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ABSTRACT

TopBP1, acting in concert with DNA containing
bulky base lesions, stimulates ATR kinase activity
under physiologically relevant reaction conditions.
Here, we analyze the roles of the three components
in ATR activation: DNA, base damage and TopBP1.
We show that base adducts caused by a potent
carcinogen, benzo[a]lpyrene diol epoxide (BPDE),
constitute a strong signal for TopBP1-dependent
ATR kinase activity on Chk1 and p53. We find that
the C-terminus of TopBP1 binds preferentially to
damaged DNA and is sufficient to mediate damaged
DNA-dependent ATR activation in a manner similar
to full-length TopBP1. Significantly, we find that
stimulation of ATR by BPDE-damaged DNA exhibits
strong dependence on the length of DNA, with
essentially no stimulation with fragments of 0.2kb
and reaching maximum stimulation with 2kb frag-
ments. Moreover, TopBP1 shows preferential bind-
ing to longer DNA fragments and, in contrast to
previous biochemical studies, TopBP1 binding is
completely independent of DNA ends. We find that
TopBP1 binds to circular and linear DNAs with com-
parable affinities and that these DNA forms elicit the
same level of TopBP1-dependent ATR activation.
Taken together, these findings suggest a coopera-
tive activation mechanism for the ATR checkpoint
kinase by TopBP1 and damaged DNA.

INTRODUCTION

DNA damage checkpoints are signal transduction path-
ways that delay or arrest cell cycle progression in response
to DNA damage or inhibition of replication. Checkpoints
aid in maintaining genomic integrity and cell survival
in unicellular organisms and are known or presumed
to prevent genomic instability, cancer and death in

multicellular organisms. ATM and ATR are members of
the phosphoinositide 3-kinase-related protein Kkinase
(PIKK) family of protein kinases that function in the
early stages of checkpoint signaling pathways. In general,
the checkpoint response to double-strand breaks is
initiated by ATM, whereas the checkpoint response to
base adducts and inhibition of replication is induced by
ATR (1-3). It is commonly accepted that single-stranded
DNA resulting from uncoupling of the replicative helicase
and DNA polymerase because of base lesions or dNTP
depletion during the S-phase (4), from processing of
double-strand breaks (5,6), or from damage removal in
the form of ~30-nt long oligomers in the G1 and G2
phases (7-9) constitutes the signal for the ATR-mediated
DNA damage checkpoint response. While there is strong
evidence that single-stranded DNA coated with replica-
tion protein A (RPA) is a signal for ATR activation
(10,11), there are also in vivo and in vitro data indicating
that the base lesion itself acts as a signal for the ATR-
mediated DNA damage checkpoint response (12—14).
The development of partially reconstituted checkpoint
systems with purified proteins has been instrumental in
obtaining mechanistic details about these important
signal transduction pathways (15-18). Using a minimal
in vitro system, Dunphy and coworkers (15) made the
important discovery that the topoisomerase IIf binding
protein 1 (TopBP1) is an essential co-activator of ATR.
Subsequently, we demonstrated that under more phys-
iologically relevant reaction conditions the TopBPI-
dependent ATR kinase activity on the Chkl signal
transduction kinase was strongly stimulated by DNA, in
particular DNA containing bulky base adducts induced by
the model carcinogen N-acetoxy-2-acetylaminofluorene
(N-Aco-AAF) (14). In the current study, we investigate
whether other bulky base lesions act as checkpoint signals
similarly to AAF-guanine adducts, and identify that the
C-terminus of TopBPI is sufficient for damaged DNA-
and TopBP1-dependent stimulation of ATR kinase activ-
ity on Chkl as well as p53 substrates. Finally, we present
evidence that cooperative binding of TopBP1 to DNA
may be essential for its function as the ATR co-activator.
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Collectively, our data support the view that TopBP1 is
capable of recognizing unprocessed bulky DNA lesions,
recruiting ATR to the damage site, and activating ATR by
a cooperative mechanism.

MATERIALS AND METHODS
Antibodies and purification of checkpoint proteins

Chk1 phospho-S345 (#2348) and p53 phospho-S15 anti-
bodies (#9248) were purchased from Cell Signaling
Technology (Danvers, MA, USA), and Chkl (sc-8408)
and p53 (sc-6243) antibodies were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Native
ATR, which contains ATRIP but is free of other check-
point proteins and other PIKK family members, was pur-
ified from HeLa cell-free extracts as previously described
(14). GST-TopBP1-His, GST-TopBP1 fragments, GST-
p53 and His-Chk1 kinase dead (Chk1-kd) were all purified
by standard procedures as previously described (14).

Preparation of DNA substrates

For benzo[a]pyrene diol epoxide (BPDE)-damaged DNA,
pUCI19 plasmid (50 pg/ml) was treated with 50 uM BPDE
(NCI Chemical Carcinogen Reference Standard Reposi-
tory, Midwest Research Institute, Kansas, MO, USA) in
10mM Tris—HCI, pH 7.5 and I mM EDTA at 37°C for
16h in the dark. The reaction was followed by ether
extraction and ethanol precipitation to remove the non-
reacted excess BPDE. This treatment produces ~20
adducts/plasmid as previously reported (19). To generate
various sizes of DNA fragments, PCR was performed with
pUCI19 plasmid as a template.

DNA-binding assays

Assays were carried out as described previously (14).
Briefly, DNA substrates were 5-end labeled with
[y->*P]JATP and then mock-treated or treated with
BPDE as described above. For circular DNA, labeled
DNA was ligated and purified by agarose gel electrophor-
esis. Purified proteins (3 pmol) on glutathione beads were
incubated at 37°C for 10 min with the DNA (0.6 fmol or
1 ng) in buffer B (10mM Tris—Cl, pH 7.7, I mM EDTA,
0.5% NP 40) containing 0-300 mM NaCl. For DNA-bind-
ing assays in kinase reaction buffer, comparable amounts
of TopBP1 and DNA to those used in kinase assays were
used. After the incubation, the beads were washed three
times with buffer B, and bound DNA was eluted by incu-
bation with 0.1 pg/ul proteinase K at 37°C for 15 min. The
DNA was resolved in a 0.8% agarose gel, dried, visualized
by autoradiography and quantified using a Phosphor-
Imager (Molecular Dynamics, Sunnyvale, CA, USA)
and ImageQuant 5.2 software. The averages from inde-
pendent experiments were graphed, and the error bars
indicate the standard deviation of the mean.

Kinase assays

The procedure was essentially as previously described (14).
Briefly, kinase assay reactions contained 14 mM HEPES,
pH 7.9, 3mM MgCl,, ImM ATP, 0.5mM DTT, 5%

glycerol, 1% polyethylene glycol (6000), 35mM KClI,
S50mM NaCl and 1pM microcystin in 10pl final
volume. For low-ionic strength conditions, the concentra-
tion of NaCl was reduced to 10mM. Purified ATR
(0.4nM) was preincubated in the reaction buffer for
15 min at 30°C with the indicated amounts of recombinant
full-length TopBP1 or TopBP1 fragments and with vari-
ous DNA substrates where indicated. After the preincuba-
tion, 10nM Chk1-kd, or p53 where indicated, was added
into the reaction, incubated for 20 min at 30°C, terminated
by the addition of SDS-PAGE loading buffer, and sepa-
rated by SDS-PAGE. Chkl or p53 phosphorylation was
detected by immunobloting using the phospho-S345 or
phospho-S15 antibody, respectively. Levels of phosphory-
lation were quantified using ImageQuant 5.2 software after
scanning immunoblots. The highest level of Chkl or p53
phosphorylation in each experiment was set equal to 100,
and the levels of phosphorylated protein in the other lanes
were determined relative to this value. The averages
from 2-3 independent experiments were graphed, and the
error bars indicate the standard deviation of the mean.

RESULTS
DNA-binding properties of TopBP1

We previously found that full-length TopBP1 bound with
higher affinity to DNA-containing AAF-guanine adducts
than to undamaged DNA (14). Since it was reported that
TopBP1 contains multiple DNA-binding domains (20), we
decided to determine which region of TopBP1 is respon-
sible for the damaged DNA-binding activity. To this
end, we generated several bacterial constructs to express
full-length TopBP1 or fragments of the protein encom-
passing varying domains from the N- and C-termini
(Figure 1A). TopBP1 contains eight BRCA1 carboxyl-
terminal (BRCT) motifs that are known to mediate
protein—protein interactions (21) and a region between
the sixth and seventh BRCT domains that is sufficient
for binding to and activation of ATR (15,22). Fragment
A includes the two N-terminal BRCT domains; fragment
B carries the ATR-activating domain but lacks a full
BRCT motif; fragment C contains the ATR-activating
domain as well as the two C-terminal BRCT motifs; frag-
ment D has the N-terminal six BRCT motifs but lacks the
ATR-interacting domain. All of these constructs were pur-
ified by GST affinity chromatography and were of high
purity with the exception of the full-length protein and the
large D fragment, both of which contain some degrada-
tion or premature termination products (Figure 1B).

We performed DNA pull-down assays to investigate the
effect of DNA damage on binding by full-length TopBP1
and the fragments. As seen in Figure 1C, full-length
TopBP1 (lanes 3 and 4), the C-terminal fragment carrying
the ATR-activating domain and the last two BRCT motifs
(fragment C) (lanes 9 and 10), and the N-terminal frag-
ment of the protein (fragment D) containing the first six
BRCT motifs (lanes 11 and 12) bind to damaged DNA
preferentially, with the full-length protein exhibiting the
highest affinity. In contrast, the N-terminal fragment car-
rying the first two BRCT motifs (fragment A), which was
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Figure 1. TopBP!I fragments used in this study and their DNA binding
properties. (A) Schematic of human TopBPl and its fragments that
were purified for structure—function experiments. The amino acid posi-
tions are indicated, and the eight boxes indicate the BRCT motifs. The
ATR activating domain between BRCT domains 6 and 7 is indicated.
(B) The GST-fusion proteins visualized by SDS-PAGE followed by
Coomassie blue staining. (C) Preferential binding of TopBP1 and
TopBP1 fragments to BPDE-damaged DNA. (Top panel) Unmodified
(UM) or BPDE treated pUC19 plasmid DNAs (1ng) which had been
labeled with [y-**PJATP were incubated with 3pmol of full-length
TopBP1 (FL) bound beads or beads carrying 3 pmol of the TopBPI-
A, -B, -C or -D fragments in buffer containing 200mM NaCl. The
bound DNA was eluted by proteinase K, analyzed by agarose gel
electrophoresis, and visualized by autoradiography. The input lanes
contain fifty percent of DNA added to the reaction. The results from
two experiments were quantified and plotted.

previously shown to have DNA-binding activity (20), fails
to exhibit measurable binding to either undamaged or
damaged DNA under our experimental conditions (lanes
5 and 6). Fragment B, containing the activation domain
but no BRCT motifs, also fails to bind undamaged or
BPDE-damaged DNA (lanes 7 and 8), which is in agree-
ment with our previous results with N-Aco-AAF-damaged
DNA (14). Thus, we conclude that the two DNA-binding
domains located in the N- and C-terminal halves of
TopBP1 contribute to the preferential binding of this pro-
tein to DNA containing bulky base lesions such as BPDE-
guanine adducts. We then proceeded to analyze the effect
of BPDE damage on ATR activation mediated by full-
length TopBP1 and the TopBP1 fragments.
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Stimulation of the ATR kinase by TopBP1 fragments

It is known that in buffers of low ionic strength, both
full-length TopBP1 and the ATR-activating domain of
TopBP1 can activate the ATR kinase in the absence of
DNA (14,15). We directly compared the ATR-stimulatory
activities of the TopBPl fragments under low ionic
strength reaction conditions, and the results are shown
in Figure 2A. We find that full-length TopBP1 is the
most efficient in stimulating the ATR kinase (lanes 2-5),
and that fragments B and C (lanes 6-9 and lanes 10-13,
respectively) which carry the ATR-activating domain are
also capable of stimulating ATR, albeit at <10% of the
efficiency of the full-length protein. The D fragment,
which does not contain the ATR-activating domain, fails
to stimulate ATR (lanes 14-17).

We previously reported that under conditions of high
ionic strength, TopBP1 failed to stimulate ATR, and that
some stimulation was observed only when DNA was
included in the reaction mixture and that the strongest
stimulation was seen when DNA was damaged by
N-Aco-AAF (14). To gain further insight into the role
of damaged DNA binding by TopBP1 in ATR activation,
we tested the fragments of TopBP1 for their abilities to
stimulate  ATR in the presence of BPDE-damaged
DNA. As shown in Figure 2B, in addition to full-length
TopBP1 (lanes 3-6), the C fragment (lanes 11-14), which
has DNA-binding activity as well as the activation
domain, also efficiently stimulates ATR in the presence
of BPDE-damaged DNA. DNA slightly stimulates the
ATR kinase in the presence of high concentrations of
the B fragment (lanes 7-10), which carries the activation
domain but lacks DNA-binding activity. DNA has no
effect on the ATR kinase in the presence of the D frag-
ment (lanes 15-18), which binds DNA but lacks the acti-
vation domain. These data support our previous model
that the formation of a damaged DNA-TopBP1-ATR
ternary complex is essential for ATR stimulation by
damaged DNA in vitro (14).

Since the results in Figure 2B demonstrate that the
C-terminal one-third of TopBP1 is sufficient for mediating
damaged DNA-dependent stimulation of the ATR kinase,
we wished to determine whether the observed stimulation
by the C fragment of TopBP1 is indeed damaged-DNA
specific, as was previously reported with full-length
TopBP1 (14). For this purpose, we tested increasing
amounts of either unmodified or BPDE-damaged DNA
in ATR kinase reactions containing full-length TopBP1
or the C fragment (Figure 3). In the presence of full-
length TopBP1, BPDE-damaged DNA stimulates the
ATR kinase ~5-fold more than unmodified DNA (lanes
7-10 versus lanes 3-6), which is consistent with
what we previously reported for DNA damaged with
N-Aco-AAF (14). Importantly, in the presence of the C
fragment of TopBP1, BPDE-damaged DNA stimulates
the ATR kinase ~9-fold more than unmodified DNA
(lanes 17-20 versus lanes 13-16). Thus, we conclude that
like full-length TopBP1, the C fragment preferentially
binds to DNA containing bulky base lesions and specifi-
cally stimulates ATR kinase activity. Therefore, the
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Figure 2. Stimulation of the ATR kinase by TopBP1 and its fragments.
(A) TopBPI1 fragments containing the ATR-activating domain stimu-
late ATR in the absence of DNA. ATR (0.4nM) was incubated with
Chkl (10nM) in the presence of full-length TopBPl (1-8nM) or the
indicated TopBP1 fragments (20-160nM) under low ionic strength
conditions (45 mM total salt concentration). ATR kinase activity was
determined by immunoblotting for phospho-Chkl (S345) and Chkl
as indicated. The graph shows quantitative analysis of the data from
three independent experiments conducted under identical conditions.
(B) DNA stimulates the kinase activity of ATR in the presence
of full-length TopBPl or the C-terminal fragment. Kinase assays
were performed as described in Figure 2A, except with Sng of
BPDE-damaged DNA under high ionic strength conditions (85mM
total salt concentration). The average levels of Chkl phosphory-
lation from three independent experiments were quantified and
graphed.
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Figure 3. TopBP1 C-terminal fragment stimulates the ATR kinase in a
manner dependent on the presence of damaged DNA. Kinase assays
were carried out with ATR (0.4nM), Chkl (10nM) and unmodified
(UM) or BPDE-damaged DNA (5-40ng) in the presence of full-length
TopBP1 (0.5nM) or TopBPl C-fragment (10nM) under high ionic
strength conditions. The average levels of Chkl phosphorylation from
three independent experiments were quantified and graphed.

C-terminal one-third of TopBP1 is sufficient for damaged
DNA-dependent ATR activation.

We next examined whether the TopBP1l- and DNA-
dependent activation of ATR is specific to the Chkl sub-
strate or whether it is a general mechanism applicable to
other known ATR substrates as well. Therefore, we tested
another key checkpoint protein and ATR substrate, p53,
in our assay, and the results are shown in Figure 4A. We
observe ~5-fold more phosphorylation of serine 15 of p53
in the presence of DNA (lane 2) than in the absence
(lane 1), which is comparable to the level of DNA-
dependent stimulation of Chkl phosphorylation (lanes 3
and 4). As with the Chkl substrate, the DNA-dependent
p53 phosphorylation by ATR occurs in the presence of
either full-length or the C-fragment of TopBPl
(Figure 4A and B). More importantly, BPDE-damaged
DNA specifically stimulates TopBPIl-dependent ATR
kinase activity ~4-fold more than undamaged DNA
(Figure 4B, lanes 2 versus 3). Therefore, the TopBPI-
and damaged DNA-dependent stimulation of ATR is
not specific to the Chk1 substrate.

Cooperativity in ATR activation

It was recently shown that the MRN (Mrell-
Rad50-Nbsl)-mediated cooperative binding of ATM to
DNA greatly stimulated the ATM kinase activity (23).
To determine whether ATR exhibited cooperativity simi-
larly to ATM, BPDE-damaged DNAs ranging in
size from 0.2 to 2.6kb were tested at identical DNA
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Figure 4. Damaged DNA-dependent stimulation of ATR is indepen-
dent of the substrate. (A) Addition of DNA stimulates the ATR kinase
activity toward another key downstream target, p53 in the presence of
TopBPI1. Kinase assays were carried out with ATR and TopBPI-C
fragment in the absence or presence of 5 ng of unmodified circular
DNA in reactions containing 5SnM Chkl (lane 1 and 2) or 5nM p53
(lane 3 and 4) as described in Figure 3. The average levels of Chkl and
p53 phosphorylation from three independent experiments were quanti-
fied and graphed. (B) Phosphorylation of p53 is strongly stimulated by
BPDE-damaged DNA. Kinase assays were performed with ATR, p53
and 5ng of unmodified (UM) (lane 2) or BPDE-damaged DNA
(BPDE) (lane 3) in the presence of full-length TopBP! as described
in Figure 3. The average levels of p53 phosphorylation from two inde-
pendent experiments were quantified and graphed.
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mass (and therefore adduct) concentrations for activating
ATR in the presence of TopBP1. The results are shown in
Figure 5A. Fragments of 0.2kb had no effect on
TopBP1-dependent stimulation of the ATR kinase (lanes
18-20), whereas, at longer DNA sizes, the stimulation
increased essentially uniformly, approaching maximum
in the 2-2.6kb range (lanes 3-11). It is important to
note that the number of DNA ends in the reaction does
not contribute to the DNA length-dependent stimulation
of ATR, as there is no difference in the ATR kinase stim-
ulation induced by linear and circular DNAs (Figure 5A,
lanes 3-8 and Figure 6B), and the length effect is also
observed with equal molar quantities of DNA (data not
shown). We have also observed similar DNA length-
dependent stimulation of ATR in the presence of
TopBP1-C fragment and with undamaged DNA (data
not shown). Thus, it appears that, as in the case of
ATM, cooperative binding of ATR to DNA is required
for activation of the kinase activity of this PIKK member.

To determine whether TopBP1 exhibits cooperative
DNA-binding properties, we performed DNA pull-down
assays with different size fragments of DNA. The results
are shown in Figure 5B and C. We observe preferential
binding of TopBP1 to longer BPDE-modified DNA frag-
ments under conditions of either equal DNA mass or
molar quantities of the two DNA fragments (Figure 5B,
lane 4). Under these experimental conditions, we observe
negligible binding to unmodified DNAs of either length
(lane 3). Because these DNA-binding experiments were
carried out under conditions different from those of the
kinase assay, we then repeated the DNA-binding experi-
ment in kinase reaction buffer, and obtained similar
results (Figure 5C). There was significantly more binding
of TopBPl to the longer DNA fragments whether the
DNAs were unmodified (lane 3) or BPDE-modified
(lane 4). Therefore, we conclude that TopBP1 preferen-
tially binds to longer DNAs which results in cooperative
recruitment and activation of ATR.

DNA binding and ATR stimulatory activities of TopBP1
are independent of DNA ends

It was previously reported that TopBP1 binds preferen-
tially to DNA duplex ends and nicks in vitro, indicating
that TopBP1 may have an important role in recognition of
DNA breaks (20). However, we observed no preferential
binding to DNA ends under our experimental conditions
(Figure 5B). Since our results seem to be contradictory to
the previous report, we wished to directly address whether
TopBP1 has different binding affinities for circular and
linear DNAs. Therefore, we performed DNA pull-down
assays according to the previously described procedures
with the A and C fragments which are equivalent to the
TopBP1 fragments used in the previous report (20). The
results are shown in Figure 6A. The C-terminal fragment
(lanes 7 and 8) binds about 10-fold more efficiently to
DNA than the N-terminal fragment (lanes 5 and 6); and
importantly, there are no significant differences between
the affinities of either fragment to linear, nicked or circular
DNA, leading us to conclude that TopBP1 has no prefer-
ence for DNA ends. It is unclear why our results differ
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from the previous report showing similar DNA-binding
affinities for the two equivalent TopBP1 fragments as
well as an absolute dependence on DNA ends for binding
(20). We note that we have also conducted these experi-
ments using electromobility shift assays which also
confirm results (data not shown).

Since we did not observe a noticeable difference in the
binding affinity of TopBP1 to circular or linear DNA in
the DNA pull-down assays, we used the kinase assay to
probe for a difference in the ability of these two forms of

DNA to stimulate TopBP1-dependent ATR kinase activ-
ity. Figure 6B shows that circular (lanes 3-8) and linear
(lanes 9-14) DNAs, which were either mock- or BPDE-
treated, were nearly identical in their ability to stimulate
ATR kinase activity in the presence of TopBP1. The pres-
ence of unmodified DNA (lanes 3-5 and lanes 9—11) in the
kinase reaction resulted in >10-fold stimulation of ATR
activity relative to no DNA (lane 2), and the addition of
BPDE-modified DNA (lanes 6-8 and lanes 12—-14) resulted
in ~8-fold further stimulation over unmodified DNA,
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three forms to the TopBPl fragments. The input lanes contain fifty
percent of DNA added to the reaction. The results from five experi-
ments were quantified and plotted. (B) DNA double-strand breaks has
no effect on TopBPl-dependent ATR activation. Kinase assays were
carried out with ATR, Chkl and TopBPI in the presence of unmodi-
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Figure 3. The average levels of Chkl phosphorylation from three inde-
pendent experiments were quantified and graphed.
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independent of whether the DNAs were linear or circular.
We conclude from these results that in contrast to the
MRN-mediated cooperative activation of ATM which
depends on free DNA ends, DNA termini are not required
for TopBPl DNA binding or DNA-dependent coopera-
tive activation of ATR.

DISCUSSION

In this study, we demonstrate that TopBP1 has two DNA
binding sites and binds DNA with no preference for DNA
termini. Moreover, we find that both sites aid in preferen-
tial binding of TopBP1 to DNA damaged by BPDE. In
addition, we demonstrate that while under conditions of
low ionic strength any TopBP1 fragment that carries the
ATR-binding domain (15,22) is sufficient for ATR activa-
tion, only the C-terminal fragment that contains the ATR-
activating domain together with a DNA-binding domain
can stimulate the ATR kinase in a manner dependent on
the presence of BPDE-damaged DNA under physiologi-
cally relevant ionic strength. Interestingly, whereas the
N-terminal half of TopBP1 is conserved through evolution
from yeast to humans and plays an essential role in
replication initiation, the C-terminal half of TopBP1, con-
taining the ATR-activation domain, is only conserved in
metazoans and is essential for checkpoint activation
(24,25). In fact, the C-terminal half of TopBP1 is sufficient
for Chkl phosphorylation induced by oligonucleotides in
Xenopus egg extracts (24). The budding yeast TopBP1
homolog, Dpbl1, while lacking sequence homology to
the ATR-activation domain, is still able to activate the
Mecl®™® kinase in an in vitro system (26,27). However,
the yeast Dpbl11T°PBP! also lacks the C-terminal region
that we have identified to be important in the human pro-
tein for mediating DNA-dependent ATR activation, and
does not support DNA-dependent Mecl*™® activation
(26). While results from our reconstituted checkpoint
system indicate that the C-terminus of TopBP1 is sufficient
for direct binding to damaged DNA and activation of
ATR kinase activity, there are recent reports that the
N-terminus of TopBP1 is required for its recruitment
and resulting activation of ATR via an interaction with
Rad9 in mammalian cell lines (28) and Xenopus egg
extracts (29). Work is underway to develop an in vitro
system that depends on Rad9 and the other factors iden-
tified genetically for optimal activation of the ATR-
mediated checkpoint response.

An unexpected finding of this study has been the DNA
length dependence of TopBP1 stimulatory activity.
Although a similar length dependence was reported for
ATM autophosphorylation, in that case there was an
absolute requirement for DNA ends for cooperative bind-
ing and autophosphorylation of ATM (23). In contrast, in
the case of ATR there is no requirement for DNA termini.
It must also be noted that the length effect on ATM acti-
vation was ascribed to chromatinization of the DNA
added to the egg extract, the minimum requirement for
DNA of 0.2kb coinciding with the DNA length required
for efficient formation of nucleosomes, which are pre-
sumed to be required for recruitment of ATM to DNA
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flanking double-strand breaks and subsequent activation
(23). Clearly, this is not the case for ATR in our system in
which purified proteins are used in the checkpoint recon-
stitution. However, studies on ATM activation using pur-
ified proteins also demonstrated a very similar DNA
length dependence for ATM activation (18). In that
report, fragments of 0.384kb had a minimal effect on
MRN-dependent stimulation of ATM kinase, and the
stimulation increased essentially uniformly with longer
DNA sizes, with the maximum at 2.3kb. Therefore,
it appears that both ATM and ATR share similar DNA
length-dependence of MRN and TopBPI1 stimulatory
activity, respectively. It should also be noted that in the
case of ATM, by increasing the DNA concentration of a
0.2 kb fragment, the stimulatory approached that achieved
by a 2kb fragment (23), whereas in the case of ATR,
increasing the amount of the 0.2kb fragment did not
affect the outcome. This is in line with the argument
that the length-dependent cooperative effects of DNA
with double-strand breaks, in the case of ATM, and
DNA with base damage, in the case of ATR, result
from different mechanisms.

We use the word cooperativity as an operational term,
not in the strict mechanistic sense, because at present, we
do not have a mechanistic model for the DNA-induced
cooperativity of the ATR kinase. Although ATM and
ATR have distinctly different modes of damage sensing
and activation, our in vitro findings regarding the cooper-
ative activation of the ATR kinase are in line with the
recent report that the lac operator/lac repressor-mediated
binding of budding yeast Ddc2*™" (and therefore
Mecl*™®) to DNA exhibits a similar type of cooperativity
for Mecl®™R kinase activation in vivo (30). It was found
that at least 40 repressor/operator complexes with the
repressor-fused Ddc2*™®F were required for significant
Mecl*TR activation as measured by Rad53" /2 phos-
phorylation. There is also evidence for cooperative activa-
tion of ATR in vitro in Xenopus egg extracts where Chk1
phosphorylation is dependent on the size of the single
stranded DNA gap (11).

While in wild-type human and yeast cells, in addition to
ATR (Mecl), the 9—1-1 complex and TopBP1 (Dpbll)
are required to act coordinately to initiate the check-
point response after DNA damage, the requirement for
the 9—1-1 complex, TopBP1 or DNA damage can be cir-
cumvented under special reaction conditions in vitro
(14-16,26,27), by overexpressing the TopBP1 ATR acti-
vating domain in vivo (15), or by artificially tethering
these checkpoint proteins to the DNA in vivo (28,30).
Hence, we believe that our in vitro system in which
damaged DNA-bound TopBP1 recruits ATR and acti-
vates its kinase function is a reasonable approximation
to ATR activation in vivo, and provides a useful platform
for mechanistic studies of the ATR-mediated DNA
damage checkpoint.
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