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Abstract
Pharmacogenetic clinical trials seek to identify genetic modifiers of treatment effects. When a trial
has collected data on many potential genetic markers, a first step in analysis is to screen for evidence
of pharmacogenetic effects by testing for treatment-by-marker interactions in a statistical model for
the outcome of interest. This approach is potentially problematic because i) individual significance
tests can be overly sensitive, particularly when sample sizes are large; and ii) standard significance
tests fail to distinguish between markers that are likely, on biological grounds, to have an effect, and
those that are not. One way to address these concerns is to perform Bayesian hypothesis tests (Berger
1985; Kass and Raftery 1995), which are typically more conservative than standard uncorrected
frequentist tests, less conservative than multiplicity-corrected tests, and make explicit use of relevant
biological information through specification of the prior distribution. In this article we use a Bayesian
testing approach to screen a panel of genetic markers recorded in a randomized clinical trial of
bupropion versus placebo for smoking cessation. From a panel of 59 single-nucleotide
polymorphisms (SNPs) located on 11 candidate genes, we identify four SNPs (one each on
CHRNA5 and CHRNA2 and two on CHAT) that appear to have pharmacogenetic relevance. Of these,
the SNP on CHRNA5 is most robust to specification of the prior. An unadjusted frequentist test
identifies seven SNPs, including these four, none of which remains significant upon correction for
multiplicity. In a panel of 43 randomly selected control SNPs, none is significant by either the
Bayesian or the corrected frequentist test.
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Introduction
The emerging field of pharmacogenomics seeks to link genetic polymorphisms in drug targets
and metabolizing enzymes with efficacy and toxicity phenotypes (Eichelbaum et al. 2006).
When a polymorphism is recorded on subjects in a clinical trial, a natural approach to assessing
its importance is to test the treatment-by-polymorphism interaction in a statistical model for
the trial outcome. Although such an approach potentially oversimplifies the complexity of the
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polygenic drug response phenotype (Need et al. 2005), nevertheless it can be valuable in
identifying markers that are worthy of further study.

A potential problem with this approach is that classical significance tests are overly sensitive,
especially in large samples. This is because they assess departures from the null rather than
comparing the fits of the null and alternative models. The problem is compounded when one
conducts many tests, as failure to correct for multiplicity can lead to an excess of false positives.
One can adapt variants of the Bonferroni method to construct adjusted tests whose family-wise
type I error rates are acceptably low (Hochberg 1988), but these methods are extremely
conservative. Moreover, in screening large numbers of markers one should be able to use
available biological information. In particular, markers that are thought likely, a priori, to have
a pharmacogenetic effect should be held to a lower standard of evidence than those that are
unlikely to have such an effect. That classical statistical tests do not permit the incorporation
of prior information is often touted as an indication of their “objectivity”.

A possible alternative approach is to screen the markers using Bayesian hypothesis testing
(Berger 1985). This involves calculating for each marker a Bayes factor, or weight of evidence,
that measures the plausibility of the null hypothesis of no interaction versus the alternative that
there is an interaction (Kass and Raftery 1995). Bayesian tests are generally more conservative
than classical tests and therefore potentially more suitable for screening panels of markers.
Moreover Bayesian tests make explicit use of contextual biological information through
specification of the prior distribution, which in this setting refers to the analyst’s a priori degree
of belief that a particular marker is pharmacogenetically active. Until fairly recently, the
computation of Bayesian analyses in all but the simplest models was prohibitively expensive,
but improvements in computing technology have largely eliminated this obstacle. Thus,
applications of Bayesian analysis in genetics have become increasingly common (Desai and
Emond 2004; Tadesse et al. 2005; Zhao et al. 2005; Gottardo et al. 2006; Kitchen et al.
2007).

In this article we conduct an explicitly Bayesian analysis of a panel of candidate genetic markers
collected in a clinical trial of bupropion for smoking cessation. Pharmacotherapy for smoking
cessation provides an ideal case study given the public health significance of tobacco
dependence, the relatively modest effectiveness of currently available drugs, and emerging
data supporting associations of genetic polymorphisms with response to nicotine replacement
therapies (Johnstone et al. 2004; Lerman et al. 2006; Lerman et al. 2004; Malaiyandi et al.
2006; David et al. 2007) and bupropion (Swan et al. 2005; Berrettini et al. 2007; Lee et al.
2006; Lerman et al. 2004).

Our analysis focuses on 59 single-nucleotide polymorphisms (SNPs) on 11 genes in the
nicotinic acetylcholine receptor (nAChR) family. In vitro binding experiments have
demonstrated that bupropion is a non-competitive antagonist at the α3β4α5±β2 subtype of
nAChR (Fryer and Lukas 1999; Slemmer et al. 2000; Bondarev et al. 2003; Alkondon and
Albuquerque 2005). Bupropion blocks the hypothermic and antinociceptive effects of nicotine
(Slemmer et al. 2000; Damaj et al. 2004), as well as dopamine and norepinephrine release from
striatal synaptical vesicles, most likely via antagonism at these nAChRs (Miller et al. 2002).
Several human genetic studies have also nominated nAChRs in the etiology of tobacco
dependence (Feng et al. 2004; Li et al. 2005; Greenbaum et al. 2006; Beirut et al. 2007; Saccone
et al. 2007), although not all results have been positive (Silverman et al. 2000; Lueders et al.
2002).

In this article we apply Bayesian hypothesis testing to SNP data and clinical outcomes from
the bupropion trial. Our analyses moreover compare the Bayesian approach to standard
unadjusted and adjusted frequentist analyses.
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Materials and Methods
The bupropion trial

The data are from a placebo-controlled randomized pharmacogenetic trial of bupropion for
smoking cessation; the design and main findings have been published previously (Lerman et
al. 2004). Briefly, the study enrolled 599 smokers between April 1999 and October 2001 at
Georgetown University and SUNY Buffalo. Participants were aged 18 or older and had smoked
at least 10 cigarettes per day for the preceding 12 months. Exclusion criteria included
pregnancy, a history of DSM-IV axis I psychiatric disorder, seizure disorder, substance abuse,
and current use of psychotropic medications. Participants were randomized to receive either
bupropion or placebo for 10 weeks, plus 7 sessions of behavioral group smoking cessation
counseling. The primary outcome measure was 7-day point prevalence smoking cessation at
the end of treatment (8 weeks following the target quit date), which was biochemically verified
using cotinine (<15ng/ml to confirm smoking cessation). To reduce potential bias from ethnic
admixture, we restrict our genetic analyses to the 436 participants of European ancestry in the
intention-to-treat population.

All participants provided DNA for the pharmacogenetic evaluation. The data analysis
described here focuses on a panel of 59 SNPs in seven nAChR α-subunit genes (CHRNA2–
CHRNA7, CHRNA10), three nAChR β-subunit genes (CHRNB2–CHRNB4), and choline
acetyltransferase (CHAT). As a negative control, we included a panel of 43 SNPs, randomly
selected from throughout the genome, that had been used to test for population stratification
(Lerman et al. 2004). Although all subjects provided DNA, valid data were not available on
all SNPs for all subjects. The number of available cases ranged from 290 to 428 among the
candidate SNPs and 334 to 424 among the control SNPs, with 75% of all SNPs having at least
411 available cases.

The study was approved by the appropriate institutional review boards.

Statistical model
For each SNP we assume a dominant model in that a subject who has at least one copy of the
rarer allele is considered positive for the polymorphism. Because the outcome is binary, our
basic model is a logistic regression predicting quit success from treatment arm, SNP status,
and the treatment-by-SNP interaction:

where

In this model β0 is the logit of the overall quit rate; βT is the log odds ratio for treatment; βG is
the log odds ratio for the polymorphism; and βI is the interaction, or the difference of treatment
log odds ratios between subjects who are positive and negative for the polymorphism.
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Priors for Bayesian hypothesis testing
In Bayesian hypothesis testing one must specify a prior, or distribution over the space of the
model parameters, that attaches a point mass to the null hypothesis (in this case, {β: βI = 0})
and spreads the remainder of the prior probability over the set of alternative hypotheses. For
the bupropion trial, we set the prior fI(βI) for the interaction parameter βI to be a mixture of a
point null and a continuous density:

where ρ is the prior probability that the null is true (i.e., that the interaction is 0), I0(x) is an
indicator that x = 0, and g(βI) is a prior density over the set of alternative (non-zero) values of
βI. We moreover assume that the other parameters β0, βT and βG are a priori independent of
each other and of βI.

For convenience, we take our priors for the β coefficients to be normal, choosing their means
and variances to match information from the literature. In a previous randomized, placebo-
controlled trial of bupropion in smoking cessation (Tønnesen et al. 2003), the average of
abstinence fractions in the two groups on the logit scale was −0.69, which we use as the prior
mean of β0. Taking the variance estimates from the Tønnesen study, transforming to the logit
scale, and inflating by 50% to account for between-trial variability, we arrive at a prior standard
deviation (SD) for β0 of 0.148. Also adapting estimates from the Tønnesen study, we take the
prior of βT to be normal with mean 1.037 and SD 0.315. Assuming that most SNPs will have
no more than a modest main effect on abstinence, we take the prior for βG to be normal with
mean 0 and SD equal to that of βT.

The prior for βI contains both a continuous and a discrete part. To compute Bayes factors it is
not necessary to specify the prior probability of the null hypothesis ρ, so we allow this number
to vary in the range (0, 1). We take g(βI), the density of βI over the alternative space, to be
normal with mean 0 and SD equal to twice that of βT (i.e., 0.632). As g(βI) is the component
of the prior that is least well informed by data, we conducted a sensitivity analysis in which
we varied its SD in the range (0, 9).

Posterior probabilities and Bayes factors
Given the data x and the model assumptions, the posterior probability that the null hypothesis
is true is

where

π0TG is the joint prior for the parameters β0, βT and βG, and L(β) is the likelihood function. One
can think of m0(x) and m1(x) as the marginal likelihoods for the null and alternative hypotheses,
respectively. The marginal likelihood reflects how well the model hypothesis explains the
observed data.
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We calculate m0(x) and m1(x) by importance sampling (Hammersley and Handscomb 1964),
a simulation method that takes advantage of the fact that although the posterior density itself
is generally unavailable, it is typically easy to compute a function that is proportional to the
posterior density — specifically, the product of the prior and the likelihood. In importance
sampling one takes a large number of draws from an approximate posterior, known as the
proposal distribution, that one can easily simulate from and whose density is available in closed
form (the asymptotic normal approximation to the sampling distribution of the MLE is a
common choice). One then calculates importance weights, which are the ratios of the unscaled
true posterior density to the proposal density evaluated at the sampled parameters. Averages
of functions of the sampled parameters, weighted by the importance weights, approximate the
posterior expectations of those functions. SPlus code for an implementation of importance
sampling in the pharmacogenetic model is available from the first author.

A summary of the weight of evidence against the null is the Bayes factor (BF), defined as the
ratio of the posterior odds that the null is true to the prior odds that the null is true:

Note that the BF does not depend on the prior probability of the null hypothesis, ρ, which
cancels out when one takes the ratio of posterior to prior odds. BF does depend on the priors
for the parameters under the null and the alternative hypotheses, however, because these
functions enter into the calculation of m0(x) and m1(x), respectively.

To use BF as a screening tool, we adopt the Jeffreys scale of evidence, which interprets a value
of BF < 1/3 as moderate evidence for the alternative hypothesis (Kass and Raftery 1995). For
example, a BF of this magnitude implies evidence strong enough to transform a prior odds of
3 (prior probability equal to 75%) to a posterior odds of 1 or less (posterior probability 50%
or less).

Comparison with a frequentist analysis
We have also calculated p values for the hypothesis of no interaction using a likelihood-ratio
test (LRT) and a multiplicity-adjusted LRT based on the permutation step-down min-P
procedure of Westfall and Young (1993). This method controls the family-wise error rate in
the strong sense; that is, it controls the error rate for any combination of true and false
hypotheses. We have used it here because it is valid even if the individual tests are not
independent, as is the case in our data.

Results
Table 1 lists the 59 candidate SNPs, sorted by BF, with the corresponding LRT unadjusted and
adjusted p values for the test of no treatment-by-SNP interaction. The criterion BF < 1/3
identifies four SNPs, on genes CHRNA5, CHAT (two SNPs) and CHRNA2, that have potential
pharmacogenetic associations. To assess robustness we varied the alternative-hypothesis prior
SD of the interaction βI and found that the BF for the CHRNA5 SNP remained less than 1/3
for prior SDs in the range (0.4, 3.6), suggesting modest sensitivity to the prior. The other SNPs
have BFs under 1/3 in the ranges (0.5, 3.3), (0.5, 1.9) and (0.6, 1.4), respectively, suggesting
greater sensitivity. Thus we consider the CHRNA5 SNP to be significant in a robust Bayesian
sense (Berger and Berry 1988). By comparison, the unadjusted LRT p value criterion identifies
seven SNPs as potentially pharmacogenetically active (column 5 of Table 1). None of these p
values remains significant in the adjusted procedure that controls the FWE rate at 0.05 (column
6).
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Table 2 shows the BFs and unadjusted and adjusted p values for the treatment-by-SNP
interaction tests for the 43 randomly selected SNPs. None of these is identified as significant
by either the Bayesian or adjusted frequentist criteria, and only one is identified as significant
by the unadjusted frequentist test. As one would expect to find two or more p values of .05 or
less in a list of 43 p values, we consider it likely that this lone significant finding is a type I
error.

Table 3 shows the posterior probability of the null hypothesis of no interaction as a function
of its prior probability for the top four candidate and control SNPs. Note, for instance, that for
the second- and third-ranked control SNPs, whose BFs are nearly 1 (Table 2), the prior and
posterior probabilities are practically equal. For each SNP, the posterior probability of the null
increases monotonically as ρ (the prior probability of the null) increases from 0.1 to 0.9. A
potential use of the prior probabilities in screening a large number of markers (for example in
a SNP array) would assign some value ρ ≤0.5 to candidate SNPs and some ρ ≥0.5 to control
SNPs, in which case the top four candidate SNPs would all have posterior probabilities of the
null no greater than 24%, whereas even the top four control SNPs would have posterior
probabilities of the null in excess of 44%.

The last four columns of Tables 1 and 2 present the raw probabilities of 7-day abstinence at
EOT, cross-classified by SNP type and treatment, for the candidate and control SNPs,
respectively. Note that for the top SNP, rs871058 on CHRNA5, there is a modest treatment
effect (24% quit on placebo vs. 26% on bupropion) for subjects who possess the rare allele but
a large effect for those who do not (19% vs. 44%). The same is true for rs1917810 on CHAT
and rs2565065 on CHRNA2, the third and fourth most significant SNPs. The opposite holds
for the second-lowest-BF SNP, rs2269338 on CHAT, where the bupropion effect is large for
positives and modest for negatives. Thus a potential use of rs871058, rs1917810 and rs2565065
in clinical practice would be to prescribe bupropion treatment to subjects who are heterozygous
for the common allele, and some other treatment, perhaps nicotine replacement therapy or
varenicline, for the others. One would use an opposite approach with rs2269338.

Note that interaction effects are generally more modest for the control SNPs (Table 2) and that
in both the candidate and control SNPs the strength of the interaction declines as one progresses
down the columns.

Discussion
We have developed a Bayesian hypothesis test to screen for genetic modifiers of patient
response to bupropion pharmacotherapy for smoking cessation. Our method is more
conservative than a conventional frequentist test, but less so than the frequentist test adjusted
for multiplicity. The method identified one strongly robust pharmacogenetic marker from a
panel of candidate SNPs in nAChR genes. Neither the Bayesian test nor the adjusted frequentist
test identified any of a panel of randomly selected control SNPs as likely to be
pharmacogenetically informative.

The most strongly significant marker is rs871058, a SNP in the first intron of CHRNA5, which
codes for the nAChR α5 subunit. In the human genome, CHRNA5 lies in a three-gene cluster
CHRNA5-CHRNA3-CHRNB4 (Duga et al. 2001) that comprises a single haplotype block
(HapmapDatabase 2007). The α5 subunit binds to either the α3β4 or α3β2 subunits to form a
pentamer (Conroy et al. 1992; Conroy and Berg 1995), and inclusion of the α5 subunit increases
the efficacy of nicotine’s actions on these receptors (Wang et al. 1996). The α5 subunit is also
a component of α4β2, the most abundant nAChR in the brain, and inclusion of α5 increases
conductance of these receptors and causes a higher rate of desensitization (Ramirez-Latorre et
al. 1996). Moreover, pre-clinical studies have demonstrated that bupropion is a non-
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competitive antagonist at the α3β4α5 and α3β2α5 subunits (Fryer and Lukas 1999; Bondarev
et al. 2003), and thus it is plausible that genetic variation in CHRNA5 influences bupropion’s
efficacy for treatment of tobacco dependence. Further, a non-synonymous SNP (rs16969968)
on CHRNA5 emerged as the strongest risk variant in a nicotine dependence association study
of over 3,000 SNPs in over 300 candidate genes (Saccone et al. 2007). This polymorphism is
located about 24kb downstream from rs871058, and these two SNPs lie in the same haplotype
block. Although the functional significance of these SNPs is unknown, there is a high degree
of linkage disequilibrium across CHRNA5 (see Figure 1) that matches the Hapmap data, and
the intronic SNP identified in the current analysis could be in linkage with an unknown
functional variant that alters the subunit properties (Hapmap Database 2007). We obtained
sufficient coverage of CHRNA5 with the seven SNPs spanning 26kb of its total 28kb, and
pairwise linkage disequilibrium between the markers was high.

On the whole the BF and p value give similar answers. When they do not, it is a matter of the
data fitting poorly under the alternative-hypothesis prior. For example, candidate SNP
rs2292975 on CHRNA2, ranked 10 in Table 1, has a significant LRT p value but a BF that does
not meet the 1/3 cutoff. Under the null model, the treatment effect was moderate (β ̂T = 0.585),
whereas under the alternative model the treatment effect was reduced substantially (away from
the prior mean) to β ̂T = 0.368, with a very large interaction term (β ̂I = 1.07). The net result was
that although the interaction model fits better in the sense of the LRT, the estimated parameters
are more remote from the prior mean because of the small treatment effect and large interaction.
This is the effect of the alternative-hypothesis prior, which allows for interaction terms but at
the same time discounts large interactions. Note that this situation occurs when bupropion has
a positive treatment effect for SNP carriers but a negative effect for non-carriers. The same
pattern occurs for the SNP with the 14th-smallest BF, rs2292974 on CHRNA2.

As suggested in the preceding paragraph, a potential concern with Bayesian tests is their
dependence on the assumed prior distribution. Although in general one should select a prior
that most faithfully reflects existing knowledge about the actions of the treatment in question,
inevitably there will be aspects of the prior that existing data cannot address precisely —
specifically, the size of the interaction. Our sensitivity analysis reveals a modest effect of the
assumed prior SD of the interaction coefficient with the strongest BF; more elaborate sensitivity
analyses are possible and may be desirable in some cases.

Other related problems that can benefit from Bayesian analysis of this type include
specification of the optimal genetic model (dominant, recessive, additive or general) and
identification of combinations of SNPs that best predict treatment outcome (Kitchen et al.
2007). Because such models are not generally nested — i.e., they do not form a sequence of
sub-models — they are not amenable to comparison by classical frequentist tests but
nevertheless can readily be tested using Bayes factors.

The current model allows for testing of SNPs individually but does not take account of potential
correlation between SNPs. Such correlation is likely to obtain in cases, like this one, where
SNPs on several related genes may together affect a complex phenotype. A more
comprehensive approach would specify a model including a treatment effect, main effects of
all the SNPs, their interactions with treatment, and also possibly SNP-by-SNP and other higher-
order interactions. This is a potentially large and complicated model involving hundreds of
parameters even in an application where, like ours, only a few dozen genetic markers are in
play. A comprehensive model of this kind would allow us not only to more efficiently screen
markers but to identify parsimonious models describing the simultaneous effects of treatment
and genetic factors on the outcome. We are working to build such models in further research
with the bupropion data.
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The Bayesian approach measures the weight of evidence for an hypothesis from a single data
set, unlike frequentist tests that seek to achieve target values for long-term error rates in
hypothetical replications of an experiment. Bayesian tests are typically more conservative than
frequentist tests, as our example illustrated. Thus Bayesian tests may to some extent mitigate
the multiplicity problem that arises when one tests a large number of hypotheses with a single
set of data. It does not follow, however, that the Bayesian test, considered as a screening
procedure, is free of multiplicity concerns (Westfall et al. 1997). That is, one can evaluate the
Bayesian test in terms of its power and type I error rate, which will, as in any frequentist test,
depend on the number of markers being assessed. Thus to set the significance criterion for the
BF in a screening context one should consider both the number of markers to be screened and
the likely distribution of alternative-hypothesis interaction effects. For example, in screening
a larger panel of markers, one may wish to use a stricter criterion for significance such as BF
< 1/20. Methodology for the selection of this criterion is an object for further empirical research.
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Figure 1.
Diagram of the CHRNA5 gene indicating the genotyped SNPs. The darker shaded boxes
represent the exons and the lighter shaded boxes represent the untranslated regions (kb =
kilobases, D′= linkage disequilibrium estimate). Figure is not drawn to scale.
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