
Acellularization of embryoid bodies via physical disruption
methods

Alyssa V. Ngangana and Todd C. McDevitta,b,*
aThe Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
and Emory University, 313 Ferst Drive, Suite 2102, Atlanta, GA 30332-0535, USA
bThe Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology,
Atlanta, GA, USA

Abstract
Embryonic stem cells (ESCs) are capable of differentiating into all somatic cell types and have
therefore attracted significant interest for use in tissue repair and regeneration therapies. Transplanted
ESCs can not only integrate into compromised tissues, but can also stimulate endogenous
regeneration via secreted factors. In this study, several acellularization protocols were applied to
spheroids of differentiating ESCs, termed embryoid bodies (EBs), to develop a potential route to
deliver ESC-derived molecules, independent of cells, to damaged tissues. The objective of this study
was to physically disrupt EBs via lyophilization or freeze-thaw cycling, and in combination with
DNase treatment, determine the efficacy of acellularization based upon cell viability, DNA removal,
and protein retention. Mechanical disruption and DNase treatment of EBs efficiently inhibited
viability and removed DNA while retaining protein content to produce an acellular EB matrix. The
EB-derived acellular matrices permitted attachment and repopulation of the constructs by 3T3
fibroblasts in vitro. Overall, these studies demonstrate that effective mechanical means to acellularize
EBs may be used in order to further elucidate the composition and function of embryonic extracellular
matrices and serve as novel naturally-derived scaffolds for tissue repair and regeneration.
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1. Introduction
Embryonic stem cells (ESCs) have the ability to self-renew and differentiate into multiple cell
types of the three germ layers (ectoderm, endoderm, and mesoderm). The pluripotency of ESCs
makes them an attractive cell source for regenerative cell therapies to treat a broad array of
degenerative diseases and traumatic injuries. ESCs and ESC-derived cells have been
transplanted into areas of damaged tissue where resultant cell repopulation and recovery of
tissue function have been demonstrated [1–6]. Use of ESCs as a delivery vehicle for trophic
factors has also been shown to be effective in stimulating regeneration of a number of different
tissues [7,8]. Notably, Fraidenraich et al. discovered that ESCs rescued embryonic lethal
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knockouts via secretion of soluble molecules, and not by cellular repopulation [7]. Hence, ESC-
derived molecular cues are capable of stimulating tissue remodeling events by inducing
morphogenesis of endogenous cell populations.

Acellularization techniques provide a means to extract cells from tissues, thereby isolating the
extracellular matrix (ECM) components. The ECM provides a natural scaffold for structural
support of tissues and harbors a complex assembly of biochemical cues comprised of proteins,
glycosylaminoglycans, proteoglycans, and growth factors. Numerous tissues from various
sources have been acellularized in order to create scaffolds for tissue regeneration, including
small intestinal submucosa (SIS) [9], esophagus [10], bladder [11], cardiac valve [12,13],
dermis [14,15], nerve [16], placenta [17], and pericardium [18]. Several techniques have been
developed to acellularize tissues via treatment with various solutions and/or mechanical
disruption methods. Solution-based approaches typically combine chemical treatments, such
as detergents [16,19–22], alkaline or acid solutions [23,24], and hyper-or hypo-tonic solutions
[22], as well as enzymatic digests, including trypsin, endonucleases, and ectonucleases [25,
26]. While chemical and enzymatic methods effectively remove cellular content, they usually
require multiple incubation and rinsing steps to ensure thorough removal or inactivation of
acellularization reagents and may unintentionally remove desirable ECM components. On the
other hand, mechanical methods of acellularization, including repeated freeze-thawing,
sonication, or other physical means of disrupting cells’ plasma membranes [27,28], provide a
direct and rapid means of acellularizing tissues, but used alone, such methods are not capable
of completely removing cellular material. Thus, a combination of physical and chemical/
enzymatic methods is needed to successfully acellularize tissues.

The primary criterion for acellularization is efficient inhibition of tissue viability coupled with
preservation of native ECM composition and structure. Lyophilization is a mechanical
acellularization method that utilizes freeze-drying to permeabilize cell membranes, as a result
of intracellular ice formation during the freezing process, and subsequent removal of water
molecules. A number of tissues and acellular matrices have been lyophilized prior to
therapeutic application, including bovine pericardium [29,30], bone matrix [31], amniotic
membrane [32], and cardiac valves [12]. Freeze-thaw cycling is another mechanical
acellularization technique which entails repeated snap-freezing of tissue by submersion in
liquid nitrogen followed by thawing at room temperature in a buffered aqueous solution.
Multiple freeze-thaw cycles have been utilized to render a variety of tissues acellular, including
peripheral nerve grafts [27,33], meniscal tissue [34], embryonic chick knee [35], and human
dermis [36]. The aforementioned studies demonstrated that mechanical cell disruption is a mild
acellularization treatment that preserves tissue components for successive tissue repair, but
thus far, such methods have only been used to acellularize somatic tissues in a homeostatic
state.

ESCs are commonly induced to differentiate in vitro by forming 3-dimensional cell spheroids,
termed embryoid bodies (EBs), which recapitulate many of the molecular and cellular
morphogenic events that occur during the normal pre-gastrulation stages of embryological
development [37–40]. Previously, our lab demonstrated that acellular matrices could be derived
from EBs using solvent extraction methods in combination with DNase treatment [41,42]. The
objective of the present study was to examine the effectiveness of two separate mechanical
methods, lyophilization and repetitive freeze-thaw cycles, as alternative means to efficiently
acellularize matrices produced by differentiating ESCs within EBs. Acellularization was
assessed based upon quantitative assays of cell viability, DNA content, and protein content
compared to untreated EBs, in addition to histological analysis of acellular EB matrix structure
and exogenous cell repopulation of EB-derived matrices. These studies establish methods by
which mechanical disruption techniques effectively acellularize EBs to produce acellular
matrices capable of supporting cell attachment and adhesion. Naturally-derived matrices from
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EBs provide a scaffolding material for future investigations of endogenous tissue repair and
regeneration, in addition to elucidating mechanisms by which ESCs promote healing and
morphogenesis via the production of unique combinations of factors constituting an embryonic
microenvironment.

2. Methods and materials
2.1. ESC culture and differentiation

D3 murine embryonic stem cells were cultured on 0.1% gelatin-coated plates in complete media
consisting of Dulbecco’s Modified Eagle Medium (DMEM, Mediatech) supplemented with
15% fetal bovine serum (FBS, Hyclone), 2 mM L-glutamine, 1X non-essential amino acids,100
U/mL penicillin, 100 µg/mL streptomycin, 0.25 µg/ mL amphotericin, 0.1 mM β-
mercaptoethanol, and 103 U/mL leukemia inhibitory factor (LIF, Chemicon). To initiate ESC
differentiation, embryoid bodies (EBs) were formed from a single-cell suspension of 4 × 106

cells in 10 mL differentiation media (complete media without LIF). EBs were cultured in 100
mm Petri dishes on a rotary orbital shaker (Lab-Line Lab Rotator, Barnstead) held constant at
40 ± 2 rpm [43]. EBs were re-fed with fresh media every 2 days by collecting individual plates
of EBs via gravity-induced sedimentation in 15 mL conical tubes, aspirating the old media,
and replacing with fresh differentiation media before transferring the EBs back to 100 mm
Petri dishes. Rotaries were calibrated every day to ensure constant speed throughout the course
of EB culture.

2.2. Acellularization of EBs
After 4, 7, or 10 days of rotary orbital suspension culture, EBs were harvested, rinsed in
phosphate-buffered saline (PBS) prior to acellularization treatments, counted, and divided into
aliquots of approximately 2 × 103 EBs per sample. To acellularize via lyophilization, EB
samples in 1.5 mL microcentrifuge tubes were rinsed twice with 1 mL PBS and frozen in 1
mL dI H2O at −80°C overnight. Frozen samples were placed in the lyophilizer (Labconco)
overnight and then removed for further processing. Freeze-thawed acellular samples were
produced by aspirating PBS, immersing the entire tube with EBs into liquid nitrogen, and
allowing the liquid nitrogen to boil off. Once the liquid nitrogen was boiled off, 1 mL PBS was
added to thaw the EBs while rotating the sample for 5 min (LabQuake Rotisserie) at room
temperature. EBs were then centrifuged for 2 min at 18,000 rcf at room temperature. This
process of freeze-thawing was performed 1, 3, or 5 times for each sample to determine the
optimal number of cycles. For comparison purposes, chemical acellularization was performed,
as previously described, by treating the EB samples with 1% Triton X-100 for 30 min while
rotating [41]. Following Triton treatment, samples were centrifuged for 2 min at 18,000 rcf at
room temperature and rinsed 3 times with PBS. For DNase treatment, subsequent to mechanical
and chemical per-meabilization steps, samples were treated with 0.5 mL of 1 mg/mL DNase
for 15 min while rotating, centrifuged for 2 min at 18,000 rcf at room temperature, and rinsed
3 times with 1 mL PBS.

2.3. Scanning electron microscopy (SEM)
Samples not dried via lyophilization (i.e. hydrated samples) were fixed in 2.5% gluteraldehyde
in deionized (dI) H2O for 1 h while rotating. Samples were rinsed 3 times in dI H2O and rotated
in 4% osmium tetroxide in dI H2O for 1 h at room temperature. After 3 rinses in dI H2O,
samples were placed in acetone and dehydrated using an E3000 series critical point dryer
(Quorum Technologies). Liquid CO2 was allowed to permeate the samples for 1 h and passed
through the CO2 critical point (31.5 °C, 1100 psi). Subsequently, dried samples were mounted
on stubs with carbon tape and sputter-coated with gold for 120 s using a Polaron Sputter Coater
SC 7640 (Quorum Technologies). Scanning electron microscopy images were taken using a
Hitachi S-800 FE-SEM with a 10 kV acceleration voltage.
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2.4. Histology
Histological samples were fixed for 30 min in 10% formalin while rotating, washed 3 times in
PBS, and embedded in Histogel®. The embedded samples were paraffin-processed and
sectioned into 5 µm sections. Prior to staining, slides were de-paraffinized in a Leica
Autostainer XL. Hemotoxylin and eosin (H&E) staining was performed using a Leica
Autostainer XL, and slides were incubated with Hoechst dye (nuclear stain, 10 µg/mL) for 5
min. Slides were mounted with coverslips using either Cytoseal™ 60 for H&E (Richard-Allan
Scientific) or Gel/Mount™ with anti-fading agents for Hoechst (Biomeda Corp.). Brightfieldt
and fluorescent images were captured using a Nikon 80i Upright Microscope and a SPOT Flex
camera (15.2 64Mp Shifting Pixel, Diagnostic Instruments) in conjunction with SPOT
Advanced v.4.5 (Diagnostic Instruments) software.

2.5. Cell viability
Relative cell viability was analyzed using 10% alamarBlue (Biosource) in serum-free complete
media without LIF. Acellular samples and untreated viable EBs were incubated for 2 h in 5%
CO2 at 37 °C, after which 25 µL aliquots were taken from the incubated samples, and
fluorescence measurements were taken (ex: 545 nm, em: 590 nm) using a SpectraMax M2e
plate reader. Relative measures of viability were determined by comparing the acellular
samples to the starting population of untreated viable EBs (viability = 1) and the alamarBlue
solution alone (no cells; viability = 0).

2.6. DNA analysis
Viable and acellular EBs were solubilized by rotating samples at room temperature for 24 h in
6 M guanidine hydrochloride in order to assess DNA content. DNA content was quantified using
the Quant-iT™ PicoGreen® dsDNA Assay kit (Molecular Probes); a 1:5 volumetric ratio of
solubilized sample to a solution of 1X TE buffer and 0.5X PicoGreen dye was used. The
fluorescence reading (ex: 485 nm and em: 528 nm) was taken on a SpectraMax M2e plate
reader, and the absolute amount of DNA (mg/mL) was quantified against a lambda DNA
standard curve (0 mg/mL-5 mg/ mL). The amount of DNA present following DNase treatment
was compared to untreated EBs.

2.7. Protein analysis
Total protein content was analyzed using a bicinchoninic acid (BCA) assay kit (Pierce). A 1:1
dilution of 6 M guanidine hydrochloride solubilized sample (described above) in dI H2O was
used, and 25 µL of sample was incubated with BCA solution for 30 min. Absorbance readings
were taken at 562 nm using the aforementioned plate reader. The absorbance readings of the
solubilized samples were compared against a standard curve (0 µg/mL–2000 µg/mL) generated
using bovine serum albumin (BSA) in order to calculate absolute protein concentrations.

2.8. Cell seeding
NIH-3T3 fibroblasts were cultured to 80% confluence on tissue culture-treated 100 mm dishes
in growth media containing DMEM supplemented with 10% bovine growth serum (BGS,
Hyclone), 4 mM L-glutamine, 100 U/mL penicillin, and 100 µg/ mL streptomycin. Three hours
prior to seeding, 3T3s were treated with mitomycin-C (10 µM in serum-free growth media) to
inhibit cell proliferation for assessment of cell invasion into the acellular matrix. Following
acellularization treatments, acellular EB matrices were frozen at −80 °C in 1 mL dI H2O
overnight and freeze-dried. Fibroblasts were trypsinized and seeded onto the lyophilized
acellular matrices at a density of 106 cells/mL by placing the matrices into 1 mL of 3T3 single-
cell suspension and allowing them to rotate. After 3 h of seeding in suspension, seeded matrices
were gently spun down for 1 min at 200 rcf, washed 3 times in PBS, and transferred to 48-well
tissue culture plates with 500 µL of 3T3 growth media. The seeded matrices were re-fed every
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2 days for up to 4 days, at which point, seeded matrices were rinsed with PBS and processed
for histology as previously described.

2.9. Statistics
All statistical analyses were performed using Systat software (version 12). Viability
comparisons across multiple experimental groups were conducted using a one-way analysis of
variance (ANOVA) followed by post-hoc Tukey analysis to determine significant differences
(p < 0.05) between the different groups. Comparisons within DNA and protein content results
were performed using a two-way ANOVA with significance assessed using post-hoc Tukey
analysis (p < 0.05).

3. Results
Overall results exhibited efficient acellularization of EBs using mechanical permeabilization
with DNase treatment. Initial studies were performed varying the number of freeze-thaw cycles
(1, 3, or 5) and examined on the basis of inhibition of cell viability and retention of total protein
content. Using EBs differentiated for 7 days (Fig. 1A), investigation of the number of freeze-
thaw cycles indicated that 3 cycles was efficient at removing DNA while retaining protein in
the final product (Supplementary data, Fig. 1). Successive studies were performed to assess
acellularization efficiency on EBs at various stages of differentiation. Both mechanical
methods, lyophilization and 3 freeze-thaw cycles, independent of EB differentiation time,
significantly inhibited cell viability (p = 5.57 × 10−6) compared to untreated EBs; retention of
total protein among EBs at different stages of differentiation after acellularization, however,
was not significantly different (Supplementary data, Fig. 2) from untreated EBs. Day 4 EBs
generally exhibit relatively low gene expression of ECM molecules and growth factors,
whereas a variety of ECM and growth factor gene expression levels begin to increase by day
7 of differentiation and continue to increase by 10 days (Nair, Ngangan, and McDevitt,
unpublished results, in preparation). Thus, based on the earliest time point at which ECM
molecules are clearly present within EBs, day 7 EBs were used for all subsequent studies.

3.1. Morphology and ultrastructure analysis
The two different mechanical disruption methods attempted yielded acellular products with
very different macroscopic properties. Lyophilized EBs were maintained as distinct EBs with
a “cottonball, powder-like” morphology (Fig. 1B and C) while freeze-thawed EBs (FT)
produced a single amorphous mass with a “gel-like” appearance (Fig. 1D and E). Handling the
lyophilized EBs was similar to managing a dry powder with static interaction, while the
congealed, freeze-thawed EB matrix could be manipulated by collecting the entire mass using
a spatula. EB matrices treated with DNase, both lyophilized (L + D) and freeze-thawed (FT +
D), formed a more compact pellet compared to FT matrices and could be gently manipulated
using a pair of tweezers.

Compared to untreated EBs (Fig. 2A and D), the lyophilized matrices appeared relatively
smooth and largely porous (Fig. 2B and E), whereas FT matrices consisted of a non-porous,
dense particulate material, due to compaction from the centrifugation steps performed during
acellularization (Fig. 2C and F). After DNase treatment and centrifugation retrieval of the
material, L + D samples were less porous and more closely resembled the structure of the FT
± D samples (Supplementary data, Fig. 3). However, subsequent freeze-drying of lyophilized
or FT samples after DNase treatment resulted in more “powder-like” and porous materials
based upon SEM analysis (data not shown). These results indicate that the sequence of the
processing steps performed strongly affects the structural properties of the acellular matrices
in their final forms.
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3.2. Histological analysis
Several notable differences in the histological appearance of lyophilized and FT EBs were also
apparent. As indicated initially by SEM, lyophilized EBs were maintained as separate EBs that
appeared similar in size and morphology to untreated EBs (Fig. 3A and B), while repeated
freeze-thawing caused individual EBs to agglomerate and form a cohesive mass of
indistinguishable EBs (Fig. 3C), much like Triton- or SDS-treated EBs [41,42]. Mechanical
acellularization methods alone did not remove cellular content, since nuclei were present within
the resulting EB matrices (Fig. 3A–C; 3A–C insets), compared to Triton-treated samples which
lacked distinct nuclei [41]. The more intense Hoechst staining of lyophilized and FT EBs (Fig.
3B,C insets) was most likely due to condensation of the cell nuclei by both treatments.
Treatment with DNase after physical permeabilization methods resulted in acellular matrices
without discrete nuclei by hemotoxylin staining (Fig. 3E and F) and little to no detectable
Hoechst staining for DNA content (Fig. 3E and F insets), demonstrating the effectiveness of
DNase treatment. In contrast, DNase alone was not able to effectively permeate untreated EBs
(Fig. 3D; 3D inset) to disrupt and remove DNA. Thus, the mechanical acellularization protocols
produced matrices with different compositions and varying extents of cell DNA removal.

3.3. Quantitative analysis
A multi-parametric set of analyses was performed to quantitatively assess differences in cell
viability, DNA removal, and residual protein content resulting from the different
acellularization treatments starting with 2 × 103 EBs per sample. Based on a relative scale, the
viability of the cells (Fig. 4A) was significantly inhibited (value < 0.05) by both mechanical
acellularization methods (p < 0.001), as well as by Triton detergent treatment (p <0.001),
compared to viable, untreated EBs (value = 1), but no significant differences between the
different permeabilization treatments were observed. Each of the relative values approached
the lower sensitivity range of the assay, indicating successful devitalization of cells by each of
the independent methods prior to DNase treatment. The freeze-thaw method of
permeabilization allowed the most efficient removal of DNA (removing 75.02 ± 8.06% DNA),
exhibited by the significant difference (p = 1.35 ×10−5) in residual DNA between FT and FT
+ D samples (Fig. 4B). DNA content remaining in L + D and T + D samples were not
significantly reduced compared to lyophilized (p = 0.763) and Triton-treated (p= 0.336)
samples, respectively. Prior to DNase treatment, overall protein content was not significantly
reduced between mechanical permeabilization methods compared to untreated EBs, whereas,
Triton per-meabilization significantly decreased the amount of protein (p = 0.001) compared
to untreated EBs (Fig. 4C). With DNase treatment, mechanically permeabilized products
exhibited similar protein content to chemically permeabilized samples, indicating that residual
protein removal was a result of the subsequent incubation and wash steps following DNase
treatment. Overall acellularization using mechanical disruption techniques with DNase was
capable of producing acellular EB matrices with slightly increased protein content compared
to acellularized EBs using detergent solvent extraction methods.

3.4. Cell repopulation of acellular EB matrices
Fibroblast (NIH-3T3) cell attachment to and repopulation of the resulting acellular EB matrices
was examined 4 days after seeding the cells. As previously demonstrated, negligible Hoechst
staining was observed in the unseeded acellularized matrices following DNase treatment (Fig.
3E and F). Exogenously added fibroblasts were easily distinguished from any residual ESC
nuclei based on the larger size of the fibroblast nuclei (Fig. 5A and E), roughly twice that of
ESCs. Auto-fluorescence of the acellular matrix under the FITC channel (green) was used to
distinguish the acellular matrix from the exogenously seeded cells (Fig. 5B and F). Fibroblasts
seeded onto lyophilized matrices attached primarily to the surface of individual lyophilized
EBs, but did not appear to invade the acellular matrices; similarly, FT matrices without DNase
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treatment did not exhibit much infiltration by 3T3 fibroblasts (Supplementary data, Fig. 4).
Although the bulk of fibroblasts were distributed throughout the exterior layers of the acellular
matrices with DNase treatment, many cells were found within the acellular matrices as well
(Fig. 5C,D,G,H). Thus, L + D and FT + D treatments of EBs both permitted fibroblast
attachment, adhesion, and repopulation of the acellular matrices.

4. Discussion
The aim of this study was to develop mechanical acellularization methods to isolate
extracellular matrices produced by ESCs undergoing differentiation as EBs. The use of
mechanical disruption techniques was investigated as an alternative approach to previously
reported solvent extraction methods capable of acellularizing EBs [41,42]. EBs were deemed
acellular based on inhibition of cell viability, removal of DNA, and retention of protein content,
thereby producing an EB-derived matrix capable of supporting exogenous cell adhesion and
survival. Isolation of acellular matrices from EBs enables further characterization of the
complex assembly of ECM molecules dynamically produced by ESCs as they differentiate.
These acellular matrices may be utilized as inductive or instructive biological scaffolds in order
to determine the functional effects of ESC-derived ECM biomolecules on somatic and
progenitor cell phenotypes in the context of the repair and regeneration of acute and chronically
wounded adult tissues.

In most cases thus far when stem cells have been applied to regenerate tissues, the lasting
effects typically observed do not include stable engraftment and maturation of the transplanted
stem cells. This phenomenon suggests that transplanted cells exert a transient impact on tissue
morphogenic processes, such as secretion of trophic factors locally that modulate endogenous
cell repair of the injured or degenerative tissue site. In fact, recent studies have demonstrated
the ability of factors secreted by ESCs to rescue lethal knockout phenotypes and enhance
somatic cell survival [7,44–46]. Morphogenic molecules, such as growth factors and cytokines,
secreted by ESCs could be non-covalently associated with elements of the ECM produced by
the cells. Such molecules could thus be retained within the acellular matrix of EBs using
mechanical disruption techniques, such as lyophilization and repeated freeze-thaw cycles, as
described in the present study.

Acellularization of tissues has yielded several naturally-derived matrices that are currently
being applied to treat an array of different clinical wounds and injuries. Almost all existing
acellularized matrices originate from adult tissue sources, which typically exhibit significantly
less regenerative capacity than embryonic tissues actively undergoing development. Within
the developing embryo, paracrine factors, particularly morphogens and mitogens, are secreted
in latent and bioactive forms into the ECM of the local microenvironment to direct subsequent
cell differentiation and tissue morphogenesis. As EBs differentiate, a similar cadre of
morphogens and mitogens are produced within EBs; thus, using EBs as the starting tissue
source for acellularization provides a unique opportunity to harness complex assemblies of
molecules directly from EBs mimicking the process of embryogenesis in vitro. By
acellularizing EBs at various stages of differentiation using different types and combinations
of permeabilization and extraction methods, the biomolecules associated with the
differentiation of EBs that are secreted into the ECM can be effectively harnessed and
subsequently analyzed.

The development of acellular matrices derived from stem cells provides an alternative
regenerative medicine approach to the use of stem cells in addition to direct transplantation
and engineering of tissues from stem cell sources. Matrices derived from stem cells provide a
natural substrate for cell adhesion and a vehicle to present instructive, morphogenic cues to
cells capable of repopulating the scaffold material. Acellular EB matrices may provide a potent
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combination of morphogenic factors produced locally by ESCs undergoing differentiation
within the unique 3D microenvironment of EBs. In the future, acellular EB matrices could
possibly be tailored for specific tissue applications by directing ESCs within EBs to
differentiate towards specific cell phenotypes, which in turn could yield “tissue-specific”
extracellular matrices from a single pluripotent cell source. The results of this study
demonstrate that mechanical acellularization of EBs is a route to directly obtain ESC-derived
ECM molecules for potential regenerative medicine therapies.

5. Conclusions
The ability to harness ESC-produced molecules to stimulate tissue morphogenesis independent
of the cells themselves is an approach in regenerative medicine. Acellularizing embryoid
bodies using mechanical methods provides a means to analyze secreted molecules by ESCs in
a matrix formulation that can be further tested in vitro to assess effects on migration,
proliferation, and differentiation of a variety of different progenitor and somatic cell types. The
composition of biomolecules present in the EB matrix is unique to differentiating embryonic
stem cells mimicking early stages of embryogenesis. Thus, the molecular cues produced during
EB differentiation and harbored within the extracellular matrix could have broad applications
in tissue regeneration strategies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
Figures with essential colour discrimination. Parts of Fig. 3 and Fig 5 in this article are difficult
to interpret in black and white. The full colour images can be found in the online version, at
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Fig. 1.
Overview of EB acellularization process. EBs differentiated for 7 days were mechanically
acellularized either by lyophilization (B and C) or multiple freeze-thaw cycles (D and E)
followed by DNase treatment. Phase image shows EBs cultured for 7 days (A). Digital images
macroscopically exhibit EB matrix following each of the mechanical acellularization
techniques (B and D), including a closer image on the far right (C and E). Freeze-thaw matrix
is shown as a pellet inside a microcentrifuge tube (D), while all other images (A–C, E) are
presented within a Petri dish.
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Fig. 2.
Sample SEM images were taken before and after mechanical permeabilization at 100× (scale
bar = 200 µm) and 1000× (scale bar + 20 µm) magnification. EBs (A and D) and lyophilized
EBs (B and E) retain separate EB structure; however, lyophilized EBs show a more apparent
porous structure compared to untreated EBs. Freeze-thawed EBs (C and F) no longer retained
EB morphology and appeared to have a compact and dense structure.
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Fig. 3.
Histological analysis of mechanical acellularization. EBs and acellular samples were stained
with H&E and Hoechst (inset) to qualitatively compare acellular treatments. Mechanical
disruption alone (top row, A–C) was compared to mechanical disruption and DNase treatment
(bottom row, D–F). Scale bar = 100 µm for each panel.
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Fig. 4.
Quantitative analysis of acellular EB matrix components. (A) Relative cell viability of
permeabilized samples. (B) Residual DNA concentration pre- and post-DNase treatment. FT
permeabilization lead to significant removal of DNA following treatment with DNase. (C)
Total protein content pre- and post-DNase treatment. Total protein before DNase treatment in
Triton samples was significantly lower than all other treatments; whereas post-DNase treatment
of mechanically permeabilized samples significantly decreased protein content compared to
no DNase treatment. One-way ANOVA (p < 0.05): * significant compared to untreated EBs.
Two-way ANOVA (p < 0.05): # significant compared to other DNase treatment samples,
†significant compared to same permeabilization, +DNase samples. Results shown are mean ±
standard deviation based on 2 × 103 EBs per sample.
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Fig. 5.
Cell attachment to acellular EB matrices was assessed by seeding NIH-3T3 fibroblasts onto
the materials. Fibroblasts were stained with Hoechst (blue; A and E), while the acellular matrix
was visualized via auto-fluorescence (FITC channel; B and F). Additionally, seeded matrices
were stained with H&E to demonstrate successful repopulation (D and H). Exogenous cells
attached and repopulated both the L + D matrix (A–D) and the FT + D matrix (E–H).
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