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Abstract

The Metathesaurus from the Unified Medical 
Language System (UMLS) is a widely used ontology 
resource, which is mostly used in a relational 
database form for terminology research, mapping 
and information indexing. A significant section of 
UMLS users use a MySQL installation of the 
metathesaurus and Perl programming language as
their access mechanism. We describe UMLS-Query, 
a Perl module that provides functions for retrieving 
concept identifiers, mapping text-phrases to 
Metathesaurus concepts and graph traversal in the 
Metathesaurus stored in a MySQL database. UMLS-
Query can be used to build applications for semi-
automated sample annotation, terminology based 
browsers for tissue sample databases and for 
terminology research. We describe the results of such 
uses of UMLS-Query and present the module for 
others to use.

Introduction and Background

The Unified Medical Language System (UMLS) is a 
20 year old project to aid the development of systems 
that help researchers retrieve and integrate electronic 
biomedical information from a variety of sources. 
The UMLS consists of 1) a Metathesaurus which 
inter-connects over 100 biomedical vocabularies, 2) 
the Semantic Network and 3) the SPECIALIST 
lexicon. Of these three resources, the Metathesaurus 
is the most widely used resource. 

The UMLS Metathesaurus is a very large (1.37 
million concepts), multi-purpose, and multi-lingual 
vocabulary database that contains information on
biomedical and health related concepts, their various 
names, and the relationships among them. The 
Metathesaurus is unique in terms of providing
alternative names and views of the same concept and 
identifying relationships between different concepts 
based on a union of the content from multiple source 
vocabularies.

According to the last UMLS user survey of 2677 
licensees (1427 of whom responded) 1, 89% of 
UMLS users use it on Windows, 55% use Java and 
25% use PERL. 35% use a MySQL installation of the 
Metathesaurus. Most users used it for processing of 
clinical information and most commonly to identify 
concepts for findings/diagnosis, procedures and lab 
tests. Java tools for accessing the Metathesaurus are 
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easily available, but same is not true for Perl. With 
the increasing use of ontologies in bioinformatics, 
there is an increased interest in using the UMLS in 
Perl applications.

UMLS-Query is a PERL module to query a MySQL 
installation of the Metathesaurus on windows.
UMLS-Query provides functions for retrieving 
identifiers for a user provided text string, mapping 
text-phrases to Metathesaurus concepts and graph 
traversal in the Metathesaurus. We describe each of 
these three groups of functions and then discuss the 
uses that UMLS-Query has enabled.

Methods

UMLS-Query provides functions for identifier 
retrieval, mapping text-phrases to concepts and graph 
traversal. All the functions can be restricted to 
particular source vocabularies or by relationship 
types in case of graph traversal.

Id retrieval functions

getCUI - this function accepts any text string, an
atom unique identifier (aui), string unique identifier 
(sui) or lexical unique identifier (lui) and gets its 
corresponding concept unique identifier (cui). For 
example, calling this function with the string 
‘Malignant neoplasm of prostate’ fetches CUI 
C0376358 as the result.

getSTR – this function accepts any concept unique 
identifier (cui), an atom unique identifier (aui), string 
unique identifier (sui) or lexical unique identifier (lui)
and gets its corresponding string. 

Both functions search for an exact match and can be 
restricted to a particular dictionary.

Text mapping functions

mapToId – this function accepts a phrase (up to 10 
words) and maps it to an id type (aui, sui, lui, or cui); 
and can be restricted by a vocabulary if desired. The 
function first looks for an exact match for the phrase, 
if none is found, it will generate all possible 
permutations and attempt an exact match for each 
one. The function also performs right truncation to 
look for partial matches. For example, calling the 
function to find a CUI belonging to the SNOMED-
CT for 'intraductal carcinoma of prostate’ will return 
the results shown in the table below (Table 1). 
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Permutation
CUI

Retrieved 
String

carcinoma       C0007097 Carcinoma
intraductal     C1644197 Intraductal
prostate        C0033572 Prostate
carcinoma C0600139 Carcinoma 
intraductal C0007124 Intraductal 
prostate 
carcinoma   C0600139

Prostate 
carcinoma

carcinoma of 
prostate C0600139

Carcinoma of 
prostate

Table 1. The table shows the output of calling the 
mapToId function using the phrase ‘intraductal 
carcinoma of prostate’. The first column shows the 
different permutations that resulted in a match; the 
second column shows the CUI for the matching 
concept and the third column shows the preferred text 
string for that concept.

Permutation generation along with right truncation is 
conceptually similar to using skip n-grams for 
matching concepts. In fact, skip bigrams have been 
shown to perform at or above state of the art 
measures with less complexity, for the purpose of 
identifying matching concepts2

Graph traversal

The Metathesaurus combines the relationships 
reported in various source vocabularies into a unified 
view keeping track of the source that asserted a given 
relationship. The resulting graph of concepts and 
relationships is highly connected and can be traversed 
on the basis of different relationships types from one 
or more source vocabularies. The following functions 
in UMLS-Query provide this functionality.

getParents - this function accepts a cui or aui and 
returns its direct parent/s (nodes linked by the PAR 
relationship 3) and all the ancestor nodes comprising 
the path till the root of the hierarchy. The function 
can optionally be restricted along a particular 
relationship type (rela, in the UMLS MRHIER table, 
which has 188 possible values) and a source 
vocabulary such as NCI or SNOMEDCT. 

getCommonParent - This function accepts a pair of 
cuis or auis and returns the common parent; 
optionally restricted along a particular relationship 
type and a source vocabulary. The function returns 
the identifier of the common parent and the distance 
from each query node.  For example, calling this 
function with CUIs C0376358 (Malignant neoplasm 
of prostate) and C0346554 (Carcinoma of 
genitourinary organ) as inputs, returns A0740023
(Malignant tumour) as the common parent and that it 
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is one link from each of the CUIs C0376358 and 
C0346554.

getChildren - this function accepts a cui or aui and 
returns all its direct children, optionally restricted 
along a particular relationship type and a source 
vocabulary. Similarly getCommonChild returns the 
common child node of the query nodes. For example, 
calling the getCommonChild function with CUIs
C0376358 (Malignant neoplasm of prostate) and 
C0346554 (Carcinoma of genitourinary organ) as 
inputs, returns C0600139 (Carcinoma of prostate 
(disorder)) as the common child using SNOMEDCT 
as the source vocabulary.

getDistBF - this function accepts two cuis and 
performs a breadth first search from cui-1 to find cui-
2 and reports the number of links at which cui-2 is 
found. The search is aborted if cui-2 is not found in a 
radius of links specified by the maxR parameter 
(maxR is set to 3 as a default). For example, For 
example, calling this function with CUIs C0376358
(Malignant neoplasm of prostate) and C0346554
(Carcinoma of genitourinary organ) as inputs, returns 
the distance between them as two links.

Availability

UMLS-Query is free for academic use. The module is 
tested on windows XP and Vista and is provided with 
full documentation and sample scripts. The module is 
available from www.stanford.edu/~nigam/UMLS and 
will be submitted to CPAN.

Results

UMLS-Query provides a versatile set of functions 
making it relevant for a wide range of uses shown in 
figure 1. We group the uses into four categories as 
follows:

1) Computing conceptual distances – The graph 
traversal functions can be used to compute 
conceptual distance metrics such as those developed 
by Caviedes and Cimino 4 and by Melton et al 5.

Using functions implemented in UMLS-Query, we 
are currently evaluating the appropriateness of four 
different conceptual distance metrics6 for the purpose 
of identifying ‘related results’ in searches made on 
the BioPortal, developed by the National Center for 
Biomedical Ontology.

2) Semi-automated sample annotation – We have 
used the functions in UMLS-Query to automatically 
map text annotations of database records to NCI 
thesaurus terms with a high degree of accuracy 7 as 
well as used the graph traversal functions to deploy a 
graphical browsing interface for the tissue samples 
using the NCI thesaurus. 
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The Stanford Tissue Microarray Database (TMAD) 
http://tma.stanford.edu is a public resource for 
disseminating annotated tissue images and associated 
expression data8. Databases such as the Stanford 
Tissue Microarray Database allow users to annotate 
their tissue samples using free text. Stanford 
University pathologists, researchers and their 
collaborators worldwide use TMAD for designing, 
viewing, scoring and analyzing their tissue 
microarrays. TMAD incorporates the NCI Thesaurus 
ontology for browsing and searching tissues in the 
cancer domain. 

As different groups of researchers may annotate their 
samples differently, there is a need to map the tissue 
sample metadata to NCI Thesaurus terms. We have
automatically mapped text annotations of tissue 
samples in TMAD to NCI thesaurus terms with a 
high degree of accuracy 7 The annotation of the 
~20000 samples is done automatically using code 
based on the mapToId function of UMLS-Query.

Such annotation with ontology terms allows a rich 
querying facility and offers the ability to identify 
“similar” or “related” tissue microarray samples, 
even though they may be annotated with different 
terms. For example, neoplasms of the adrenal 
medulla and neoplasms of the adrenal cortex are all 
related to each other by the fact that they are all 
retroperitoneal neoplasms.

TMAD also provides a graphical browser to the full 
ontology with clickable links for browsing to more 
general or specific terms within the NCI  trees7. The
browser (figure 1) shows a live count of the TMAD 
tissues present by term. Clicking on a term brings up 
matching stained images. This browser is 
implemented using code based on the getParents 
function1.

3) Data integration – The text-mapping and graph 
traversal functionality can be used to process 
descriptions of experimental samples to identify 
corresponding gene expression and protein 
expression data-samples from public datasets.

Currently, the predominant genomic level data is 
gene expression microarrays. Recently, Tissue 
Microarrays, which allow for the 
immunohistochemical analysis of large numbers of 
tissue samples and are used for confirmation of 
microarray gene-expression results are becoming 
more prevalent. A single tissue microarray (TMA) 
can contain as many as 500 different tumors, 

1 The exact code bases are different because the 
implementation of TMAD and development of 
UMLS-Query occured in parallel.
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enabling the screening of thousands of tumor samples 
for protein expression9. Little attention is being paid 
to the problem of integrating the results from these –
gene expression microarrays and tissue microarrays –
complementary data types9, 10. Several reviews have 
suggested that it is essential to address this issue 9, 10

Figure 1. Semi-automated sample annotation and 
Graphical Browsing – the text descriptions of TMAD 
samples, are processed algorithmically to annotate 
them with ontology terms as well as browse them 
graphically. The graph shows a live count of the 
TMAD tissue samples corresponding to the selected
term.

In order to develop approaches to integrate these 
datasets, we need to be able to identify all 
experiments that study a particular disease. The key 
query dimension for such integrative studies is the 
sample. However, because of the lack of a commonly 
used ontology or vocabulary to describe the 
diagnosis, disease studied or experimental agent 
applied in a given experimental dataset it is not 
possible to perform such a query. 

The challenge is to create consistent terminology 
labels for each experimental dataset in the public 
repositories that can identify all samples that are of 
the same type at a given level of granularity. (e.g., All 
carcinoma samples versus all Adenocarcinoma in 
situ of prostate samples, where the former is at a 
coarser level of detail). Mapping the text-annotations 
describing the diagnoses, pathological state and 
experimental agents applied to a particular sample to 
ontology terms allowing us to formulate refined or 
coarse search criteria11-13. 

Recently, we have used the UMLS-Query to map 
existing text descriptions in TMAD and GEO to 
ontology terms14. In this mapping work, we identified
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45 disease related concepts for which there were 
datasets in both GEO and TMAD – and hence were 
potential candidates to support further analysis. 

Figure 2. Dataset integration – Currently it is easy to 
identify all gene implicated in a process, such as cell 
death, using Gene Ontology terms but it is not easy to 
identify all datasets (samples) corresponding to a 
disease of a class of tumors such as retroperitoneal 
tumors. If datasets from multiple resources are 
annotated with ontology terms, queries to identify 
corresponding samples, from gene and protein 
expression datasets, for a given disease are enabled.

From this set of 45 matches, there are 23 disease 
related concepts that were at an appropriate level of 
granularity and have multiple samples in both GEO 
and TMAD to enable further integrative study (Table 
2). Out of the 45 candidate datasets, 12 were high 
level terms such as Cancer, Syndrome, and Sarcoma.
We consider these uninformative for the purpose of 
matching up disease related datasets across 
repositories. Counting such high level matches as 
false positives, we obtain a precision of 73% for
identifying datasets for further integrative study14.

Figure 3. Terminology research – the text-mapping 
function (and its extensions) can map terms from 
different terminologies onto UMLS concepts for the 
purpose of aligning the terminologies. Moreover, 
samples annotated with the terms from different
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ontologies serve as potential anchor points to drive 
terminology alignment using graph based methods.

4) Terminology research – The text-mapping 
function (and its extensions) can map terms from 
different terminologies onto UMLS concepts for the 
purpose of aligning the terminologies. Just as UMLS 
curators map atomic strings from different 
terminologies to common concepts, an automated 
procedure can map terms from other ontologies to 
create draft alignments to the UMLS.

In fact alignment can also come as a byproduct of 
automatically annotating a large number of samples 
with terms from multiple ontologies. During the 
process of mapping described in our previous work 7, 
we acquire information that can be used to align 
terms from the two ontologies. For example, during 
the process of mapping the sample descriptions to the 
NCI and SNOMED-CT, we find samples annotated
with terms from the two ontologies. These dually 
annotated samples serve as evidence to ‘anchor’ the 
two terms (from the two different ontologies) as 
candidate alignment points. Subsequently, algorithms 
like Anchor-Prompt 15 can be invoked with these 
anchors to derive a computationally generated 
alignment between two ontologies.

In case of the TMAD, 3208 samples were annotated 
by both NCI thesaurus and SNOMED-CT terms. 
Analysis of these terms showed that for 2810 samples
these terms were appropriately aligned as evidenced 
by their identical (or very close) CUIs in the UMLS.

Conclusion

Based on the UMLS user survey, we believe there is 
a need for a PERL programming interface to the 
MySQL installation of the UMLS and we have 
developed such a Perl Module called UMLS-Query.
We have used this module in several applications that 
have been peer reviewed and published on. We have 
described the key functionality of UMLS-Query, the 
different ways in which we have used it; and present 
the module for others to use.
We believe that as the interactions between 
bioinformatics and medical informatics increase16, 17, 
providing easy access to the UMLS (a crucial 
medical informatics resource) in a programming 
language of choice of the bioinformatics community 
is required; and UMLS-Query accomplishes that 
objective.
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