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Astract 
 
The severity of diseases has often been assigned by 
direct observation of a patient and by pathological 
examination after symptoms have appeared. As we 
move into the genomic era, the ability to predict 
disease severity prior to manifestation has improved 
dramatically due to genomic sequencing and analysis 
of gene expression microarrays. However, as the 
severity of diseases can be exacerbated by non 
genetic factors, the ability to predict disease severity 
by examining gene expression alone may be 
inadequate. We propose the creation of a 
“clinarray” to examine phenotypic expression in the 
form of clinical laboratory measurements. We 
demonstrate that the clinarray can be used to 
distinguish between the severities of patients with 
cystic fibrosis and those with Crohn’s disease by 
applying unsupervised clustering methods that have 
been previously applied to microarrays.  
 
Introduction 
 
The conceptualization and application of biological 
methods and techniques to clinical data can help 
narrow the gap between basic science and their 
clinical relevance as espoused as the underpinnings 
of translational research. For the past decade, a major 
modality of research in the biosciences has been 
microarray technology. Microarrays and gene 
expression profiling have been used to gain valuable 
insight into biological processes through the 
measurement of tens of thousands of genes and have 
paved the way for novel prognostic tests and disease-
subclass determination1. This platform has provided 
the ability to quantify gene expression under differing 
experimental conditions that can be used by various 
algorithms to classify, learn or predict biologically 
relevant processes.  
 
In 1999, Todd Golub and colleagues showed that 
supervised clustering of microarray samples could 
distinguish between acute myeloid leukemia and 
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acute lymphoblastic leukemia2. Alizadeh and 
colleagues used an unsupervised algorithm to 
discover subtypes with differing severities from 
samples of a single disorder, B-cell lymphomas, the 
difference of which can directly affect clinical 
outcome3. Laura van’t Veer and colleagues used 
supervised classification of gene expression to 
determine a signature that is indicative of the clinical 
outcome of breast cancer4. More recently, Nathan 
Price and colleagues used gene expression data to 
create a highly accurate two-gene classifier for 
differentiating between gastrointestinal stromal tumor 
and leiomyosarcomas5. The application of supervised 
and unsupervised algorithms to high-bandwidth gene 
expression data have had a direct impact at both the 
bench and bedside to further our understanding and 
treatment of singular human diseases6.

However, diseases like cystic fibrosis or Crohn’s 
disease, that have environmental influences or social 
influences or both, make classification based on 
microarray data imprecise7. Hence, the prediction of 
clinical outcome of patients with more complex 
diseases must examine other variables that are often 
considered qualitatively. An often-overlooked metric 
that is a direct measurement of phenotypic 
information is clinical laboratory data. Stoll and 
colleagues previously created physiological profiles 
from measurements in rats, but this approach has yet 
to be translated to humans8. While data collected 
during clinical care were prone to transcription errors 
in the past, the movement towards using electronic 
medical records (EMR) has improved the data quality 
due to elimination of transcription and omission 
errors9. In this paper we propose the aggregation of 
clinical laboratory tests gathered from EMR data on a 
per-patient basis to create what we term a clinarray,
enabling quantitative methods traditionally used on 
gene expression microarrays to now be applied to 
clinical data. 
 
The clinarray is a platform that allows for the 
quantification of phenotypic expression, across a 
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panel of pathophysiological measurements through 
clinical laboratory tests, for a patient in the same way 
that the microarray is a platform used to quantify 
genome-wide expression for an experiment. We first 
show that we can apply unsupervised clustering 
methods to aggregations of clinarrays to retrieve 
pathophysiologically-relevant laboratory groupings. 
We then show that unsupervised methods used in 
microarray analysis can be directly applied to 
clinarrays to distinguish patients with severe and less-
severe forms of cystic fibrosis and Crohn’s disease. 
 
Data collection, processing and the clinarray 
 
Quantitative clinical laboratory data, consisting of 
317,338 measurements across 553 distinct lab tests, 
originally obtained at the Lucile Packard Children’s 
Hospital, were collected in a de-identified manner 
from the Stanford Translational Research Integrated 
Database Environment (STRIDE). In total, this data 
represented 966 patients across all ages that were 
diagnosed with one or more of 3 chronic diseases 
(Table 1). The use of de-identified clinical laboratory 
data in this manner was approved by the Institutional 
Review Board of the Stanford University School of 
Medicine.  
 

Diseases Number of 
Patients

Crohn’s disease 154 
Cystic fibrosis 449 
Down Syndrome 366 

Table 1. Diseases used in our study, the number of 
patients in our data diagnosed with a given disease. 
 
We averaged the values for each individual lab test 
across all time points subsequent to a patient being 
diagnosed with any of the three diseases. Each 
average represents one value in what we term the 
clinarray. The clinarray thus represents the collection 
of average laboratory values for one patient. 
 
Metric for Severity 
 
Measurements of severity have often been derived 
from direct clinical or pathological examination of 
patients or patient samples. The drawback of using 
de-identified quantitative laboratory measurements is 
that direct indicators of disease severity are not 
available for use. However, as it has been previously 
shown that the number of blood samples drawn for 
laboratory tests increases for intensive care patients 
with more severe illness, based on APACHE III 
scores10, we believe that we can calculate a similar 
proxy for severity in using de-identified laboratory 
test data. 
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Our proxy for the severity of chronic disease is the 
average number of laboratory tests measured on a 
patient per year after their first recorded diagnosis of 
a disease. For each patient, we sum the number of 
laboratory tests measured on that patient regardless of 
type. We then divide by the number of years over 
which the patient has had laboratory measurements 
taken. We propose that the greater the number of 
laboratory tests measured on a patient per year, the 
more severe the form of chronic disease. We 
associate this severity score with each patient.  

Figure 1. Top: Clinarrays from patients with cystic 
fibrosis. Columns correspond to patients as 
represented by clinarrays and rows represent 
laboratory tests. Any available laboratory studies 
measured in no cystic fibrosis patients were removed. 
Clinarrays missing a specific laboratory test 
measurement are white. Gray scale indicates the 
degree of deviation from the mean. Bottom: 
Magnified portion of the matrix. 
 
Hierarchical clustering of patients and lab tests 
 
After construction, all clinarrays were grouped by 
disease type. Clinarrays for patients with more than 
one disorder were considered in each disorder. For 
each disease, we created a disease-specific matrix in 
which columns represented individual clinarrays and 
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rows represented laboratory tests. Each cell 
represented a clinarray value for that specific 
patient/laboratory pair. 
 
Normalization 

For each disease-specific matrix, we normalized the 
values by laboratory type. We calculated the mean 
measurements for each laboratory among all 
clinarrays. We then assigned a z-score for each cell in 
our matrix by calculating the number of standard 
deviations a particular laboratory/patient clinarray 
value was from their respective laboratory mean. Any 
values more than three standard deviations were set 
to three standard deviations. We then removed labs if 
no patients had the lab measured (Figure 1). 
 
We used the normalized laboratory values to examine 
the coherence of applying hierarchical clustering to 
laboratory tests across the clinarrays. We calculated 
pair-wise Pearson’s correlation coefficients (cor) as a 
measure of similarity between laboratory tests within 
each disease-specific matrix11. As our disease-specific 
matrix is sparse, correlations between individual 
clinarrays may not always be possible. To rectify 
this, we pruned each disease-specific matrix by 
removing clinarrays that had fewer than three 
overlapping laboratory tests with all other clinarrays, 
thereby yielding a disease-specific matrix in which 
all correlations between clinarrays were meaningful. 
We then removed any laboratory test missing values 
in 20% or more clinarrays, in each disease-specific 
matrix. 
 
The resulting disease-specific matrices were fairly 
dense. We then applied hierarchical clustering 
algorithms using average agglomeration methods to 
examine the clustering of laboratory tests and to 
distinguish between patients with differing disease 
severities. We first clustered laboratory tests across 
each disease-specific matrix, with a distance measure 
of 1 minus the correlation coefficient, where negative 
correlations were considered as zero. Clusters of 
laboratory tests were then manually examined. 
 
We then hierarchically clustered each disease-
specific matrix to search for natural subtypes of 
disease. The similarity of clinarrays was again 
computed as 1 minus the correlation coefficient, 
where negative correlations were considered as zero. 
 
We then examined major subtypes for each disease 
by comparing the severity scores assigned to patients 
found in each cluster, to assess whether the major 
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clusters significantly distinguished between patients 
with differing disease severities. 
 
Results 

Three disease-specific matrices were created with 
rows representing laboratories and columns 
representing clinarrays. We pruned our matrices as 
described above, which removed a number of 
patients and laboratories (Table 2). 
 
Diseases # patients after 

pruning
# of labs at 

80% threshold
Crohn’s disease 141   (92%) 29 
Cystic fibrosis 352   (78%) 32 
Down Syndrome 320   (87%) 9 
Table 2. Disease, the number of patients left after 
pruning, and the number of laboratory tests for which 
at least 80% of patients have measurements. 
 
We first clustered laboratory tests using the cystic 
fibrosis disease matrix by correlating measurements 
of labs across all clinarrays to see if logical and 
coherent clusters could be retrieved (Figure 2). As 
expected, liver function tests clustered together, as 
did blood markers. 
 

Figure 2. Hierarchical cluster of laboratory tests 
 
We next examined whether clustering patients by 
correlating clinarrays yielded significant subtypes of 
disease, and whether these subtypes corresponded to 
patients with differing disease severity. After 
calculating a severity score for each patient, we 
applied hierarchical clustering for each disease-
specific matrix with average agglomeration to cluster 
patients based on their clinarrays as described above. 
(Figure 3) The resulting hierarchical clustering of 
patients broadly demonstrated two subtypes of 
disease in each of the three chronic diseases. We 
retrieved the severity score for all patients within 
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Figure 3. Clustered clinarrays for cystic fibrosis. Analysis of the two major subtypes demonstrates that patients with 
more severe disease clustered under the black bar and patients with less severe disease clustered under the grey bar. 

 
both subtypes and applied the Wilcoxon test to 
determine if there was any significant difference 
between the two groups. We find that the patients in 
the two discovered disease subtypes have statistically 
significant differences in severity of cystic fibrosis 
(mean severe = 153.93, mean less-severe = 50.81, p = 
4.29 x 10-9) as well as Crohn’s disease (mean severe 
= 157, mean less-severe = 100.39, p = .023). The 
subtypes for patients with Down Syndrome were not 
significantly different (p = 0.24). 
 
Discussion 
 
Gene expression microarrays have been used for over 
ten years to probe diseases and have been very 
successful in redefining our knowledge about their 
classification, severity, treatment possibilities and 
clinical outcome. That being said, there exist many 
factors of disease that can not be explained by 
genetics, and as an extension gene expression, alone. 
The etiologies of diseases such as Crohn’s disease or 
cystic fibrosis have not been completely elucidated 
and may involve complex interactions between an 
organism’s genetic profile and the environment. 
Thus, the prediction of severities for these diseases 
remains elusive.  
 
We have introduced the clinarray as a platform for 
using clinical laboratory tests to examine phenotypic 
expression and have been able to apply methods 
traditionally used on microarrays to clinarrays. 
Unsupervised clustering of patient clinarrays yields 
disease subtypes with a significant clinical difference 
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in disease severity. Rather than examining 
classification of disease subtype and disease severity 
from a gene expression vantage as Alizadeh and 
colleagues have done, we examine the same 
questions from the clinical vantage with promising 
results. The distinct patterns of laboratory tests that 
emerged may be helpful in designing future 
predictors for severity for use in the clinical 
environment in the same way that gene expression 
profiling for differences in B-cell lymphomas will 
inform the physician as to the best method to treat a 
patient. 
 
We were unable to come up with significant 
distinctions for disease severity among the clusters 
generated for Down syndrome as a result of our 
unsupervised clustering. We suspect that the nine 
overlapping laboratory tests for Down syndrome was 
not enough to generate the significant clusters similar 
to Crohn’s disease and cystic fibrosis, where we had 
significantly more features available. Ideally we 
would want to have complete laboratory tests for all 
patients, but the clinical setting is only rarely 
conducive to gathering a comprehensive set of 
measurements, relying on only acquiring certain 
laboratory tests depending on disease. 
 
We acknowledge the following caveats in the way we 
proceeded with this research. Our clinarray is 
currently created by taking the average lab values 
across a patient’s entire history as an outpatient and 
inpatient. This currently does not take into account 
any temporality of the lab measurements or the 
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clinical setting of the measurements. We also 
acknowledge that our metric for severity is not ideal, 
but the constraints of the de-identified quantitative 
laboratory data we received prevented us from 
retrieving unbiased measurements of severity. Future 
work will involve creating clinarrays in a temporal 
manner with the resolution being limited only by the 
timescale of the data as well as focusing on the 
acquisition and validation of better severity metrics. 
Our pruning method, which removed clinarrays with 
a paucity of measurements such that correlation was 
impossible, allowed for a more conservative 
interpretation of our results. Finally, we acknowledge 
that the clinical relevance of such a method has yet to 
be determined. However, we do believe that the 
clinarray is not limited to laboratory data and may be 
applied throughout the clinical domain for areas such 
as radiology, pathology, and even epidemiology.  
 
While we have only examined the clinical aspects of 
using the clinarray, many other possibilities exist to 
probe the molecular and genetic space of biological 
processes in a translational manner using this 
platform. For example, clinarrays for different 
diseases could be compared to gene expression 
measurements for the same diseases to investigate 
biological processes including aging that are 
currently studied in model organisms whose 
mechanisms may differ from that of humans. As 
more clinical and hospital environments are moving 
to electronic medical records, the amount of patient 
data available for this type of translational research 
will only increase. The ability for the clinarray to 
aggregate this data allows for previously developed 
methods to be applied to problems in human health 
and to broaden our understanding of human disease. 
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