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Abstract

We describe and evaluate three systems for 
automatically predicting the ICD-9-CM codes of 
radiology reports from short excerpts of text. The 
first system benefits from an open source search 
engine, Lucene, and takes advantage of the relevance 
of reports to one another based on individual words.
The second uses BoosTexter, a boosting algorithm 
based on n-grams (sequences of consecutive words) 
and s-grams (sequences of non-consecutive words)
extracted from the reports. The third employs a set of 
hand-crafted rules that capture lexical elements 
(short, meaningful, strings of words) derived from 
BoosTexter’s n-grams, and that are enhanced by 
shallow semantic information in the form of negation, 
synonymy, and uncertainty. Our evaluation shows 
that semantic information significantly contributes to 
ICD-9-CM coding with lexical elements. Also, a 
simple hand-crafted rule-based system with lexical 
elements and semantic information can outperform 
algorithmically more complex systems, such as 
Lucene and BoosTexter, when these systems base 
their ICD-9-CM predictions only upon individual 
words, n-grams, or s-grams.

Introduction

International Code for Diseases (ICD) provides a 
standard for coding the diagnoses and procedures 
associated with hospital utilization. The Ninth 
Revision of ICD (ICD-9)1 provides a standard for 
coding clinical records. Although primarily used for 
billing purposes1, ICD-9 codes can also be useful for 
detection of epidemics2 and for the development of 
patient problem lists 3.

The ICD-9 codes of a clinical record are determined 
based on the narrative of that record. “On arrival [to 
the hospital], the patient or a family member is 
interviewed by a […] nurse who writes the chief 
complaint in free text on a paper form. A registration 
clerk then enters the complaint, using ICD-9, into the 
computerized registration system”2. Manual 
assignment of ICD-9 codes to records is a laborious 
and error-prone process. Automatic and accurate 
determination of these codes can reduce the labor 
involved; it can also help resolve the inconsistencies 
in coding that arise due to human error. In this paper, 
we present and evaluate three different approaches to 
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automatically assigning ICD-9-CM codes to 
radiology reports. ICD-9-CM is the Clinical 
Modification to ICD-9 and is the standard coding 
system used in the United States4.

The systems described in this paper were developed 
in response to the University of Cincinnati 
Computational Medicine Center’s International 
Challenge on Classifying Clinical Free Text Using 
Natural Language Processing5. Our rule-based 
ICD-9-CM coder was submitted to the challenge for 
evaluation and placed second out of 44 systems.

Related Work

Automatically predicting ICD-9-CM codes of 
medical records requires recognizing the most salient 
disease(s) or symptom(s) asserted to be present in the
patient. This task relates to the body of literature on 
automatic coding of key concepts in clinical records.

Controlled vocabularies such as those found in the 
Unified Medical Language System (UMLS)6,7,8, 
e.g., SNOMED9,10, are widely used for coding clinical 
records. MetaMap8 identifies candidate phrases 
through shallow parsing and maps these phrases (or 
their substrings) to the UMLS Metathesaurus.
Elkin, et al.9 map noun phrases to SNOMED-RT 
codes. Delbecque11 first maps phrases to UMLS 
semantic types and then to more specific semantic 
categories, e.g., diagnoses and procedures.
Lussier, et al.12 map records to ICD-9 codes.

Many automatic coding systems employ string 
matching mechanisms13; others enrich string features 
with syntactic information such as parts of speech 
and phrase tags9. For example, Nadkarni, et al.7 apply 
phrase analysis to indexing the information in 
discharge summaries and surgical notes.
Friedman, et al. develop a method for mapping entire 
clinical records to UMLS codes. For this, they use the 
MedLEE system that fully parses the records 6.

Deviating from coding with controlled vocabularies, 
Hersh, et al. index findings and diagnoses14, 
Sibanda, et al. identify the semantic categories of key 
concepts15, and Averbuch uses context to identify 
negative/positive instances of various symptoms16.

We use information about diseases, symptoms, and 
findings mentioned in radiology reports and explore 
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three algorithmically different approaches to 
automatically assigning ICD-9-CM codes to these 
reports. The first approach applies a search engine, 
Lucene. The second uses boosting implemented by 
BoosTexter. The third is a rule-based ICD-9-CM 
coder consisting of hand-crafted rules. The Lucene 
and BoosTexter approaches employ only individual 
or strings of words; the rule-based ICD-9-CM coder 
utilizes additional semantic information. Unlike the 
efforts in literature, we do not try to capture any 
syntactic information but find semantic information 
that can be extracted through surface processing.
Using our hand-crafted rules, we explore the 
contribution of semantic features, i.e., negations, 
synonyms, and uncertainty, to lexical elements when 
predicting ICD-9-CM codes. 

Data

The data for this study consisted of radiology reports 
and came from the 2007 Computational Medicine 
Center challenge5. These reports had been 
preprocessed in two ways: they had been fully de-
identified and stripped of most of the “superfluous” 
content that did not relate to their ICD-9-CM codes. 
After preprocessing, the narratives of these reports 
consisted of two fields marked “Clinical_History” 
and “Impression” (see Figure 1). A representative 
“Clinical_History” field stated the complaints of the 
patients, e.g., “Cough”, or important medical history, 
e.g., “Family history of …”. A representative 
“Impression” field noted the findings of the doctors, 
e.g., “Normal chest radiograph”. Typically, each field 
of a report consisted of one or two sentences.

Three independent coding companies hand-labeled 
the preprocessed reports with ICD-9-CM codes. 
These codes were obtained by a majority vote. The 
codes in each report reflected only the definite 
diagnoses mentioned in that report; multiple codes 
per report were allowed.

Figure 1. Example XML ICD-9-CM report.

<doc id="99590311" type="RADIOLOGY_REPORT">
<codes>
<code origin="CMC_MAJORITY" type="ICD-9-CM">593.70</code> 
<code origin="COMPANY3" type="ICD-9-CM">593.70</code> 
<code origin="COMPANY1" type="ICD-9-CM">593.70</code> 
<code origin="COMPANY1" type="ICD-9-CM">V13.02</code> 
<code origin="COMPANY2" type="ICD-9-CM">593.70</code> 
<code origin="COMPANY2" type="ICD-9-CM">599.0</code> 
</codes>
<texts>
<text origin="CCHMC_RADIOLOGY" 
type="CLINICAL_HISTORY">This patient had a history of urinary 
tract infection. This is a followup study. The patient had prior grade II 
left vesicoureteral reflux.</text> 
<text origin="CCHMC_RADIOLOGY" 
type="IMPRESSION">Interval growth of the right kidney. The left 
kidney appears stable in size and has not grown significantly since last 
exam.</text> 
</texts>
</doc>
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The challenge organizers initially released a training 
set of 978 labeled radiology reports. We split those
reports into two sets. We used 90% (880 reports) for 
training, parameter tuning, cross-validation, and 
development of our systems. The remaining 10% (98 
reports) were used for initial testing. We refer to this
set of 98 reports as the held-out set. The challenge 
organizers then released a test set of 976 reports. We 
refer to this set as the challenge test set. 218 of the 
challenge test set reports were assigned multiple 
codes, for a total of 1205 code assignments across the 
976 reports. 34 of the 45 codes were assigned to more 
than one report. The Institutional Review board of 
SUNY Albany approved this study.

Methods

We built and evaluated three different approaches to 
determining the ICD-9-CM codes of radiology 
reports. The density of the information in the reports 
guided our system designs, positing that with 
minimal “superfluous” text in each report, systems 
that took advantage of individual or strings of words
would be worth pursuing.

Lucene: Our first system used an open source search 
engine, Apache Lucene17. The Lucene library
includes text processing utilities, e.g., tokenization 
tools, which enabled rapid deployment and testing. 
We used this library, filtered the words that appear in 
Lucene’s default stopword list, i.e., a list of words 
such as “a”, “the”, “of”, etc. that are usually not
useful for searching, and indexed the remaining text 
of the narratives of the reports in the training set. We 
then queried the generated index, using the narrative 
of a target report, i.e., the report to be coded, as the 
query. We thus determined those reports that were 
similar to the target based upon their narratives.

Lucene uses the relative importance of words in two 
reports to compute their similarity to each other, 
e.g., two reports that overlap in high-weight words 
are treated as being more similar than two that 
overlap in low-weight words. For ICD-9-CM coding, 
we hypothesized that similarity based on term 
frequency-inverse document frequency 
(tf-idf)-weighted words of two reports would imply 
similarity in ICD-9-CM codes. tf-idf is often 
considered a measure of the relative importance of a 
word in a document in a corpus. Term frequency (tf) 
is the number of times that a word appears in the
document, divided by the total number of words in
the document. Document frequency (df) is the 
number of documents that contain the given word,
divided by the total number of documents in the 
corpus. Inverse document frequency (idf) is (1/df). 
tf-idf multiplies tf by idf, capturing the intuition that 
the more frequently a word appears in a 
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document (tf), the better it represents the content of 
that document, and the less frequently the word 
appears in the rest of the corpus (idf), the more 
accurately it represents the unique content of that 
document.

Given tf-idf-weighted words of the narratives of 
reports, for each of the target reports in the test set, 
we identified the three training reports most similar 
to it as computed by Lucene, i.e., the top three reports 
retrieved by the system. We assigned to each target 
the ICD-9-CM codes that were used in two or more 
of the retrieved training reports. In cases where the 
top three retrieved reports did not reveal a majority 
code, the fourth training report was also used.

Failure to find a majority vote among the top four 
retrieved training reports for a target resulted in a 
NULL code for that target. Through tenfold cross-
validation on the training set, we determined that the 
ICD-9-CM codes of the top three or four retrieved 
reports were useful for coding the target. The reports 
that were not retrieved within the top four did not 
contribute to coding.

BoosTexter: Our second system used BoosTexter18.
BoosTexter implements boosting, a machine learning 
algorithm for boosting the performance of supervised 
learning systems. In general, a boosting algorithm 
performs several iterations of two steps:
1. it breaks data into subsamples, and 
2. it trains a “weak learner”, i.e., a classifier that 
performs slightly better than chance, for the set of 
subsamples.
At each iteration, the algorithm gives more weight to 
the samples that had been misclassified in the 
previous iterations and increases the probability that 
those samples will be trained on by the next weak 
learner. At the end of a predetermined number of 
iterations, the final classifier is created by combining 
the votes of the weak learners.

BoosTexter classifies text using strings of words that 
may or may not be consecutive, without giving 
consideration to semantics. We subdivide these 
strings into three categories: single words (unigrams), 
sequences of consecutive words (n-grams), and 
sequences of non-consecutive words, where some of 
the words are specified and others are allowed to 
vary (s-grams). For example, the s-gram 
“health#?#technology”, where the pound sign (#) 
represents a space and the question mark (?) 
represents an optional intervening word, can match 
“health information technology” as well as “health 
and technology” and “health technology”.

Before boosting, we preprocessed the data to remove 
punctuation and stemmed it using the Porter 
AMIA 2007 Symposium P
stemmer19. We cross-validated BoosTexter (tenfold) 
on the training set for parameter tuning. We 
determined the optimal parameters to be 100 rounds 
of boosting, with n-grams and s-grams of up to four 
words. We then trained BoosTexter on the training 
set once with n-grams and once with s-grams.
Analyzing the generated classifiers showed that the 
n-gram classifier contained just 20 n-grams and 80 
unigrams, while the s-gram classifier produced three
s-grams, 21 n-grams, and 76 unigrams. While some 
of the unigrams and n-grams were of 
value (e.g., “urinary#tract”), we felt the utility of 
many of the n-grams and s-grams (e.g., “of#?#and”, 
“a#history”, and “in#?#of#the”) to be questionable.

Rule-based ICD-9-CM Coder: The limited number 
of predictive unigrams, n-grams, and s-grams used 
for ICD-9-CM coding by BoosTexter led us to 
believe in the potential of a rule-based ICD-9-CM 
coder. Our third system, therefore, implemented a set 
of simple rules, consisting of four subsets, that we 
developed on the training set.

The first subset of rules identified lexical elements 
based upon those useful unigrams and n-grams 
generated by BoosTexter, and expanded the resulting 
set of rules with additional lexical elements that 
helped identify ICD-9-CM codes that were not 
otherwise addressed. We omitted 17 ICD-9-CM 
codes from this process. 16 of these codes included 
six or fewer reports and generating rules for them 
would potentially overfit the rules to the training 
data; for the remaining one ICD-9-CM code (see 
evaluation section regarding V13.02) no unique rule 
could be created. The rules we created using only 
lexical elements constituted our base rule-
based (BRB) system.

The remaining three rule subsets constituted our 
semantic components, i.e., they captured shallow 
semantics. In particular, our second subset of rules
was based loosely upon NegEx’s pre-UMLS negation 
phrases20 and captured the explicitly negated 
information in the reports. The third subset of rules 
marked uncertainty with respect to the diagnosis.
Following the practice that discourages “over-
coding” of reports, i.e., assignment of unnecessary 
ICD-9-CM codes to a report5, we treated uncertainty 
phrases in the Impression field as negations. For 
example, we took the phrase “may represent 
atelectasis” to mean that atelectasis (the full or partial 
collapse of a lung) could not be definitively 
diagnosed; therefore, the system should not code this 
report as 518.0 (the ICD-9-CM code for atelectasis). 
These uncertainty phrases included “most consistent 
with”, “likely”, and even “probable”. The fourth 
subset of rules extended the terminology used in the 
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system to synonyms of disease names. We obtained 
these synonyms by manually examining the 
definitions of ICD-9-CM codes, the alternate 
terminology used for describing the codes, and the 
index entries containing the codes from 
www.icd9data.com. Synonyms allowed us, for 
example, to extend the scope of 788.30 (the 
ICD-9-CM code for loss of bladder control) from 
“incontinence” to also include alternatives such as 
“enuresis” and “wetting”.

Our final rule-based ICD-9-CM coder, as submitted 
to the 2007 Computational Medicine Center 
challenge, incorporated all four rule subsets (the BRB 
system and the three semantic components) and is 
referred to as the full rule-based (FRB) system. The 
FRB system, in sequence, applied uncertainty, 
negation, and synonymy rules prior to employing the 
BRB system. This sequential application prevented
conflicts between rule sets.  

Evaluation

We evaluated all of our systems on the held-out set
and on the challenge test set. We evaluated a total of 
nine coding systems: the FRB system, the BRB
system, the BRB system combined with each of the 
three semantic components, the two BoosTexter 
systems, the BoosTexter system with just unigrams, 
and Lucene. As evaluation metrics, we used micro-
averaged precision, recall, and F-measure21,22 which 
are derived from true positive (TP), false 
positive (FP), and false negative (FN) counts. In 
order to measure the performance on a data set that 
includes multiple labels for some reports, we 
followed the scoring system used by the challenge 
organizers5 and counted each correctly assigned code 
as a TP, each missed code as an FN, and each 
erroneously assigned code as an FP. We compared all 
of the systems to the baseline of assigning the most 
frequent ICD-9-CM code, i.e., 786.2, to all of the 
reports. 

Results and Discussion

The results in Table 1 show that the BoosTexter, 
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Lucene, and rule-based systems all perform 
significantly better than the baseline. We also found 
significant differences in system F-measures, at 
α=0.05, between the FRB system and each of the 
other systems, showing that the FRB system 
significantly outperforms the BoosTexter, Lucene, 
and BRB systems. Given the inclination of 
ICD-9-CM codes to mark only the definite diagnoses, 
improvement of the FRB system over the BRB 
system confirms that the lexical elements present in a 
report do not positively indicate the presence of a 
disease or symptom in the patient. Studying specific 
assertions about the presence or absence of these 
diseases and symptoms can help performance.

Analyzing the results of the BRB system on the 
challenge test set combined with each of the three 
semantic components, we found that each of the 
semantic components significantly improved upon 
the results of the BRB system. Adding negation to 
the BRB system corrected 37 FPs and 19 FNs, while
inducing additional incorrect codes in just one report.
Rules encoding synonyms corrected 1 FP and 
85 FNs (59 of which previously had no code assigned
by the BRB system). The synonym rules also 
introduced 19 incorrect codes; six of these incorrect 
codes were due to an inconsistency in the coding of 
the ground truth. The annotators used two different 
codes, 599.0 and V13.02, interchangeably to mark 
Urinary Tract Infections (UTI). This resulted in some 
otherwise indistinguishable reports to be marked with 
two different codes. It also caused the majority vote 
to fail to identify UTI as a diagnosis for some reports.
For example, report number 99590311 (Figure 1) was 
coded simply as reflux (593.70) instead of both reflux 
and UTI. Finally, we determined that the uncertainty 
rules corrected 78 FPs and 40 FNs while introducing
coding errors into eight reports.

Conclusion

We presented three different approaches to predicting 
the ICD-9-CM codes of radiology reports. We 
showed that a simple algorithm based on individual 
words taken from the reports and implemented 
Challenge Test Set Held-Out Set
System Precision Recall F-Measure Precision Recall F-Measure

Lucene 0.6946 0.6456 0.6692 0.6417 0.7333 0.6844
BoosTexter unigram 0.8524 0.7477 0.7966 0.7750 0.8611 0.8158
BoosTexter n-gram 0.8562 0.7510 0.8002 0.7833 0.9216 0.8468
BoosTexter s-gram 0.8727 0.7452 0.8039 0.7833 0.9216 0.8468
BRB 0.7992 0.7859 0.7925 0.7667 0.7603 0.7635
BRB + Negation 0.8245 0.7992 0.8116 0.8583 0.8175 0.8374
BRB + Synonyms 0.8011 0.8556 0.8274 0.8000 0.8727 0.8348
BRB + Uncertainty 0.8524 0.8149 0.8333 0.8417 0.8145 0.8279
FRB 0.8758 0.8954 0.8855 0.8667 0.8739 0.8703
Baseline 0.2695 0.2183 0.2412 0.2250 0.2755 0.2477

Table1. Performance Statistics
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through the Lucene search engine can give an 
F-measure of 66.9%. We showed that a more 
sophisticated learning system, BoosTexter, trained 
with n-grams and s-grams of words, gives better 
performance than Lucene. Learning algorithms 
automatically pick up some features that are 
predictive of ICD-9-CM codes; however, the 
explanation behind the predictive power of some of 
these features can be unclear to humans. Rule-based 
systems are immune to this problem. Our rule-based 
ICD-9-CM coder employs lexical elements that build 
on n-grams and enhances lexical elements with 
semantic information. Our experiments show that 
studying explicit negations and uncertainty helps 
eliminate false positives while synonyms of disease 
names and disease descriptions improve true 
positives. We conclude that negation, synonymy, and 
uncertainty information play key roles in determining 
ICD-9-CM codes. The resulting rule-based system 
outperforms the algorithmically more complex
BoosTexter (88.5% vs. 80.4%) when BoosTexter is 
limited to n-grams or s-grams of words.

Future Work

Given our findings, we plan on combining the 
algorithmically more complex systems such as 
BoosTexter with the highly informative negation, 
synonymy, and uncertainty features. We believe that 
this combination may further improve performance.

REFERENCES
1. Puckett CD. 2004 Annual physician version: The 

educational annotation of ICD-9-CM. Fifth 
edition. Reno, NV: Channel Publishing; 2003.

2. Tsui F, Wagner MM, Dato V, and Chang CCH.
Value of ICD-9-coded chief complaints for 
detection of epidemics. J Am Med Inform Assoc. 
2002 Nov–Dec; 9(6 Suppl 1): s41-s47.

3. Bui AAT, Taira RK, El-Saden S, Dordoni A, 
Aberle DR. Automated medical problem list 
generation: towards a patient timeline. MedInfo, 
2004;11(Pt 1):587-91.

4. National Center for Health Statistics. 
International Classification of Diseases, ninth 
revision, Clinical Modification (ICD-9-CM). 
cdc.gov/nchs/about/otheract/icd9/abticd9.htm

5. Pestian, JP, Brew C, Matykiewicz P, Hovermale
DJ, Johnson N, Bretonnel Cohen K, Duch W. A 
shared task involving multi-label classification 
of clinical free text, Proceedings ACL:BioNLP, 
Prague, June 2007;:97-104.

6. Friedman C, Shagina L, Lussier Y, Hripcsak G. 
Automated encoding of clinical documents based 
on natural language processing. J Am Med 
Inform Assoc. 2004;11(5):392-402.
AMIA 2007 Symposium P
7. Nadkarni P, Chen R, Brandt C. UMLS concept 
indexing for production databases: a feasibility 
study. J Am Med Inform Assoc. 2001;8(1):80-
91.

8. Aronson A, Effective mapping of biomedical 
text to the UMLS Metathesaurus: the Metamap 
program. AMIA, 2001;:17-21.

9. Elkin PL, Tuttle MS, Keck K, Campbell K, 
Atkin G, Chute C. The role of compositionality 
in standardized problem list generation.
MedInfo, 1998;:660-4. 

10. Wasserman H, Wang J. An applied evaluation of 
SNOMED CT as a clinical vocabulary for the 
computerized diagnosis and problem list. AMIA, 
2003;:699-703.

11. Delbecque T, Jacquemart P, and Zweigenbaum 
P. Indexing UMLS semantic types for medical 
question-answering. Studies in Health 
Technology and Informatics. 2005; 116:805-10.

12. Lussier Y, Friedman C Shagina L, Eng P. 
Automated ICD-9 encoding using medical 
language processing: A feasibility study. AMIA, 
2000;:1072.

13. Long W. Extracting diagnoses from discharge 
summaries. AMIA, 2005;:470-4. 

14. Hersh W, Mailhot M, Arnott-Smith C, Lowe H. 
Selective automated indexing of findings and 
diagnoses in radiology reports. J Biomed Inform. 
2001;34(4):262-73.

15. Sibanda T, He T, Szolovits P, Uzuner Ö. 
Syntactically-informed semantic category 
recognizer for discharge summaries. AMIA, 
2006 ;:714-8. 

16. Averbuch M, Karson T, Ben-Ami B, Maimon O, 
and Rokach L. Context-sensitive medical 
information retrieval. MedInfo, 2004;11(Pt 
1):282-6. 

17. Hatcher E and Gospodnetic O. Lucene in action.
Manning Publications, December 2004.

18. Schapire RE and Singer Y. BoosTexter: A 
boosting-based system for text categorization.
Machine Learning, 2000;39(2/3):135-168.

19. Porter MF. An algorithm for suffix stripping, 
program, 1980;14(3):130-7.

20. Chapman WW, Bridewell W, Hanbury P, 
Cooper GF, Buchanan BG. A simple algorithm 
for identifying negated findings and diseases in 
discharge summaries. J Biomed Inform. 
2001;34(5):301-10.

21. Yang Y and Liu X. A re-examination of text 
categorization methods. Proceedings of SIGIR:
International Conference on R&D in Information 
Retrieval. SIGIR '99. ACM Press; 1999;:42-9. 

22. Salton G, McGill MJ. Introduction to Modern 
Information Retrieval. McGraw-Hill; 1983.
roceedings Page - 283

http://people.csail.mit.edu/ozlem/uzuner-amia2006.pdf
http://people.csail.mit.edu/ozlem/uzuner-amia2006.pdf

