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Abstract
PDZ domains constitute one of the largest families of interaction domains and function by binding
the C termini of their target proteins1,2. Using Bayesian estimation, we constructed a three-
dimensional extension of a position-specific scoring matrix that predicts to which peptides a PDZ
domain will bind, given the primary sequences of the PDZ domain and the peptides. The model,
which was trained using interaction data from 82 PDZ domains and 93 peptides encoded in the mouse
genome3, successfully predicts interactions involving other mouse PDZ domains, as well as PDZ
domains from Drosophila melanogaster and, to a lesser extent, PDZ domains from Caenorhabditis
elegans. The model also predicts the differential effects of point mutations in peptide ligands on their
PDZ domain–binding affinities. Overall, we show that our approach captures, in a single model, the
binding selectivity of the PDZ domain family.

Most efforts to define the binding selectivity of an interaction domain report either a consensus
sequence for the domain’s peptide ligands4–6 or a position-specific scoring matrix that
captures the domain’s binding preferences7–9. Although these approaches are clearly useful,
they are based on experimental data that are specific to the domain being studied and so are
silent with respect to other members of the domain family. A truly general model—one that
could be used to predict interactions involving PDZ domains for which no data are available
—would take into account the sequence not only of the peptide, but also of the PDZ domain.
We reasoned that, if the amino acid identity at specific positions in the PDZ domain’s three-
dimensional structure determines that domain’s preferences for amino acids at specific
positions in the peptide ligand, it might be possible to capture this information for the entire
PDZ domain family in a single model by integrating sequence information, structural
information and protein interaction data (Fig. 1a).
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We began by constructing a multiple sequence alignment10,11 of mouse PDZ domains from
their primary sequences and from available structures deposited in the Research Collaboratory
for Structural Bioinformatics Protein Data Bank (PDB) (http://www.rcsb.org/pdb)
(Supplementary Table 1 online). We constrained the model to focus only on position pairs that
are in close proximity (<.0 Å), using the structure of a1-syntrophin PDZ (a1synPDZ)
complexed with the heptapeptide GVKESLV as a reference structure12. We excluded any
residue position in the PDZ domain that was not perfectly aligned (that is, there is a gap in the
alignment at that position). A total of 38 position pairs were identified (Fig. 1b and
Supplementary Fig. 1 online), involving 16 PDZ domain binding-pocket residues, numbered
1 through 16 (Fig. 1c), and 5 peptide ligand residues, numbered –4 through 0 (C terminus).

Next, we formulated an additive model comprising 38 scoring matrices, one for each position
pair. Each 20 × 20 matrix comprises scores for pairs of amino acid residues: one residue on
the PDZ domain and the other on the peptide. A PDZ domain is predicted to bind a peptide
with KD < 100 µM if

(1)

where ψ is a binding score, ax is the amino acid at position x of the domain, by is the amino
acid at position y of the peptide ligand, θxyis the scoring matrix for position pair (x, y), Ω is
the set of position pairs included in the model and τ is a scoring threshold. We did not consider
higher-order interactions between residues (that is, how the interaction between two residues
is affected by a third). Calculating higher-order interactions requires a much larger data set
owing to an exponential expansion in model complexity. The choice of 100 µM as the threshold
for an interaction was based on our earlier observation that the affinities of PDZ domain–
peptide interactions have a unimodal distribution that is bounded by ~100 µM (Supplementary
Fig. 2a online)3. Very few interactions are that weak, however: ~90% of interactions have a
KD < 50 µM and ~60% have a KD < 20 µM.

To fit the model, we relied on a quantitative interaction data set that we recently reported
involving PDZ domains and peptides derived from mouse3. The data were obtained by
screening protein micro-arrays comprising 157 mouse PDZ domains with 217 fluorescently
labeled peptides, and then retesting and quantifying every array positive, as well as many array
negatives, using fluorescence polarization. In total, 85 PDZ domains bound one or more
peptides. Three domains were removed from the data set because their binding pockets did not
align well with those of the other domains. This left 560 interactions and 1,167 noninteractions
confirmed by fluorescence polarization, involving 82 mouse PDZ domains and 93 peptides, to
train the model (Supplementary Table 2 online). Because the number of model parameters
(15,200) greatly exceeds the number of data points (1,727), the model is highly
underdetermined. We chose to circumvent this problem by adopting a Bayesian approach13.
We assumed the prior distribution for parameter values in equation (1) to be Gaussian with
zero means and then fit the model parameters interdependently using a backfitting algorithm.
This approach identified the posterior mode of parameter values and is referred to as ‘maximum
a posteriori’14.

The model was fit in two ways: using affinities and using binary data. We found empirically
that the model trained with binary data performed better when predicting novel interactions,
whereas the model trained with affinities performed better when predicting the effect of amino
acid substitutions on the free energy of binding. The parameters for both models are provided
in Supplementary Table 3 online.
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There is substantial goodness-of-fit between the models and the training-set data
(Supplementary Fig. 3 online). Additionally, when we examine a slice of the model
highlighting the parameters for x = 13 (position αB1 on the PDZ domain) and y = −2 (position
−2 on the peptide), the model captures a well-established selectivity rule2. If position αB1 is
histidine, PDZ domains prefer serine or threonine at position −2 of the peptide, whereas if
αB1 is tyrosine, PDZ domains prefer aspartate at position −2 (Fig. 1d).

The values for θ vary substantially from one position pair to the next, indicating that there are
no general rules for residue-residue interactions. Previously, a set of ‘unified statistical
potentials’ was calculated for residue–residue interactions, Punified(a, b), by examining the
frequencies of pairs of contact residues in the interfaces of protein homo- and heterodimers in
the PDB (Fig. 2a)15. We did not find any correlation between Punified(a, b) and θ at any position
pair (Fig. 2b), suggesting that the interface of a PDZ domain–peptide complex is very different
in character from that of a static protein complex. For example, whereas interactions between
hydrophobic residues dominate flat protein-protein interfaces (Fig. 2a), this trend is not
uniformly observed in the PDZ domain–peptide position pairs.

To assess the predictive power of our model, we used four validation methods: (i) cross-
validation tests, (ii) identification of peptide ligands for previously uncharacterized mouse PDZ
domains, (iii) prediction of the effect of amino acid substitutions on binding affinity and (iv)
extrapolation to PDZ domains derived from other species.

First, we performed a series of cross-validation tests, evaluating the ability of the model to
extrapolate to other PDZ domains (randomly assigning 12% of the domains as the test set),
other peptides (using 8% of the peptides as the test set) or both. Receiver operating
characteristic (ROC), a common, unbiased measure of prediction accuracy16, was used to
summarize the results of our tests. In all three cases, the ROC curves indicated significant
predictive power (P < 0.025; bootstrap test) (Fig. 3a). Areas under the curves were 0.84 (95%
C.I.: 0.76~0.89), 0.91 (0.84~0.96) and 0.87 (0.67~0.98) for extrapolations to novel mouse
peptides, novel mouse PDZ domains or both. As a point of reference, if we use the unified
statistical potentials15 (by setting θxy (ax, by) to Punified(a, b) for every position pair), our model
is unable to predict PDZ domain–peptide interactions (Fig. 3a). This indicates that there is a
set of molecular recognition rules for PDZ domains based on residue-residue interactions, but
that these rules are context-dependent. It remains to be seen if the same is true of other domain
families as well.

We next asked if the model could be used to facilitate the identification of interactions that had
previously eluded experimental discovery. In our previous protein microarray screen, 72 mouse
PDZ domains did not show any interactions with the 217 tested peptides3. This represents
15,624 possible interactions that were all negative according to the microarrays. This number
of interactions is difficult to study experimentally but is well suited to large-scale prediction,
coupled with small-scale experimentation. We used our model to query these 72 ‘orphan’ PDZ
domains and predicted 126 interactions involving 21 domains (Supplementary Fig. 4a and
Supplementary Table 4 online) and 42 peptides (Supplementary Table 5 online). When we
tested these predicted interactions by fluorescence polarization, we found that 52 of them were,
in fact, positive (Supplementary Table 6 online). These newly discovered interactions had a
KD distribution that was very similar to the distribution in our training set (Supplementary Fig.
2b). Indeed, 81% of the newly identified interactions had a KD < 50 µM and 42% had a KD <
20 µM. None of the ‘de-orphaned’ PDZ domains shares > 33% sequence identity with any of
the training-set domains. Thus, even in light of experimental evidence to the contrary, the model
successfully highlighted interactions involving domains it had never seen before.
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As a third test, we asked if the model could predict changes in binding affinity upon introducing
point mutations into three peptide ligands of a1synPDZ, derived from the voltage-gated
potassium channel Kv1.5 (CLDTSRETDL), the voltage-gated sodium channel Nav1.5
(SPDRDRESIV) and kinesin family member 1B (KIF1B) (NLKAGRETTV). These ligands
were chosen because they represent three of the highest-affinity peptides in our data set. Five
peptide variants were synthesized for each ligand, each variant bearing a single amino acid
substitution at a different position. The affinities of a1synPDZ for these mutant peptides were
measured by fluorescence polarization and compared with the affinities of the wild-type
peptides (Supplementary Table 7 online). One variant peptide (NLKA-GREYTV), which was
associated with a large negative Δψ(−1.36), showed no measurable binding. For the other 14
peptides, we observed a statistically significant negative correlation (r = −0.79; 95% C.I.: −0.97
~ −0.45 based on bootstrapping) between ΔΔG and Δψ (Fig. 3b). Although this observation is
based on a relatively small number of mutant peptides, it nevertheless suggests that the model
captures some aspects of binding affinity.

As the fourth and most stringent test, we asked if our model could provide predictions for PDZ
domains derived from other organisms. To do this, we constructed a structurally informed
multiple sequence alignment of PDZ domains from Mus musculus, D. melanogaster and C.
elegans. We then extracted all the C-terminal sequences from the proteomes of D.
melanogaster and C. elegans (data sets ‘BDGP4.3’ and ‘WS180’ in the ‘Ensembl 48’ database;
http://www.ensembl.org/) and used the model to predict PDZ domain–peptide interactions in
these two species. To test our predictions, we cloned, expressed and purified seven PDZ
domains from D. melanogaster (Supplementary Fig. 4b and Supplementary Table 8 online)
and seven PDZ domains from C. elegans (Supplementary Fig. 4c and Supplementary Table 9
online). We also synthesized 20 peptides derived from D. melanogaster proteins
(Supplementary Table 10 online) and 22 from C. elegans (Supplementary Table 11 online).
We then tested all intraspecies interactions by fluorescence polarization (Supplementary
Tables 12 and 13 online). Although these fly and worm domains share, on average, < 50%
sequence identity with their closest mouse homolog in our training set, the model was able to
predict which peptides they would recognize, albeit with reduced accuracy relative to mouse
PDZ domains (Fig. 3c). The area under the ROC curve was 0.77 for D. melanogaster domains
and 0.68 for C. elegans domains. Thus, it appears that the model is general for the PDZ domain
fold, but its performance decreases for domains derived from more distantly related species.

These validation experiments show that our model, which incorporates 38 position pairs chosen
solely on the basis of proximity and alignment, contains predictive information. Are all position
pairs equally important, or are some more important than others? We reasoned that, if a position
pair plays an important role in predicting peptide-binding selectivity, we should observe a large
spread of its model parameter values. Conversely, if a position pair does not contribute
substantially, the spread should be small. We therefore defined the selectivity importance score,
Wxy, of position pair (x, y) as the s.d. of θxy (ax, by) values, taking into account the frequency
of each pair of amino acid residues in the training-set data. Because position 3 of the PDZ
domain is highly conserved, we excluded this position from our calculations. Interestingly, we
found that the top-scoring position pair was (13,−2), which corresponds to the well-noted
interaction between position αB1 on the PDZ domain and position −2 on the peptide (Fig. 4a)
2. The broader view that emerges from our unbiased study, however, is that several positions
on the PDZ domain combine to recognize a single position on the peptide, and a single position
on the PDZ domain contributes to the recognition of more than one position on the peptide.
Moreover, when we mapped the most predictive position pairs onto the PDZ domain structure
(Fig. 4b), we found that they were distributed throughout the binding pocket.

In summary, we developed a statistical model that predicts PDZ domain–peptide interactions
with reasonable accuracy based on primary sequences. The model can be used to scan whole
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genomes for interactions with a PDZ domain of interest. Predicted interactions can then be
tested experimentally and the inevitable false-positives discarded. We have previously shown
that > 80% of biologically relevant, PDZ domain–mediated interactions can be detected by
studying PDZ domain–peptide interactions in vitro17. It remains to be determined what
fraction of newly discovered in vitro interactions will prove to be biologically relevant. A
tutorial providing step-by-step instructions on how to implement the model is provided in the
Supplementary Tutorial online and it is our hope that this model will prove useful to the
biological community.

METHODS
Cloning, expression and purification of PDZ domains

PDZ domains were cloned by topoisomerase I–mediated directional cloning (Invitrogen) as
previously described17. D. melanogaster PDZ domains were subcloned from cDNAs acquired
from the Drosophila Genomics Resource Center or cloned directly from cDNA (Stratagene).
C. elegans PDZ domains were cloned from cDNA (Invitrogen). Recombinant domains were
purified from Escherichia coli as previously described17. Proteins were produced with N-
terminal thioredoxin and His6 tags and purified in a single step by immobilized metal affinity
chromatography. All proteins used in this study were found to be predominantly monomeric
as judged by analytical gel filtration.

Peptide synthesis
Peptides were synthesized on the solid phase using standard Fmoc chemistry as previously
described17. All peptides were labeled on their amino terminus with 5(6)-
carboxytetramethylrhodamine, purified by reversed-phase high performance liquid
chromatography and verified by matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry.

Fluorescence polarization
Fluorescent peptides were incubated with PDZ domains for 1 h at 25 °C in assay buffer (20
mM NaH2PO4/Na2HPO4, 100mM KCl, pH 7.4 supplemented with 0.02% bovine serum
albumin (wt/vol), 0.04% NaN3, and 1 mM DTT). Peptides were kept at a fixed concentration
(20 nM) and the concentration of the PDZ domains was varied from 20 µM down to 10 nM
(twofold serial dilution). Fluorescence polarization was measured in 384-well microtiter plates
using an Analyst AD fluorescence plate reader (Molecular Devices), with excitation at 525 nm
and emission at 590 nm. Equilibrium dissociation constants (KDs) were calculated from these
data as previously described17.

Development of the computational model
To fit equation (1), we first compiled a list of fluorescence polarization–confirmed interactions
and non-interactions. Because PDZ domains only bind hydrophobic C termini, only peptides
that end in hydrophobic amino acids were included in the list. Let M be the number of unique
PDZ domains and let M′ be the number of unique peptides. The list comprised the following:
(P1,Q1,ω1), (P2,Q2,ω2), …, (PN,QN,ω N), where Pi is the PDZ domain sequence, Qi is the
peptide sequence, and ωi indicates whether or not the PDZ domain binds to the peptide. For
the binary model, we set ωi = 1 for interactions with KD < 100 µM and ωi = −1 for
noninteractions. For the model based on binding affinities, we set ωi to

 for interactions and to −1 for noninteractions, where max(KD) is the
largest dissociation constant measured in our training-set data, and Z is the 5th-percentile value
of −log(KDi/max(KD)).
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Equation (1) was fit to the binding data using the following back-fitting algorithm:

1.

Calculate .

2. Initialize the model by setting θxy(a, b) ← 0, ∀x, y, a, b.

3. For every pair (x, y) ∈ Ω perform the following value updates: For every pair (a, b),
calculate the set Ξxyab = {i : Pi(x) = a Λ Qi(y) = b}. Set γi ← γi + θxy(a, b). Then, set

. Finally, set γi ← γi − θxy(a, b), ∀i ∈ Ξxyab. (λ > 0
penalizes large θ values that are only supported by few data. The larger the value of
λ, the more severe the penalty. We used λ = MM′/100.)

4. Repeat step (3) until the θ values converge.

A tutorial providing step-by-step instructions on how to implement the model is provided in
the Supplementary Tutorial.

Calculation of selectivity importance scores
The selectivity importance score of position pair (x, y) was calculated as

More detailed protocols are provided in Supplementary Methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS
We thank Anna M. Lone for experimental contributions and Eugene I. Shakhnovich for helpful discussions. This work
was supported by awards from the Arnold and Mabel Beckman Foundation, the W.M. Keck Foundation and the
Camille and Henry Dreyfus Foundation, and by a grant from the US National Institutes of Health (1 RO1
GM072872-01).

References
1. Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science

2003;300:445–452. [PubMed: 12702867]
2. Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu. Rev.

Neurosci 2001;24:1–29. [PubMed: 11283303]
3. Stiffler MA, et al. PDZ domain binding selectivity is optimized across the mouse proteome. Science

2007;317:364–369. [PubMed: 17641200]
4. Songyang Z, et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993;72:767–778.

[PubMed: 7680959]
5. Songyang Z, et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science

1997;275:73–77. [PubMed: 8974395]
6. Fuh G, et al. Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display. J.

Biol. Chem 2000;275:21486–21491. [PubMed: 10887205]

Chen et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2009 March 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Betel D, et al. Structure-templated predictions of novel protein interactions from sequence information.
PLOS Comput. Biol 2007;3:1783–1789. [PubMed: 17892321]

8. Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: Proteome-wide prediction of cell signaling
interactions using short sequence motifs. Nucleic Acids Res 2003;31:3635–3641. [PubMed:
12824383]

9. Yaffe MB, et al. A motif-based profile scanning approach for genome-wide prediction of signaling
pathways. Nat. Biotechnol 2001;19:348–353. [PubMed: 11283593]

10. O’Sullivan O, Suhre K, Abergel C, Higgins DG, Notredame C. 3DCoffee: combining protein
sequences and structures within multiple sequence alignments. J. Mol. Biol 2004;340:385–395.
[PubMed: 15201059]

11. Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using
environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol
2001;310:243–257. [PubMed: 11419950]

12. Schultz J, et al. Specific interactions between the syntrophin PDZ domain and voltage-gated sodium
channels. Nat. Struct. Biol 1998;5:19–24. [PubMed: 9437424]

13. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. New York: Springer; 2001.

14. Russell, SJ.; Norvig, P. Artificial Intelligence: A Modern Approach. Vol. edn. 2. Upper Saddle River,
New Jersey: Prentice Hall; 2003.

15. Lu H, Lu L, Skolnick J. Development of unified statistical potentials describing protein-protein
interactions. Biophys. J 2003;84:1895–1901. [PubMed: 12609891]

16. Swets JA, et al. Assessment of diagnostic technologies. Science 1979;205:753–759. [PubMed:
462188]

17. Stiffler MA, Grantcharova VP, Sevecka M, MacBeath G. Uncovering quantitative protein interaction
networks for mouse PDZ domains using protein microarrays. J. Am. Chem. Soc 2006;128:5913–
5922. [PubMed: 16637659]

Chen et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2009 March 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Constructing a statistical model for PDZ domain-peptide interactions
(a) Strategy for constructing a family-wide selectivity model for PDZ domains. Primary
sequences, structural information and interaction data were all integrated to train the model.
(b) Structure of a representative PDZ domain (from a1-syntrophin), complexed with a peptide
ligand12. Thirty-eight position pairs (green lines) between the PDZ domain and the peptide
ligand were included in the model. Residue positions in the PDZ domain binding pocket (cyan)
are numbered from 1 to 16, and residue positions in the peptide ligand (red) are numbered from
−4 to 0 (C terminus). A space-filling model that enables better visualization of the proximity
between residues in the PDZ domain and residues in the peptide ligand is provided in
Supplementary Figure 1. (c) An example of a PDZ domain’s primary sequence (a1-syntrophin),
with the binding-pocket residues highlighted (cyan). (d) Parameter values for one slice of the
model (20 × 20 scoring matrix), corresponding to position pair (13, −2). Single-letter
abbreviations for the amino acids are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G,
Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V,
Val; W, Trp; and Y, Tyr. Numerical values of the complete model are provided in
Supplementary Table 3.
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Figure 2. Comparing unified residue pair potentials with our model parameters
(a) Unified residue pair potentials, Punified(a,b), for protein-protein interactions. These
statistical potentials were previously reported based on 340 dimer structures in the PDB15.
(b) Lack of correlation between Punified(a,b) and the parameter values of our model, θxy
(ax,by).
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Figure 3. Validation of the model
(a) ROC curves for extrapolating the model to test-set peptides, test-set PDZ domains or both.
In contrast, the ROC curve of the model obtained using unified residue pair potentials15 is
virtually indistinguishable from the no-discrimination line. (b) The model predicts the effects
on binding affinity of introducing amino acid substitutions (highlighted in gray) into three
peptide ligands of a1synPDZ. ΔΔGs are the means of three experimental replicates. (c) ROC
curves for extrapolating the model to PDZ domains derived from D. melanogaster and C.
elegans.
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Figure 4. Position pairs that predict the peptide-binding selectivity of PDZ domains
(a) Selectivity importance scores, Wxy, for the position pairs used in the model. Position pairs
(3,0) and (3,−1) were excluded due to high conservation at position 3. The magenta line
indicates the median score of the pairs and the cyan line indicates the 90th-percentile score.
(b) Position pairs with high selectivity importance scores, mapped onto the structure of
a1synPDZ12. Magenta lines: Wxy > median score; cyan lines: Wxy > 90th-percentile score.
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