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TOP ICAL REVIEW

Endothelium-dependent contractions: when a good guy
turns bad!

Paul M. Vanhoutte and Eva H. C. Tang

Department of Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China

Endothelial cells can induce contractions of the underlying vascular smooth muscle by
generating vasoconstrictor prostanoids (endothelium-dependent contracting factor; EDCF).
The endothelial COX-1 isoform of cyclooxygenase appears to play the dominant role
in the phenomenon. Its activation requires an increase in intracellular Ca2+ concentration.
The production of EDCF is inhibited acutely and chronically by nitric oxide (NO), and
possibly by endothelium-dependent hyperpolarizing factor (EDHF). The main prostanoids
involved in endothelium-dependent contractions appear to be endoperoxides (PGH2) and
prostacyclin, which activate thromboxane-prostanoid (TP) receptors of the vascular smooth
muscle cells. Oxygen-derived free radicals can facilitate the production and/or the action of
EDCF. Endothelium-dependent contractions are exacerbated by ageing, obesity, hypertension
and diabetes, and thus are likely to contribute to the endothelial dysfunction observed in older
people and in essential hypertensive patients.
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Besides playing an essential role in vasodilator responses
by releasing endothelium-derived relaxing factor(s)
(EDRF(s)) (Furchgott & Zawadzki, 1980), the endothelial
cells of certain arteries and veins can also initiate contrac-
tions of the vascular smooth muscle that surrounds them
(De Mey & Vanhoutte, 1982, 1983). Bioassay studies
demonstrated that the transfer of diffusible factors is
involved in such endothelium-dependent contractions
(Rubanyi & Vanhoutte, 1985; Iqbal & Vanhoutte, 1988;
Yang et al. 2003). Theoretically, endothelium-dependent
contractions could be explained by either the withdrawal
of endothelial inhibitory signals (prostacyclin, nitric
oxide (NO), endothelium-derived hyperpolarizing factor
(EDHF) or the production of vasoconstrictor substances.
Over the years, it has become evident that prostanoids,
derived from the endothelial cyclooxygenase, explain most
endothelium-dependent contractions (see Vanhoutte et al.
2005). Obviously, endothelial cells can produce vaso-
constrictor substances other than prostanoids in particular
different peptides (Yanagisawa et al. 1988; Dhein et al.
1997; Saifeddine et al. 1998) or the non-peptidic
dinucleotide uridine adenosine tetraphosphate (UP4A)
(Jankowski et al. 2005). However, it is uncertain whether
or not the instantaneous release of these non-prostanoid
substances can lead to endothelium-dependent contrac-
tions. Thus, the present brief review will focus

on cyclooxygenase-derived vasoconstrictor substances
(EDCF) initiating endothelium-dependent contractions.

EDCF-mediated responses

Endothelium-dependent contractions to acetylcholine,
and other vasoactive substances (e.g. arachidonic acid,
ATP, the calcium ionophore A23187), have been reported
in a variety of blood vessels from different species (see
Furchgott & Vanhoutte, 1989; Lüscher & Vanhoutte, 1990;
Vanhoutte et al. 2005).

The source of EDCF. The endothelium-dependent
contractions of canine veins to arachidonic acid were
prevented by non-selective inhibitors of cyclooxygenase
(e.g. indomethacin), as were those evoked by acetyl-
choline in the canine basilar artery or the aorta of
the spontaneously hypertensive rat (SHR) (Miller &
Vanhoutte, 1985; Lüscher & Vanhoutte, 1986; Katusic
et al. 1988). This demonstrated the key role of the
metabolism of arachidonic acid into prostanoids in
the genesis of endothelium-dependent contractions (see
Vanhoutte et al. 2005). Bioassay studies revealed that
it is mainly the cyclooxygenase of the endothelial cells,
rather than that of the vascular smooth muscle which
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is responsible (Fig. 1) (Yang et al. 2003). Studies in the
SHR aorta using preferential and selective inhibitors of the
two isoforms of the enzyme (cyclooxygenase-1 (COX-1)
and cyclooxygenase-2 (COX-2)) and molecular biology
techniques (Fig. 2), as well as experiments in the aorta
of genetically modified mice prompted the conclusion
that the constitutive isoform, COX-1, plays the key role in
the occurrence of endothelium-dependent contractions in
those blood vessels (Ge et al. 1995; Traupe et al. 2002; Yang
et al. 2003; Tang et al. 2005a; Gluais et al. 2006). However,
in blood vessels where endothelial COX-2 is present, the
prostanoids generated by this isoform can contribute
to EDCF-mediated contractions (Camacho et al. 1998;
Zerrouk et al. 1998; Garcia-Cohen et al. 2000; Álvarez
et al. 2005; Blanco-Rivero et al. 2005; Hirao et al. 2008; Shi
& Vanhoutte, 2008).

Pivotal role of TP receptors. Most cyclooxygenase-
dependent, endothelium-dependent contractions are
abolished by TP-receptor antagonists (Tesfamariam et al.

Figure 1
Upper panel: a donor strip is stitched onto
the bioassay tissue creating a
‘sandwich’-like layered preparation.
Isometric tension is recorded from the
bioassay strip and the donor tissue does not
directly contribute to the recorded response.
Lower panel: acetylcholine-induced
contractions only occurred when the donor
strip contained endothelium. The
experiment was performed in the presence
of nitro-L-arginine and tetrahydrobiopterin
to optimize the EDCF-mediated response
(reproduced from Vanhoutte et al. 2005,
with permission).

1989; Auch-Schwelk et al. 1990; Kato et al. 1990; Mayhan,
1992; Yang et al. 2002, 2003; Zhou et al. 2005). Bioassay
experiments demonstrate that the TP receptors involved
are those located in the vascular smooth muscle cells
(Yang et al. 2003). The contraction of the latter upon
TP-receptor activation is due to the combination of an
increased entry of Ca2+ resulting from the opening of both
receptor-operated and voltage-gated Ca2+ channels and
Rho-kinase-mediated sensitization of the myofilaments
(Okon et al. 2002; Huang et al. 2004; O’Rourke et al. 2006).

Impact of ageing. Endothelium-dependent contractions
become more prominent in arteries of older, compared
to younger animals (Koga et al. 1989; Iwama et al.
1992; Abeywardena et al. 2002). This increased response
is accompanied by an increased expression of COX-1
(Tang & Vanhoutte, 2008b). When COX-2 is induced
by the ageing process, this isoform of the enzyme can
contribute in part to endothelium-dependent contrac-
tions (Shi et al. 2008). The ability of prostacyclin to induce
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relaxation is lost in the aorta of 15-week-old and older
WKY (Levy, 1980; Rapoport & Williams, 1996; Gluais
et al. 2005). This inability is due to a dysfunction of the
IP receptors, since the relaxation to isoproterenol (iso-
prenaline; a β-adrenoceptor agonist which also evokes
cAMP-dependent dilatations) is maintained in those
arteries (Rapoport & Williams, 1996).

Hallmark of vascular disease. Spontaneous hypertension.
The endothelium-dependent relaxations to acetylcholine
are blunted in the aorta of the SHR, and this is
due to the concomitant release of EDCF rather than
a reduced production of EDRF (Lockette et al. 1986;
Lüscher & Vanhoutte, 1986; Lüscher et al. 1987b). The
endothelium-dependent contractions to acetylcholine are
more pronounced in the quiescent aorta of the adult SHR
than in that of normotensive Wistar-Kyoto rats (WKY)
(Lüscher & Vanhoutte, 1986) and this is accompanied
by an increased expression/presence of COX-1 in the
endothelial cells (Ge et al. 1995; Tang & Vanhoutte,
2008b). The overexpression of COX-1 is not observed in
aortae of pre-hypertensive SHR, while the isoform is more
prominent in arteries from ageing normotensive rats (Ge
et al. 1999; Tang & Vanhoutte, 2008b). These findings
then prompt the conclusion that the overexpression of
COX-1 in arteries from adult hypertensive rats reflects a
premature ageing of the endothelium rather than a genetic
predisposition. The mRNA and protein expression of TP
receptors do not differ between aortae of WKY and SHR
(Tang & Vanhoutte, 2008b; Tang et al. 2008), indicating
that alteration in their density is not a contributing factor
in the augmented endothelium-dependent contractions
observed in the aorta of the hypertensive rat. Despite the
unaltered density of TP receptors, the aorta of the SHR
is hyper-responsive to the vasoconstrictor effect of endo-
peroxides (Ge et al. 1995). This hyper-responsiveness is
present early on in the hypertensive strain and is thus not
a consequence of the chronic exposure of the vascular wall
to the high arterial blood pressure (Ge et al. 1999).

Obesity and diabetes. Obesity potentiates the occurrence
of EDCF-mediated responses in mouse arteries, possibly
because of an up-regulation of the expression of
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Figure 2
The mRNA expression of COX-1, measured
by RT-PCR in freshly isolated endothelial
cells, was significantly higher in
36-week-old SHR compared to 36-week-old
WKY (n = 6). There was no difference in
gene expression of COX-1 in smooth
muscle cells between 36-week-old WKY
and SHR (n = 8). Data are means ± S.E.M.
∗P < 0.05 (data from Tang & Vanhoutte,
2008b, reproduced with permission).

TP receptors (Traupe et al. 2002; Gollasch, 2002).
The endothelium-dependent relaxations to acetylcholine
are blunted in a number of arteries from diabetic animals
(see Tesfamariam, 1994; De Vriese et al. 2000). This is due
in part to the concomitant release of EDCF and can be
attributed to the exposure of the endothelial cells to high
glucose, resulting in increased oxidative stress and over-
expression of both COX-1 and COX-2 (Tesfamariam et al.
1990, 1991; Xu et al. 2006; Shi et al. 2007a,b, 2008; Michel
et al. 2008b; Shi & Vanhoutte, 2008).

The nature of EDCF. When prostacyclin turns bad.
Cyclooxygenase transforms arachidonic acid into end-
operoxides which per se cause contraction of vascular
smooth muscle. Indeed, endoperoxides are released during
endothelium-dependent contractions of the SHR aorta
and thus can be regarded as EDCF (Ito et al. 1991;
Asano et al. 1994; Ge et al. 1995; Vanhoutte et al.
2005; Hirao et al. 2008). Endoperoxides are converted
further into prostacyclin, thromboxane A2, prostaglandin
D2, prostaglandin E2 and/or prostaglandin F2α by their
respective synthases (Bos et al. 2004). Of those enzymes,
the prostacyclin synthase gene is by far the most
abundantly expressed in endothelial cells, and more so
in the SHR than in the WKY endothelium (Tang &
Vanhoutte, 2008b). The protein expression of the enzyme
augments with age and by hypertension (Numaguchi
et al. 1999). Acetylcholine causes a greater release of
prostacyclin in the aorta of SHR than in that of the
WKY (Gluais et al. 2005). The prostanoid no longer
evokes relaxations in arteries from ageing or hyper-
tensive rats, and induces larger contractions in the latter
(Rapoport & Williams, 1996; Gluais et al. 2005). These
are the main reasons to accept that, in the SHR aorta,
endoperoxides and prostacyclin are the main mediators
of the endothelium-dependent contractions evoked by
acetylcholine (Ge et al. 1995; Blanco-Rivero et al. 2005;
Gluais et al. 2005). In other blood vessels, or even in
the SHR aorta exposed to other agonists (ADP, A23187,
endothelin-1, nicotine), thromboxane A2 may contribute
(Katusic et al. 1988; Shirahase et al. 1988; Auch-Schwelk
& Vanhoutte, 1992; Taddei & Vanhoutte, 1993; Gluais
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et al. 2006, 2007). The contribution of prostaglandin
E2 and prostaglandin F2α to endothelium-dependent
contractions is marginal in most cases. However, when
prostacyclin synthase is inhibited (pharmacologically or
by peroxynitrite-dependent tyrosine nitration), or after
photochemical endothelial injury, these two prostanoids
can contribute to EDCF-mediated responses (Zou et al.
1999, 2002; Bachschmid et al. 2003; Gluais et al. 2005;
Hirao et al. 2008).

Calcium, the trigger for release. In certain vascular beds,
a tonic release of EDCF may participate in the regulation of

Figure 3
A, representative merged images taken by confocal microscopy showing responses to infusion of acetylcholine
(3 × 10−6 M) or A23187 (10−6 M) on cytosolic calcium of aortic endothelial cells from WKY and SHR. The addition
of acetylcholine caused a rapid increase in intracellular calcium in aortic endothelial cells of both WKY and SHR
(indicated by an increase in green fluorescence and a decrease of red fluorescence), which was greater in the latter.
The calcium ionophore A23187 caused a comparable increase in intracellular calcium in preparations from WKY
and SHR. B, the increase in fluorescence ratio in endothelial cells from WKY and SHR in response to acetylcholine
(3 × 10−6 M) (left) or A23187 (10−6 M) (right) is expressed in percentages of the baseline values. Data are shown
as means ± S.E.M.; n = 5. ∗P < 0.05 WKY versus SHR. Acetylcholine caused greater calcium increase in aortic
endothelial cells of SHR than WKY, while A23187 caused a comparable response in the two strains. The increase
of calcium was not affected by treatment with indomethacin, tiron plus diethyldithlocarbonate acid (DETCA; an
inhibitor of superoxide dimutase) or NG-nitro-L-argine methylestes (L-NAME; an inhibitor of nitric oxide synthase)
(reproduced from Tang et al. 2007, with permission). The experiment was performed in the presence of S18886,
a TP-receptor antagonist, to prevent contraction of the smooth muscle.

vasomotor tone (Iwatani et al. 2008). The release of EDCF
can be triggered by vasoactive agonists acting at the cell
membrane, such as acetylcholine (activating endothelial
M3-muscarinic receptors (Boulanger et al. 1994) or ADP
(activating purinoceptors; Koga et al. 1989; Mombouli
& Vanhoutte, 1993). Endothelium-dependent contrac-
tions of basilar arteries also can be elicited by sudden
stretch (Katusic et al. 1987), which raises the possibility
of a role in autoregulation of the cerebral circulation.
Endothelium-dependent contractions are reduced when
the external Ca2+ concentration is lowered, and can be
evoked by calcium ionophores (Katusic et al. 1988; Okon
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et al. 2002; Gluais et al. 2006; Shi et al. 2007a,b, 2008;
Tang et al. 2007). They are accompanied by an increase
in endothelial cytosolic Ca2+ concentration (Fig. 3) (Tang
et al. (2007). The increase in intracellular endothelial Ca2+

concentration caused by acetylcholine is greater in the
aorta of the SHR than in that of the WKY, which is in line
with the absence of endothelium-dependent contraction
in the latter (Tang et al. 2007). By contrast, the increase in
Ca2+ concentration is comparable in endothelial cells of
the two strains when exposed to A23187, which causes
contractions in aortae of both SHR and WKY (Tang
et al. 2007). These observations suggest that the increase
in intracellular Ca2+ concentration is the initial trigger
for endothelium-dependent contractions. The increased
Ca2+ then presumably activates phospholipase A2 which
makes arachidonic acid available for metabolism by the
endothelial cyclooxygenase.

Modulation by EDRF(s). Many blood vessels exhibit a
basal release of NO, which is augmented by increases
in shear stress (Rubanyi et al. 1986). Hence, it is not
surprising that if their smooth muscle possesses myogenic
tone or is contracted by vasoconstrictor agents, a sudden
reduction in the activity of endothelial NO synthase
(NOS), for example by the administration of NOS
inhibitors, results in endothelium-dependent contractions
in vitro or vasoconstrictions in vivo (Rees et al. 1989).
Thus, in the intact organism, inhibition of NOS (either
by pharmacological agents or by gene deletion) causes
an increase in arterial blood pressure (Rees et al. 1989;
Huang et al. 1995), although part of the response is due
to withdrawal of the inhibitory effect of NO on the release
of angiotensin II and endothelin-1 (see Vanhoutte, 2000;
Félétou et al. 2008) rather than to the absence of the
direct inhibitory effect of the endothelial mediator on
vascular smooth muscle cells. Likewise, the continuous
presence of signals resulting in EDHF-mediated responses
may contribute to vascular tone, and the genetic deletion
of these signals may also result in an increase in arterial
blood pressure (see Félétou & Vanhoutte, 2006a,b; Félétou
& Vanhoutte, 2007). In addition, a reduction in the
release of EDRF will facilitate or permit the occurrence
of endothelium-dependent constrictor responses.

Reduction in NO production. Inhibitors of NOS cause a
marked acute potentiation of EDCF-mediated responses
of the rat aorta (Auch-Schwelk et al. 1992; Yang et al.
2002). Previous exposure to NO, whether released from the
endothelium (by acetylcholine or the calcium ionophore
A23187) or provided by NO donors, results in a prolonged
inhibition of endothelium-dependent contractions (Tang
et al. 2005b). Therefore, most experiments (at least in
the authors’ laboratory) investigating EDCF-mediated
responses are performed in the presence of an
inhibitor of NOS, to optimize endothelium-dependent,

cyclooxygenase-dependent contractions. In addition to
unmasking EDCF-mediated responses, a reduction in
endothelial NO production can sensitize the underlying
vascular smooth muscle to hypoxia. When isolated arteries
and veins are suddenly made hypoxic, this results in a
distinct endothelium-dependent contraction (De Mey &
Vanhoutte, 1982, 1983; Katusic & Vanhoutte, 1986; Iqbal
& Vanhoutte, 1988; Gräser & Vanhoutte, 1991; Hoshino
et al. 1994; Pearson et al. 1996). The hypoxia-induced
endothelium-dependent contraction involves a diffusible
factor (Rubanyi & Vanhoutte, 1985), which does not
require the activity of cyclooxygenase. It is absent in prep-
arations incubated with inhibitors of endothelial NOS but
can be induced in preparations without endothelium by
exogenous NO donors (Gräser & Vanhoutte, 1991; Pearson
et al. 1996), which suggests the involvement of a critical
concentration of NO. The hypoxic response of coronary
arteries is potentiated in vitro and in vivo by previous
ischaemia–reperfusion injury (Pearson et al. 1996) which
makes the phenomenon highly relevant as a contributor
to coronary vasospasm. However, the exact mechanism by
which a reduction in NO production underlies this type
of endothelium-dependent contraction remains elusive.

Reduction in EDHF-mediated responses. In the renal
artery of WKY, inhibitors of EDHF-mediated responses
potentiate the endothelium-dependent component of the
contraction elicited by acetylcholine, suggesting that the
absence of endothelium-dependent hyperpolarizations
favours the production or the action of EDCF (Michel
et al. 2008a). This is not seen in the renal artery of the
SHR, presumably because the EDHF-mediated responses
are already blunted in arteries of the hypertensive strain
(Fujii et al. 1992; Hayakawa et al. 1995; Dohi et al. 1996;
Hutri-Kahonen et al. 1997; Bussemaker et al. 2003; Michel
et al. 2008a).

Modulation by oxygen-derived free radicals. To estimate
the actual involvement of oxygen-derived free radicals
(ROS) in cyclooxygenase-, endothelium-dependent
contractions is beyond the scope of this focused review,
as it appears variable depending on the species, the
blood vessel and sometimes the laboratory involved.
For example, superoxide dismutase (SOD), that does
not permeate cells, abolishes endothelium-dependent
contractions in the canine basilar artery (implying
a pivotal role for superoxide anions as intercellular
messengers; Katusic & Vanhoutte, 1989) and reduces them
in layered ‘sandwich’ preparations (Yang et al. 2003) but
not in intact rings (Auch-Schwelk et al. 1989) of SHR
aorta. Tiron, a cell-permeable scavenger of superoxide
anions, reduces endothelium-dependent contractions to
acetylcholine in the SHR aorta in studies carried out in
Paris (Yang et al. 2002) but not in Hong Kong (Tang &
Vanhoutte, 2008a). In the same preparation, acetylcholine
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causes a burst of endothelial free radical production,
which is larger in the endothelium of the SHR than
in that of the WKY (Tang et al. 2007). Since the burst
of ROS is prevented by indomethacin, cyclooxygenase
appears to be the main source of free radicals under
these conditions, and their production is a secondary
event (Tang et al. 2007). However, once produced, the
free radicals can amplify the EDCF-mediated response.
They probably do so in part by activating/facilitating the
production of vasoconstrictor prostanoids in the vascular
smooth muscle cells (Auch-Schwelk et al. 1989; Yang
et al. 2002, 2003; Álvarez et al. 2008), possibly reaching
the latter through the shielded channels constituted by
the myo-endothelial gap junctions (Tang & Vanhoutte,
2008a). Whether or not the ROS, liberated by the endo-
thelial cyclooxygenase, can activate the enzyme through
a positive feedback mechanism is still uncertain. In the
case of diabetes, the production of ROS may play a more
crucial role in triggering and amplifying EDCF-mediated
responses (Shi et al. 2007b, 2008; Shi & Vanhoutte,

Figure 4
The chain of events leading to the occurrence of endothelium-dependent contractions first involves an abnormal
increase in intracellular calcium (which can be evoked by receptor-dependent agonists, such as acetylcholine or ADP,
or mimicked with calcium-increasing agents, such as the calcium ionophore A23187) that presumably activates
phospholipase A2 to release arachidonic acid. The endothelial COX-1 isoform metabolizes the fatty acid into
endoperoxides which per se are EDCF or are transformed predominantly into prostacyclin that subsequently causes
contraction by activating the TP receptors of the underlying vascular smooth muscle cells. Reactive oxygen species
generated in the endothelium may reach the smooth muscle layer by passive diffusion or through myoendothelial
gap junctions and serve to amplify TP receptor-mediated contractions by activating the cyclooxygenase of the
vascular smooth muscle. AA, arachidonic acid; ACh, acetycholine; ADP, adenosine diphosphate; m, muscarinic
receptors; P, purinergic receptors; PGD2, prostaglandin D2; PGE2, prostaglandin E2; PGF2α , prostaglandin F2α ;
PGI2, prostacyclin; PLA2, phospholipase A2; ROS, reactive oxygen species; TXA2, thromboxane A2.

2008). Obviously, the scavenging action of superoxide
anions on NO, by reducing the bioavailability of the
latter (Rubanyi & Vanhoutte, 1986; Gryglewski et al. 1986;
Auch-Schwelk et al. 1992; Cosentino et al. 1994; Tschudi
et al. 1996; DeLano et al. 2006; Miyagawa et al. 2007;
Macarthur et al. 2008) will also favour the occurrence of
endothelium-dependent contractions.

Human relevance. The observations that indomethacin
potentiates the relaxations to acetylcholine in isolated
renal arteries of aged patients (Lüscher et al. 1987a) and
the vasodilator response to the muscarinic agonist in the
forearm of people with essential hypertension (Taddei
et al. 1995, 1997a,b) suggest that endothelium-derived
vasoconstrictor prostanoids also contribute to endothelial
dysfunction in the human. This conclusion is supported
by the finding that the TP-receptor inhibitor terutroban
improves endothelial function in patients with coronary
disease (Belhassen et al. 2003). To judge from the
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comparison of the effect of indomethacin in different
age groups, the contribution of vasoconstrictor prostanoid
augments with advancing age (Taddei et al. 1995, 1997b),
as it does in animal blood vessels.

Conclusion

The sequence of events (Fig. 4) that leads to
endothelium-dependent contractions first requires
an increase in endothelial Ca2+ concentration, which
activates endothelial COX-1, leading to the production
of EDCF(s). The major prostanoids involved in
EDCF-mediated contractions are endoperoxides,
prostacyclin and, to a lesser extent, thromboxane A2.
They activate TP receptors of the vascular smooth muscle
cells which initiate the contractile process. Reactive
oxygen species may stimulate cyclooxygenase both in
the endothelium and in the vascular smooth muscle,
with subsequent activation of the TP receptors by the
produced prostanoids. Dysfunction in calcium handling
is the leading causal factor for the exacerbated occurrence
of endothelium-dependent contractions in the aorta
of the SHR. An increased expression of endothelial
COX-1, prostacyclin synthase, thromboxane synthase and
enhanced TP receptor sensitivity are not prerequisites for
but intensify the magnitude of endothelium-dependent
contractions.
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Lüscher TF, Romero JC & Vanhoutte PM (1987b). Bioassay of
endothelium-derived vasoactive substances in the aorta of
normotensive and spontaneously hypertensive rats.
J Hypertens 4, S81–S83.
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