a 0.4 s gantry rotation period was employed in data acquisition. The scan
was performed with x-ray parameters of 120 kVp and 500 mA. The acquired raw data were
preprocessed with the manufacturer's software (GE Healthcare, Waukesha, Wisconsin).
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The acquired projection data during the 50 s scan were retrospectively gated using a
simultaneously recorded electrocardiogram signal. In this study, a cardiac window with a width
of 261 ms centered at 75% of the R-R interval was utilized for gating. This cardiac window
corresponds to a short scan angular range which corresponds to 642 view angles. Using the
short scan datasets at each heartbeat, the cardiac images were reconstructed using the standard
short scan FBP method9 for all heartbeats. One heartbeat corresponds to one image frame in
the analysis of contrast dynamics.

In order to validate the PICCS algorithm, the fully sampled short-scan data set at each heartbeat
was down sampled by a factor of 32, which corresponds to 20 views of projection at each
heartbeat. The undersampled view angles at each heartbeat have been selected to be
approximately uniformly distributed over the short scan angular range. From one heartbeat to
another, the undersampled view angles have been selected to be approximately interleaved
with each other such that their union provides a fully sampled data set. From this data set, a
prior image was reconstructed using the FBP algorithm. The PICCS algorithm was applied to
reconstruct image frames at every heartbeat from the undersampled data. A representative
image frame was reconstructed using the FBP method over a fully sampled data set (642 views
of projections), FBP, CS, and PICCS over the undersampled data set (20 views of projections).
As shown in Fig. 2, severe streaking artifacts appear in the undersampled FBP image. These
artifacts are so strong that both the major anatomical structures and the patient bed are barely
identifiable. Although streaking artifacts are significantly mitigated in the undersampled CS
image, the image is significantly blurred and severe patching appears in the reconstructed
image. Even the bones cannot be reconstructed using CS algorithm with 20 views of
projections. In contrast, the undersampled PICCS image is nearly artifact free. When the PlCCS
image is compared with the fully sampled FBP images with 642 views of projections the quality
of reconstruction is nearly identical.

In order to further validate the reconstruction accuracy of the PICCS algorithm, the contrast
dynamic curves for three regions of interest with 13×13 pixels on the left ventricle, right
ventricle, and myocardium were extracted from the 66 reconstructed image frames. The results
are presented in Fig. 3. Excellent agreement between the undersampled PICCS results and the
fully sampled FBP results has been found.

In conclusion, the PICCS method has been proposed in this letter to accurately reconstruct
dynamic CT images from highly undersampled projection data sets. Preliminary experimental
studies have been conducted to validate the proposed PICCS algorithm. The results
demonstrated that it is possible to use PICCS to accurately reconstruct dynamic CT images
using about 20 views of projections with high reconstruction fidelity for both morphology and
contrast dynamics of the image sequence, while other methods such as FBP and CS fail.
Relative to the fully sampled data set with about 642 view angles, the undersampling factor of
32 implies a potential 32 times radiation dose reduction in myocardial CT perfusion imaging.
Further studies are ongoing to investigate the final radiation dose reduction factor.
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Fig. 1.
Images (left column) and the corresponding histograms (right column) of the image pixel
values, (a) Image before sparsifying transform. (b) Discrete gradient image of the image (a).
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Fig. 2.
Comparison of image quality for FBP method using 642 views of projections (upper left),
PICCS (upper right), FBP (lower left) and CS (lower right) using 20 projections. The display
window is the same for all images.
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Fig. 3.
Comparison of the contrast enhancement curves extracted from the fully sampled FBP images
(642 views of projections) and undersampled PICCS images (20 views of projections).
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