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Abstract 

We present a pathological image analysis system for 
the computer-aided prognosis of neuroblastoma, a 
childhood cancer. The image analysis system 
automatically classifies Schwannian stromal 
development of pathological tissues and determines 
the grade of differentiation. Due to the demanding 
computational cost of processing large digitized 
slides, the system was implemented on a cluster of 
computers with automated load balancing within a 
multi-resolution framework. In our experiments, the 
overall accuracies for stromal classification and the 
grade of differentiation were 96.6% and 95.3%, 
respectively. Additionally, the multi-resolution 
framework reduced the run time of the single 
resolution approach by 53% and 34% on average for 
stromal classification and grade of differentiation, 
respectively. For these two cases, parallelization on 
a 16-node cluster reduced the sequential run time by 
92% and 88% on average. Accuracy and efficiency of 
these techniques are promising for the development a 
computer-assisted neuroblastoma prognosis system.  

Introduction 

Neuroblastoma, a childhood cancer, is the most 
aggressive and unfavorable type of Peripheral 
Neuroblastic Tumors [1]. Every year, about 650 
children are diagnosed with neuroblastoma in the 
United States. The diagnosis, prognosis, and 
treatment planning depend heavily on the 
classification of tumor samples. The neuroblastoma 
classification system developed by Shimada et al. [2] 
follows a well-formed decision tree, where each node 
keeps information about a binary observation (e.g., 
absent/present) or a comparison with a threshold 
value (e.g., greater or less than 50%).  Traversal of 
the decision tree, thus, requires the identification and 
quantification of a sequence of key histological 
features. We are developing a prototype 
computerized image analysis system to assist 
pathologists in tissue classification for the prognosis 
of neuroblastoma. There is a need to process these 
images in an efficient way, not only due to the large 
image sizes (typically, a 50,000 by 50,000 color 
image per slide and 75 GB of storage space when 
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uncompressed), but also computational complexities 
of  the developed image analysis algorithms. Hence, 
we are also developing novel computational tools and 
techniques to facilitate efficient processing of these 
images.  
 
The neuroblastoma classification system involves 
three morphological analysis components: 1) 
characterization of stroma regions, 2) determination 
of the grade of differentiation, and 3) the relative 
count of the mitosis-karryorrhexis index. In this 
work, we are addressing the first two of these 
components.  

Methods 

Data Source: Input images used for this study are 
haematoxylin and eosin (H&E) stained tissue 
samples collected with an exempt protocol from the 
Ohio State University IRB. The samples are digitized 
using a ScanScope T2 Aperio digitizer at 40x 
magnification and stored in the red-green-blue 
(RGB) color format. Each slide is compressed at 
approximately 1:40 compression ratio in the JPEG 
format.  
Stroma Classification: For stroma classification, 
tissue images are classified into stroma-rich and 
stroma-poor regions as specified in the Shimada 
classification system. Figure 1 (a) is an example of a 
stroma-rich tissue, characterized by the growth of 
Schwannian and other supporting elements. Stroma-
poor tissue (Figure 1(b)) is characterized by diffuse 
growth of neuroblastic cells surrounded by fibro-
vascular tissue. 
 

 
We initially implemented an image analysis system 
for stroma classification using a single-resolution 

Figure 1. Example images of (a) stroma-rich and 
(b) stroma-poor tissue. 
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approach, combining second order statistical features 
with another feature called local binary patterns 
(LBP) [3].  Second order statistical features are 
extracted using co-occurrence matrices that define 
the spatial distribution of pixel intensities [4]. Being 
invariant to rotation and any local or global intensity 
change, the LBP is a discriminative and easy-to-
implement texture feature developed by Ojala et 
al.  [3] We combined statistical features obtained 
from the co-occurrence matrix representation with 
LBP features using the Bhattacharyya distance [3].  
 
To improve the image processing time, we 
implemented a multi-resolution approach (the 
flowchart shown in Figure 2). In this approach, the 
classification of each image tile starts first with the 
lowest resolution representation of the image tile 
obtained using the Gaussian pyramid approach 
introduced in [5]. If a decision can be made at this 
resolution, then the analysis stops. Otherwise, a 
higher resolution version of the image is analyzed. 
This process mimics how a pathologist adjusts the 
magnification of the microscope based on the level of 
detail needed to analyze a particular portion of a 
slide.  
 

Figure 2. The flowchart for the developed multi-
resolution neuroblastoma image analysis system. 
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The classification decisions are made based on a 
machine learning algorithm that operates on features 
extracted from the image. As the classifier, we use a 
modified k-nearest neighbor (KNN) algorithm [6] 
that maintains the flexibility so that decision criteria 
are much stricter at lower resolutions than at higher 
resolutions. Typically, in a KNN classifier, training 
samples are mapped onto a multi-dimensional feature 
space. Then, for each test sample, the similarity of 
the test sample to the training samples is computed 
via the Euclidean distance metric. The label of the 
class that has more than n similar training samples 
among the k nearest samples is assigned as the 
predicted class label for the test sample. In our 
implementation, we used k = 11 as the number of 
neighbors; the number of majority samples was set to 
n = 10 for the lowest resolution, and n was decreased 
by one at each finer resolution level.  
 
In training the classifier, we constructed a training set 
consisting of 250 stroma-rich and 250 stroma-poor 
image tiles (896x896 in size), randomly cropped 
from two whole neuroblastoma images. After the 
training process, we applied the proposed method on 
a separate set of four whole-slide neuroblastoma 
images to evaluate the classification accuracy. 

Grade of Differentiation: Grade of neuroblastic 
differentiation, including undifferentiated (UD), 
poorly-differentiated (PD), and differentiating (D) 
subtypes, is another criterion used to categorize the 
neuroblastic tumors. In this work, we also developed 
an automated classification system that uses the 
multi-resolution framework to determine the grade of 
neuroblastic differentiation.  
 
In both training and testing phases, the procedure 
begins with image decomposition, where each image 
is decomposed into a bank of down-sampled versions. 
Starting at the lowest resolution level, the following 
image analysis steps are carried out: segmentation, 
feature construction, dimensionality reduction in a 
feature space using Linear Discriminant Analysis 
(LDA), the M-ary Bayesian classification and a 
resolution control decision [7].  
 
For image segmentation, we proposed a novel 
approach that makes use of the Fisher-Rao criterion 
as the kernel of the generic Expectation 
Maximization algorithm, named as the EMLDA 
algorithm [8]. In Figure 3, a set of segmentation 
results for a typical image tile in the undifferentiated 
class is shown, where four fundamental components 
including nuclei, cytoplasm, neuropil, and 
background are segmented. 
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The decision rule that controls the transition from 
lower to higher resolution level is established using 
pre-determined confidence regions associated with 
the class-conditional probability density functions 
estimated from the training data. Assuming that the 
underlying distribution associated with each class in 
the lower-dimensional feature subspace, reduced by 
the LDA, is Gaussian, the similarity between the 
feature point associated with the testing image and 
that of the training data can be measured using the 
Mahalanobis distance [6]. If testing feature data is 
not within a confidence region associated with the 
class determined by the M-ary Bayesian classifier, 
i.e., the Mahalanobis distance is greater than a 
threshold, the same image processing steps are then 
applied to the image at the next higher resolution.  

Cluster Implementation: The classification systems 
we proposed for discriminating the grade of 
neuroblastic differentiation and analysis of 
Schwannian stromal development achieve 
satisfactory classification accuracies. Unfortunately, 
the large sizes of the tissue images when coupled 
with the complexity of our algorithms require vast 
amounts of computation, resulting in long execution 
times. This makes classification of these images on 
sequential systems an unviable option as processing a 
single whole slide image typically takes several hours 
on a state-of-the-art PC. Hence, a powerful 
software/hardware infrastructure is essential for this 
particular, large-scale image processing problem to 
meet its computationally demanding needs. 
 
To achieve practical and acceptable time costs for 
analyzing whole-slide images, we developed a 
parallel image processing infrastructure based on the 
DataCutter framework [9]. The software, developed 

Figure 3. The components segmented by EMLDA in a
typical image from the undifferentiated class are
shown. (a) Original image, (b) Partitioned image
shown in color, (c) Nuclei, (d) Cytoplasm, (e) 
Neuropil, (f) Background. 
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on a cluster of PCs, has a master-client architecture, 
and involves multiple master applications and a 
number of client applications that cooperate with the 
masters. The master applications are responsible for 
partitioning the tissue images into fixed size image 
tiles. At the very beginning of the execution, the 
masters communicate the generated image tiles to the 
client applications for further processing. In the 
current implementation, the assignment of the tiles to 
the clients is performed in a round-robin fashion to 
balance the processing loads of the clients. The tiles 
are cached at the local storages of the clients. Each 
client runs a local Matlab application, which fetches 
the cached image tiles from the disk and executes the 
classification algorithms over the image tiles. The 
classification results are stored on disks and passed to 
the master applications after all tiles are processed, 
where they are merged to generate label maps that 
show the classification results of entire images. 
 
This parallel software infrastructure is exposed as a 
Grid service that facilitates sharing of image datasets 
and algorithms on a common platform among 
multiple developers [10]. The service provides 
remote users the functionality to perform common 
database operations (such as query, retrieve, upload, 
and delete) on a common data/algorithm repository 
over the Grid [11]. Moreover, in order to relieve the 
users from the burden of interacting with the details 
of job submission, a client GUI is used. This GUI 
supports remote access to the above-mentioned 
operations as well as remote job configuration and 
submission. 

Results 

Stroma Classification Results: The proposed 
stroma classification method was tested on four 
whole-slide neuroblastoma images with a total of 
16,732 tiles and achieved a classification accuracy of 
96.6±2.3%. Figure 4 shows the classification result 
for the largest slide of the four testing images. This 
whole-slide neuroblastoma image, with size 2.8 GB, 
contains both stroma-rich and stroma-poor tissue and 
consists of 10,565 tiles of 896x896 pixels. 
 
Parallelization is performed on a 16-node Linux 
cluster, where each node is equipped with dual 2.4 
GHz Opteron 250 processors, 8 GB of RAM, and 
two 250 GB SATA disk drives. With the results of 
each slide image (such as I1, I2, I3 and I4) reported in 
one row, Table 1 shows the time costs of all the 
experiments conducted with different resolution 
approaches and different numbers of compute nodes.  
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 The resulting multi-resolution framework reduced 
the run time by 53%, on average, as compared to a 
single resolution run. The parallelization on a 16-
node cluster reduced the sequential run time by 92% 
on average as compared to the single node 
computation. 
 

 Single-Res. 
& 1 node 

Single-Res. 
& 16 nodes 

Multi-Res. 
& 1 node 

Multi-Res. 
& 16 nodes 

I1 894.9 66.1 434.2 36.4 
I2 227.6 19.8 110.3 12.1 
I3 731.7 53.0 353.4 28.3 
I4 1080.2 71.8 455.0 39.2 

Table 1. Computational costs (in minutes) associated 
with different combinations of resolution and 
computer cluster setups for stroma classification. 

Grade of Differentiation Results: The inputs to our 
grading system are 512x512 image tiles cropped 
from tumor images. This makes processing the data 
more tractable given the limited computational 
capability of the hardware. For training purposes, 
387 image tiles were extracted at random from three 
whole-slide images, one from each of the three 
grading classes. Additionally, a different set of three 
tumor slides, one from each category classified by an 
expert pathologist, serves as the testing slides. The 
resulting computer classification results are reported 
in Table 2, where the column labels represent the 

a 

Figure 4. (a) H&E stained image containing both 
stroma-rich and stroma-poor tissue (b) computerized 
labels for stroma-rich (red) and stroma-poor (blue)
regions. 

b 
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computer recognition percentages and row markers 
indicate the grade of differentiation diagnosed by the 
pathologist. Correspondingly, the numbers of 
analyzed tiles from these three whole-slide images 
are 9,108, 17,182 and 20,636. The overall 
classification accuracy is found to be about 95.3%. 
 

 UD (%) PD (%) D (%) 
UD 99.28 0.45 0.27 
PD 7.98 88.46 3.55 

D 0.73 0.06 99.20 

Table 2. Classification results associated with the 
three tumor slides from UD, PD, and D classes.  

 The multi-resolution approach and the 
parallelization on a compute cluster considerably 
improved the computational efficiency, which is 
important for practical clinical applications. The 
resulting processing time associated with each testing 
slide, when computed with the help of the presented 
computer cluster (using various combinations of 
multi-/single-resolution approach and multi-
(16)/single-node cluster), are shown in Table 3.  
Experiments show that the multi-resolution 
framework reduces the run time by 34%, on average, 
when compared to a single resolution run, (i.e. 
column 1 vs. 3), and that parallelization on a 16-node 
cluster reduces the run time by an average of 88%, in 
contrast to a single-node cluster (i.e., column 1 vs. 2). 
Additionally, when the multi-resolution approach and 
multiple nodes (16 in our experiments) are used, the 
resulting time costs are significantly less than those 
obtained using either the single-resolution approach 
or the single compute node. 
 

 Single-Res. 
& 1 node 

Single-Res. 
& 16 nodes 

Multi-Res. 
& 1 node 

Multi-Res. 
& 16 nodes 

UD 2585.7 287.0 1178.0 36.1 
PD 2855.1 400.2 2228.1 70.5 
D 5075.9 472.1 3676.2 266.7 

Table 3. For the three testing images, the resulting 
computational costs associated with different 
combinations of resolution and computer cluster 
setups are shown (in minutes). 

Due to the round-robin distribution of image tiles on 
the client nodes, satisfactory load distributions are 
naturally achieved on our parallel image processing 
system in terms of the number of pixels and tiles 
processed by each client node. Experiments show 
that the system becomes more efficient in terms of 
client utilization as the number of masters in the 
system is increased. However, some load imbalance 
may be observed in terms of the execution time due 
to the facts that (1) the tiles classified as background 
 Proceedings Page - 307



are not processed at all, and (2) the tiles that cannot 
be classified at low resolutions require further 
processing at higher resolutions, adding a certain 
degree of uncertainty for load balancing. We are 
currently working on a demand-driven approach, 
where the clients will request the tiles from the 
master on a demand-driven basis to eliminate this 
deficiency. 

Conclusion 

In this paper, we present a computerized 
neuroblastoma classification system that yields 
promising classification accuracies both in stromal 
development and the grade of neuroblastic 
differentiation. A multi-resolution framework, 
following a coarse-to-fine hierarchical resolution 
strategy, is constructed to emulate how pathologists 
review slides. As a result, the computational 
efficiency is significantly improved. Furthermore, a 
parallel computational infrastructure is used to 
accelerate the execution. When fully developed, this 
system can help clinical pathologists with their 
prognostic decisions by providing quantitative 
information about the stroma content as well as the 
grade of differentiation. This may help reduce the 
inter- and intra-reader variability and perception 
errors associated with human visual evaluation of 
large numbers of slides. The multi-resolution 
approach as well as some of the features developed 
for this work can be tailored to other similar 
applications without significant effort. In future 
work, we will investigate different ways of feature 
extraction, apply new tests using different classifiers 
on a larger image database, and develop new 
techniques for other histopathological image analysis 
applications. 
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