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Abstract 

Cancer diagnosis and clinical outcome prediction 

are among the most important emerging applications 

of gene expression microarray technology with sev-

eral molecular signatures on their way toward clini-

cal deployment. Use of the most accurate decision 

support algorithms available for microarray gene 

expression data is a critical ingredient in order to 

develop the best possible molecular signatures for 

patient care. As suggested by a large body of litera-

ture to-date, support vector machines can be consi-

dered “best of class” algorithms for classification of 

such data. Recent work however found that random 

forest classifiers outperform support vector ma-

chines. In the present paper we point to several bi-

ases of this prior work and conduct a new unbiased 

evaluation of the two algorithms. Our experiments 

using 18 diagnostic and prognostic datasets show 

that support vector machines outperform random 

forests often by a large margin.  

Introduction 

Gene expression microarrays are becoming increa-

singly promising for clinical decision support in the 

form of diagnosis and prediction of clinical outcomes 

of cancer and other complex diseases. In order to 

maximize benefits of this technology, researchers are 

continuously seeking to develop and apply the most 

accurate decision support algorithms for the creation 

of gene expression patient profiles. Prior research 

suggests that among well-established and popular 

techniques for multicategory classification of micro-

array gene expression data, support vector machines 

(SVMs) achieve the best classification performance, 

significantly outperforming k-nearest neighbors, 

backpropagation neural networks, probabilistic neural 

networks, weighted voting methods, and decision 

trees 
1
. 

In the last few years, there is an increased interest 

within the bioinformatics community in the random 

forest algorithm 
2
 for classification of microarray and 

other high-dimensional molecular data 
3-5

. Notably, a 

recent study 
5
 concluded that random forest classifi-

ers have predictive performance comparable to that 

of the best performing alternatives (including SVMs) 

for classification of microarray gene expression data. 

In fact, the data in Table 2 of the study 
5
 suggests that 
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random forests on average across 10 datasets slightly 

outperform SVMs as well as other methods. The au-

thors also proposed a gene selection method called 

RFVS intended to preserve classification perfor-

mance of the random forest. If true, these findings are 

of great significance to the field, suggesting that ran-

dom forests are overall the best algorithm for this 

domain. 

However, the prior work in 
5
 possesses several major 

data analytic biases that may have distorted its con-

clusions: First, the performance metric used in 
5
 

(proportion of correct classifications) is sensitive to 

unbalanced distribution of classes and has lower 

power to discriminate among classification algo-

rithms compared to existing alternatives such as area 

under the ROC curve and relative classifier informa-

tion 
6-8

. Second, while the random forests were ap-

plied to datasets prior to gene selection, SVMs were 

applied to a subset of only 200 genes. Given that the 

number of optimal genes varies from a dataset to da-

taset and that SVMs are known to be fairly insensi-

tive to a very large number of irrelevant genes, such 

an application of SVMs biases down their perfor-

mance. Third, a one-versus-one SVM algorithm was 

applied for the multicategory classification tasks, 

while it is has been shown that in microarray gene 

expression domain this method is inferior to other 

multicategory SVM methods, such as one-versus-rest 
1,9

. Fourth, the evaluation of 
5
 was limited only to 

linear SVMs without optimizing any algorithm para-

meters. 

These biases of the study in 
5
 severely compromise 

its conclusions and the question whether random fo-

rests indeed outperform SVMs for classification of 

microarray gene expression data is not convincingly 

answered. In the present work we undertake an un-

biased comparison of the two algorithms to determine 

the best performing technique. We also examine to 

what extent the gene selection procedure RFVS pre-

serves classification performance of the random for-

est classifier by using a small subset of genes as 

claimed in 
5
. To make our evaluation more relevant to 

practitioners, we focus not only on diagnostic data-

sets that are known to have strong predictive signals, 

but also include several outcome prediction datasets 

where the signals are weaker. 
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Methods and Materials 

Microarray Datasets and Classification Tasks 

Gene expression microarray datasets used in the 

present work are described in Table 1. All 18 datasets 

span the domain of cancer; 11 datasets correspond to 

diagnostic tasks and 7 are concerned with clinical 

outcome prediction. Out of 18 datasets, 9 are binary 

classification tasks, while the other 9 are multicate-

gory with 3-26 classes. The datasets contain 50-308 

samples and 2,308-24,188 variables (genes) after data 

preparatory steps described in 
1
. All diagnostic data-

sets were obtained from http://www.gems-system.org 
1
 and prognostic datasets were obtained from the 

links given in 
10

. A list of references to the primary 

study for each dataset is provided in 
11

. 

Cross-Validation Design 

We used 10-fold cross-validation to estimate the per-

formance of the classification algorithms. In order to 

optimize algorithm parameters, we used another 

“nested” loop of cross-validation by further splitting 

each of the 10 original training sets into smaller train-

ing sets and validation sets. For each combination of 

classifier parameters, we obtained cross-validation 

performance and selected the best performing para-

meters inside this inner loop of cross-validation. 

Next, we built a classification model with the best 

parameters on the original training set and applied 

this model to the original testing set. Details about 

the “nested cross-validation” procedure can be found 

in 
12,13

. Notice that the final performance estimate 

obtained by this procedure will be unbiased because 

each original testing set is used only once to estimate 

performance of a single classification model that was 
built by using training data exclusively.  
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Support Vector Machine Classifiers 

Several theoretical reasons explain the superior em-

pirical performance of SVMs in microarray data: e.g., 

they are robust to the high variable-to-sample ratio 

and large number of variables, they can learn effi-

ciently very complex classification functions, and 

they employ powerful regularization principles to 

avoid overfitting
1,14,15

. Extensive applications litera-

ture in text categorization, image recognition and 

other fields also shows the excellent empirical per-

formance of this classifier in many more domains. 

The underlying idea of SVM classifiers is to calculate 

a maximal margin hyperplane separating two classes 

of the data. To achieve non-linear separation, the data 

are implicitly mapped to a higher dimensional space 

by means of a kernel function, where a separating 

hyperplane is found. New samples are classified ac-

cording to the side of the hyperplane they belong to 
15

. Many extensions of the SVM algorithm can han-

dle multicategory data. The “one-versus-rest” SVM 

works better for multi-class microarray data 
1,9

, so we 

adopted this method for the analysis of multicategory 

datasets in the present study. In summary, this ap-

proach involves building a separate SVM model to 

classify each class against the rest, and then predict-

ing the class of a new sample using the SVM model 

with the strongest vote. 

We used the polynomial-kernel SVM implemention 

in libSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm) 

and optimized the kernel degree d and the SVM pe-

nalty parameter C by nested cross-validation as de-

scribed above. Namely, we optimized d over {1, 2, 3} 

and penalty parameter C over {10
-2

, 1, 100}. 

 

Task Dataset name
Number 

of classes

Number of 

variables 

(genes)

Number of 

samples
Diagnostic or outcome prediction task

Su 11 12533 174 11 various human tumor types

Ramaswany 26 15009 308 14 various human tumor types and 12 normal tissue types

Staunton 9 5726 60 9 various human tumor types

Pomeroy 5 5920 90 5 human brain tumor types

Nutt 4 10367 50 4 malignant glioma types

Golub 3 5327 72
Acute myelogenous leukemia (AML), acute lymphoblastic leukemia 

(ALL) B-cell and ALL T-cell

Armstrong 3 11225 72 AML, ALL and mixed-lineage leukemia (MLL)

Bhattacharjee 5 12600 203 4 lung cancer types and normal tissues

Khan 4 2308 83 Small, round blue cell tumors (SRBCT) of childhood

Shipp 2 5469 77 Diffuse large B-cell lymphomas (DLBCL) and follicular lymphomas

Singh 2 10509 102 Prostate tumor and normal tissues

Iizuka 2 7070 60 Hepatocellular carcinoma 1-year recurrence-free survival

Beer 2 7129 86 Lung adenocarcinoma survival

Veer 2 24188 97 Breast cancer 5-year metastasis-free survival

Rosenwald 2 7399 240 Non-Hodgkin lymphoma survival

Yeoh 2 12240 233 Acute lymphocytic leukaemia relapse-free survival

Pomeroy 2 7129 60 Medulloblastoma survival

Bhattacharjee 2 12600 62 Lung adenocarcinoma 4-year survival
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Table 1. Gene expression microarray datasets used in this study.  
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Random Forest Classifier 

Random forest (RF) is a classification algorithm that 

uses an ensemble of unpruned decision trees, each of 

which is built on a bootstrap sample of the training 

data using a randomly selected subset of variables 
2
. 

This algorithm is promising for classification of mi-

croarray data because it provides theoretical guaran-

tees for optimal classification performance in the 

sample limit, it employs gene selection embedded in 

its operation, and it can perform both binary and mul-

ticategory classification tasks.  

We employed the high-quality implementation of RF 

available in the R package randomForest 
16

. This im-

plementation is based on the original Fortran code 

authored by Leo Breiman, the inventor of RFs. Fol-

lowing the suggestions of 
16,17

 and http://www.stat. 

berkeley.edu/~breiman/RandomForests/, we applied 

RFs with different parameter configurations for the 

values of ntree = {500, 1000, 2000} (number of trees 

to build), mtryFactor ={0.5, 1, 2} (a multiplicative 

factor of the default value of mtry parameter denoting 

the number of genes to be randomly selected for each 

tree; by default mtry = genesofnumber ), and 

nodesize = 1 (minimal size of the terminal nodes of 

the trees in a random forest). Note that these parame-

ters are also consistent with the recommendations of 
5
. We furthermore applied RFs with ntree and mtry-

Factor parameters optimized by nested cross-

validation. 
Table 1. Gene expression micro
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Random Forest Gene Selection 

In addition to standard RF that employ embedded 

gene selection, we also used the recently introduced 

random forest-based backward elimination procedure 

RFVS 
5
. According to the evaluation of RFVS con-

ducted by its authors, this method “yields very small 

sets of genes while preserving predictive accuracy” 
5
. 

The RFVS procedure involves iteratively fitting RFs 

(on the training data), and at each iteration building a 

random forest after discarding genes with the smal-

lest importance values. The returned set of genes is 

the one with the smallest out-of-bag error. 

We used the varSelRF implementation of the RFVS 

method developed by its inventors and applied it with 

the recommended parameters: ntree = 2000, mtry-

Factor = 1, nodesize = 1 and fraction.dropped = 0.2 

(a parameter denoting fraction of genes with small 

importance values to be dropped during backward 

elimination procedure) 
5
. The meaning of other para-

meters is explained in the previous subsection. 

Classification Performance Evaluation Metrics 

We used two classification performance metrics. For 

binary tasks, we used the area under the ROC curve 

(AUC) which was computed using continuous out-

puts of the classifiers (distances from separating 

hyperplane for SVMs and outcome probabilities for 

RFs) 
7
. For multicategory tasks, where classical AUC 

is inapplicable, we employed the relative classifier 

information (RCI) 
6
. RCI is an entropy-based meas-

ure that quantifies how much the uncertainty of a 
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SVM

RF (ntree = 500

mtryFactor = 1)

RF (ntree = 1000

mtryFactor = 1)

RF (ntree = 2000

mtryFactor = 1)

RF (ntree = 500

mtryFactor = 0.5)

RF (ntree = 1000

mtryFactor = 0.5)

RF (ntree = 2000

mtryFactor = 0.5)

RF (ntree = 500

mtryFactor = 2)

RF (ntree = 1000

mtryFactor = 2)

RF (ntree = 2000

mtryFactor = 2)

RF (optimized by

cross-val.)

Diagnostic datasets Prognostic datasets  
Figure 1. Classification performance results without gene selection. The horizontal axis shows datasets. The vertical axis corres-

ponds to classification performance: AUC for binary tasks and RCI for multicategory tasks. For clarity, the vertical axis is shown 

for the range [0.5, 1]. Please see text for details. 
array datasets used in this study. 
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decision problem is reduced by a classifier relative to 

classifying using only the prior probabilities of each 

class. We note that both AUC and RCI are more dis-

criminative than the accuracy metric (also known as 

proportion of correct classifications) and are not sen-

sitive to unbalanced distributions 
6-8

. Both AUC and 

RCI take values on [0, 1], where 0 denotes worst 

possible classification and 1 denotes perfect classifi-

cation. 

Statistical Comparison among Classifiers 

To test that differences in AUC of two classification 

methods are not due to chance, we employed a non-

parametric procedure by DeLong et al 
18

. The signi-

ficance of differences in RCI were assessed by a 

permutation test 
19

. All statistical significance testing 

in this work was performed at the 0.05 level. 

Results 

The performance results of classification without 

gene selection are shown in Figure 1, and the detailed 

results are provided in the online appendix 
11

. In 13 

datasets SVMs outperform the RF classifier opti-

mized by cross-validation, and in 7 out of these 13 

datasets (names shown with bold in Figure 1) the 

differences in performances are statistically signifi-

cant. In 1 dataset (Khan) SVMs and optimized RF 

perform exactly the same, and in the remaining 4 

datasets optimized RF performs better than SVMs, 

however the differences in performances are statisti-

cally significant only in 1 dataset (Iizuka). Similarly, 

in 11 datasets SVMs outperform the best of 9 RF 

classifiers with fixed parameters, and in 6 out of 

Average 

Diagnostic

Average 

Prognostic

Average 

Overall

0.9059 0.6978 0.8249

0.8417 0.6541 0.7688

0.8500 0.6587 0.7756

0.8531 0.6648 0.7799

0.8293 0.6691 0.7670

0.8267 0.6692 0.7654

0.8334 0.6783 0.7731

0.8620 0.6679 0.7865

0.8642 0.6754 0.7908

0.8633 0.6747 0.7900

0.8584 0.6590 0.7809

RF (ntree = 2000, 

mtryFactor = 0.5)

RF (ntree = 1000, 

mtryFactor = 2)

RF (ntree = 500, 

mtryFactor = 2)

RF (ntree = 2000, 

mtryFactor = 2)
RF (optimized by 

cross-val.)

SVM

RF (ntree = 500, 

mtryFactor = 1)

Classifiers

RF (ntree = 1000, 

mtryFactor = 1)
RF (ntree = 2000, 

mtryFactor = 1)

RF (ntree = 1000, 

mtryFactor = 0.5)

RF (ntree = 500, 

mtryFactor = 0.5)

 
Table 2. Average classification results for SVM and RF 

classifiers without gene selection. Each cell reports the 

corresponding average value of classification performance 

(measured by AUC and RCI). 
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these 11 datasets (names shown in bold in the Figure 

1 excluding Rosenwald) the differences in perfor-

mances are statistically significant. In 1 dataset 

(Khan) SVMs and the best RF perform exactly the 

same, and in the remaining 6 datasets the best RF 

performs better than SVMs, however the differences 

in performances are statistically significant only for 1 

dataset (Iizuka). The average results are provided in 

Table 2. For diagnostic tasks, SVMs outperform RFs 

by >0.04 AUC and RCI, while for prognostic tasks 

SVMs are better than RFs by >0.02 AUC. On aver-

age over all 18 datasets, SVMs demonstrate superior 

classification performance to RFs by >0.03 AUC and 

RCI. 

The results for random forest gene selection method 

RFVS are provided in Table 3. It does not follow 

from our evaluation that RFVS preserves classifica-

tion performance of the RF model without gene se-

lection as its inventors claim 
5
. Specifically, for prog-

nostic tasks the average performance drops by 0.0447 

AUC, and only in diagnostic tasks the performance is 

preserved. It is not surprising that 
5
 did not observe 

this finding – their original evaluation consisted pri-

marily of diagnostic datasets. 

Discussion  

The results presented in this paper illustrate that on 

average SVMs offer classification performance ad-

vantages compared to RFs. We emphasize that when 

Task Dataset

Number 

of genes 

selected 

by RFVS

Perfor- 

mance of 

RF & 

RFVS

Improve- 

ment of 

performance 

by RFVS

Su 844.6 0.9185 0.0183

Ramaswany 966.2 0.8736 0.0122

Staunton 151.5 0.8144 0.0091

Pomeroy 34 0.6885 0.1255

Nutt 126.2 0.6747 -0.0833

Golub 455.9 0.9326 0.0277

Armstrong 709 0.8273 -0.0924

Bhattacharjee 26.8 0.8019 0.0476

Khan 16.8 0.9702 -0.0298

Shipp 14.5 0.9567 -0.0166

Singh 57.9 0.9560 0.0120

Iizuka 37.8 0.6625 -0.1125

Beer 15.4 0.5591 -0.0885

Veer 123.6 0.7412 -0.0321

Rosenwald 123.9 0.6310 -0.0081

Yeoh 21.4 0.7054 0.0366

Pomeroy 29.1 0.5583 -0.0334

Bhattacharjee 45.5 0.4833 -0.0750
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Table 3. Results for random forest variable selection me-

thod RFVS. The column “number of genes selected by 

RFVS” reports the average number of selected genes over 

10 training sets during cross-validation. The improvement 

of performance by RFVS is computed by subtracting per-

formance of RF w/o gene selection (with parameters ntree = 

2000 and mtryFactor = 1) from performance of RF & RFVS. 
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it comes to clinical applications of such models be-

cause the size of the patient populations is huge, even 

very modest differences in performance (e.g., at the 

order of <0.01 AUC and RCI) can result in very  sub-

stantial differences in total clinical outcomes (e.g., 

life-years saved) 
20

.  

It is worth emphasizing that SVMs in current expe-

riments were applied without gene selection due to 

the significant computational requirements of the 

large-scale comparison. We plan to extend this com-

parison to include gene selection algorithms for 

SVMs such as RFE 
21

 and/or Markov blanket me-

thods 
22

 that provide optimality guarantees for se-

lected genes under fairly broad distributional assump-

tions. 

Data analysts have to be aware of a limitation of RFs 

imposed by random gene selection. In order for a RF 

classification model to overcome the trap of large 

variance, one has to use a large number of trees and 

build trees based on a large number of genes. The 

exact values of these parameters depend on both the 

complexity of the classification function and the 

number of genes in a microarray dataset. Therefore, 

in general, it is advisable to optimize these parame-

ters by cross-validation taking into account the varia-

bility of the random forest model. 

Conclusion 

The primary contribution of the present work is that 

we conducted the largest evaluation of RFs and 

SVMs performed so far, using 18 diagnostic and out-

come prediction datasets. Contrary to a smaller-scale 

prior comparison that was compromised by several 

data analytic biases 
5
, we found that on average and 

in the majority of datasets, RFs are outperformed by 

SVMs even when SVMs are not employed with the 

benefit of optimized gene selection.   
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