
Evaluation of a Dynamic Bayesian Belief Network to Predict Osteoarthritic 
Knee Pain Using Data from the Osteoarthritis Initiative

Emily W. Watt, MLIS, Alex A.T. Bui, PhD 
University of California Los Angeles, Los Angeles, CA
Abstract 

The most common cause of disability in older adults 
in the United States is osteoarthritis. To address the 
problem of early disease prediction, we have con-
structed a Bayesian belief network (BBN) composed
of knee OA-related symptoms to support prognostic 
queries. The purpose of this study is to evaluate a 
static and dynamic BBN–based on the NIH Os-
teoarthritis Initiative (OAI) data–in predicting the 
likelihood of a patient being diagnosed with knee OA. 
Initial validation results are promising: our model 
outperforms a logistic regression model in several 
designed studies. We can conclude that our model 
can effectively predict the symptoms that are com-
monly associated with the presence of knee OA.

Introduction

Osteoarthritis (OA) is the most common cause of 
disability in the United States [7]. Given the aging 
population, the number of individuals experiencing 
disabilities due to OA is projected to exceed 11 mil-
lion in the US by 2020 [5]. The knee is the most 
common anatomy affected by this disease, with 
>30% of adults over age 60 experiencing functional 
limitations attributable to knee OA [5]. The impact 
and end outcome of knee OA varies greatly between 
subjects: in some, the disease stabilizes and symp-
toms may improve with time; in others, the joint 
damage progresses and results in severe pain and 
disability requiring surgical treatment. Osteoarthritis 
is typically diagnosed via imaging, looking for (mor-
phological) tissue changes; but once detected, disease 
progression is already irreversible. Thus, the signifi-
cance of being able to predict such changes early is 
clear. Traditionally, early detection of knee OA has 
relied upon various methods (e.g., detecting subtle 
structural joint changes on imaging, patient-reported 
metrics such as pain [2, 11]). Unfortunately, our abil-
ity to predict the disease’s onset and progression is 
still limited as the variables contributing to this dis-
ease are both numerous and multifaceted. 

Here, we investigate the use of Bayesian belief net-
works (BBNs) to help predict early presence and to 
assess the development of knee OA. The network 
models were built from a dataset maintained by the 
Osteoarthritis Initiative (OAI), a NIH-funded (Na-
tional Institute of Health) multisite endeavor aimed at 
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uncovering biomarkers identifying the development 
and progression of knee OA [8]. Subsequent follow-
up studies were also incorporated into a dynamic 
belief network (DBN) to evaluate disease progression 
over time, providing a more complete understanding
of end outcomes. Our goal in extending the model to 
a DBN is to determine how the data influences the 
structure and efficacy of the model in predicting the 
future knee health of a patient. This paper presents 
our initial work and evaluation of the model.

Background

Osteoarthritis is a slowly evolving disorder of syno-
vial joints in which a complex combination of degra-
dative and reparative processes alters the anatomy 
and matrix composition of the articular cartilage and 
subchondral bone. Osteoarthritis studies have yet to 
produce conclusive results about the disease’s rela-
tionship to certain symptoms (i.e., disability, de-
creased bone mass). Although individuals may de-
velop OA in one or more joints, it frequently occurs 
within the knee; moreover, the physical disability 
resultant from general OA in other areas many con-
tribute specifically to disuse and knee OA. Relatively 
little is known about which aetiological factors and 
disease processes control progression or determine 
end outcome of knee OA, though it has been sug-
gested that subchondral bone activity may be an indi-
cator of the disease [12]. As such, determining which 
variables predict the outcome of knee OA is desirable 
for three reasons: first, it would be clinically valuable 
to be able to distinguish between patients with high 
and low risk of developing severe disease; second, it 
would help characterize the symptoms/risk factors 
most important in assessing disease progression, 
which can lead to strategies for tailored treatment [7]; 
and lastly it would create a unified disease paradigm
to aid in prognostic and decision-making tasks.

We chose to apply the Bayesian belief network as a
probabilistic approach for predicting onset and out-
come of knee OA. Other approaches exist for predic-
tion, but the BBN’s utility is rooted in its capacity to 
integrate expert knowledge with empirical data to
model a disease [3, 13]. Importantly, BBNs can ac-
commodate for uncertainty in estimating disease out-
comes and for incomplete evidence, two problems 
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inherent to the clinical setting. BBNs can provide a 
concrete understanding of how the relationships in-
fluence a particular disease outcome, thus elucidating
the impact of various parameters and metrics in dis-
ease assessment. A review of BBNs in biomedicine 
and usage is given in [1, 3, 10].

NIH Osteoarthritis Initiative. The data used in this 
exploration consists of fields extracted from patient 
records in a publicly accessible (http://www.-
oai.ucsf.edu) database for osteoarthritis subjects regu-
larly updated and maintained by the Osteoarthritis 
Initiative (OAI). Started in 2004, the OAI involves 
five national centers participating in a program spon-
sored by the National Institute of Arthritis and Mus-
culoskeletal and Skin Diseases (NIAMS) and phar-
maceutical partners. The primary objective of this 
consortium is to identify imaging and biochemical 
markers for the development and progression of both 
incident and progressive knee OA [6]. The OAI data-
set consists of clinical evaluation data (medical his-
tory, physical exam, joint-specific observations), im-
aging (x-ray; magnetic resonance, MR), and a bio-
specimen repository (biochemical and genetic) from 
4,796 volunteers aged 45-79.

Methodology

As a first step towards model construction, evidence 
variables were selected from tables of the OAI data-
set based on a review of the literature for knee OA 
symptoms (��������� [v.4], �	�
������ [v.0.2.1], 
��	���� [v.0.2.1], ����	�� [v.0.2.1], �������
 
[v.0.2.1], ����������� [v.0.2.1]). A total of 44 vari-
ables were identified (Table 1) from the demo-
graphic/history, imaging, quality of life scores and 
clinical assessment data. Although the majority of the 
OAI dataset is codified, continuous variables (e.g.,
age, body mass index (BMI)) were discretized into 
quartiles (i.e., four equally-sized bins) via a k-means 
algorithm. 

Model construction. A network topology was defined 
for the BBN (Fig. 1) organizing the evidence vari-
ables according to: 1) expert clinical input based on
experience with (knee) OA and bone disease, used to 
derive dependency relationships; and 2) a systematic 
review of the literature to uncover further variable 
associations. Notably, the OAI dataset contains in-
formation on both general OA and knee OA for each 
subject; we opted to follow this same paradigm as 
part of the BBNs, creating a relationship between 
general OA and onset of knee OA. The Bayesia soft-
ware package (http://www.bayesia.com) was used to 
compute the conditional probability tables (CPTs) for 
the BBNs. 

Static and dynamic belief networks (DBN) were con-
structed for model evaluation. Rudimentarily, a DBN 
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is a temporal model imposed on a BBN to character-
ize changes in probabilities brought about by new 
information. The added temporal dimension is man-
aged by time-indexed evidence variables at each ob-
served time point [10]. A link between two nodes 
represented in different time points represents a 
change in belief (and thus associated probabilities) 
about the state of nodes (i.e., a transition state). Given 
that the OAI study is longitudinal in nature, we fitted 
the DBN to model follow-up data at the 12-month 
interval: links between the baseline and all corre-
sponding 12-month time point were formed as part of 
the DBN topology.

Evaluation. Two studies were designed to evaluate 
the static BBN: 1) a standard tenfold cross validation
for predictive power; and 2) a 10-90 test (computing 
the CPTs from 10% of the data and testing on the 
remaining 90%) to identify potential over-training of 
the network. Each study tested the BBN’s ability to 
predict seven different variables: the presence of knee 
OA; the WOMAC (Western Ontario and McMaster 
Universities Arthritis Index) total score; the presence 
of knee pain; the appearance of joint space narrowing 
(JSN) on imaging; the osteophyte score based on x-
rays; and the presence of osteoarthritis and other 
baseline symptoms. The variables were selected 
based on current literature documenting these factors 
as relevant or correlated (predictive) factors of knee 
OA. The studies were conducted on the full baseline 
dataset (N = 4,796). Accuracy of tested target vari-
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Table 1. OAI variables predicting knee osteoarthritis.
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Figure 1. Static Bayesian belief network for knee osteoarthritis
ables was additionally measured on 10 randomly 
selected subsets (n = 200) for the baseline and 12-
month follow-up data using Bayesia. Only the tenfold 
cross validation was conducted on the DBN using 10
random subset of 200 records from the follow-up 
data of 2,686 patients.

To provide context for comparison against the evalu-
ation studies, logistic regression models were also 
built using the full baseline dataset. For each target 
variable, multiple stepwise logistic regression was 
performed with a selection method for variable entry 
based on the score statistic and removal based on the 
probability of a likelihood ratio statistic using condi-
tional parameter estimates. To avoid learning bias, 
the �+��,� option in SAS’ �*(� ,( "�+"� was used. 
This classification table uses a method approximating 
unbiased jackknifing for cross validation.

Results

The validation study results are compiled in Tables 2
& 3, and are summarized as follows.

Logistic regression. The logistic regression model 
was able to predict the presence of knee pain with 
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100% accuracy. Notably, the developed models were 
able to predict the presence of both general os-
teoarthritis and knee OA with accuracy of 80% and 
79%, respectively. Model accuracy ranged between 
60-70% for the remaining variables. 

BBN tenfold cross validation. The presence of knee 
pain was also predicted consistently at 100% (N =
4,796; n = 200). Baseline symptoms was predicted 
with 95% precision (n = 200) and 80% for knee os-
teoarthritis (N = 4796; n = 200). The static BBN pre-
dicts all target variables with accuracy better than 
that achieved by regression, with the exception of 
JSN and WOMAC total score (55% and 50%, respec-
tively). Between the two different sample sizes, we 
note a high variance (e.g., 87% versus 80% accuracy 
in predicting OA between n = 200 and N = 4,796), 
suggesting that the random sub-sampling effectively 
stabilized the results in the variables.

10-90 validation. Results from the 10-90 test reflect 
the accuracy seen in the tenfold cross validation. This 
evaluation similarly demonstrates 100% accuracy in 
predicting knee pain; and 85% (n = 200) and 79% 
accuracy (n = 200) in predicting the presence of base-
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line symptoms and knee OA, respectively. Again, the 
JSN and WOMAC scores performance were subpar 
compared to the logistic regression. Arguably, these
results may be more representative of the knee OA 
population, as testing is performed on 90% of the 
data, in contrast to the 10% of the tenfold validation. 

DBN performance. Results from the DBN demon-
strate performance exceeding the predictive power 
seen with logistic regression. Four of the six variables 
in the follow-up study were predicted at 100% accu-
racy with the DBN (knee OA, JSN, presence of knee 
pain, osteophyte score). For general osteoarthritis, the 
accuracy was 89%; the worst performing prediction 
was for the WOMAC total score, with accuracy only 
at 56%.

Discussion

The static BBN consistently predicts the presence of 
knee pain, osteoarthritis, baseline symptoms and knee 
OA at baseline. The high degree of dependency be-
tween three of the evidence variables (knee OA, knee 
pain, osteoarthritis) to other nodes in the network 
may explain their comparatively better performance. 
Further sensitivity analysis of the static network and 
DBN finds that knee OA and knee pain as strong 
predictors for general OA; the other factors have yet 
to be more strongly validated. The potential for the 
dynamic belief network in modeling knee OA is also 
encouraging in this initial study: many of the metrics 
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Table 2. Baseline knee OA power prediction results. The 
static BBN outperformed logistic regression in 4 of 7
selected variables, and was equal to the logistic model in 
assessing the presence of knee pain.
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Table 3. Dynamic belief network evaluation results. The 
DBN improved upon the results seen with the static 
Bayesian network.
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used to assess and/or predict knee OA were correctly 
predicted with high accuracy.

There are several factors that could potentially ex-
plain the observed results: 

1. Dataset skew/bias. Skewed data clearly impacted
our ability to appropriately learn an underlying 
probability distribution, and thus influenced the 
model’s performance. Further data analysis re-
vealed, for instance, that over 80% of the pa-
tients reported presence of knee pain, suggesting 
a biased distribution. Similarly, the variable rep-
resenting osteophyte presence was dominated by 
the definite or grade 1-3 state. Although such 
skew may be representative of the population, it 
indicates that different modeling should be ap-
plied to handle such variables within the BBN.

2. Composite values. Target variables characteriz-
ing cumulative values, such as health assessment 
or the quality of life metrics represented by 
WOMAC, are dependent on a number of under-
lying variables that are aggregated together. It 
can be argued that the selection of variables in-
volving the collapse of various metrics (e.g., 
knee pain) is subjective, and thus not a reliable 
metric in the network. Thus as survey instru-
ments, questionnaires need to be re-examined for 
their validity in our model.

3. Quantitative metrics. Some of the imaging fea-
tures in the OAI dataset are based on subjective 
radiographic interpretation as opposed to actual 
measurements (e.g., JSN and WOMAC). More 
objective quantitative metrics (i.e., direct meas-
urement of imaging features) may provide im-
proved assessment and an opportunity to provide 
more granular discretization.

4. Discretization. Using only k-means hierarchical 
classification to codify continuous variables also
affected prediction outcomes. Our classification
was (naïvely) applied to create equal-sized bins.

5. Network construction. The subjectivity of expert 
knowledge can introduce bias into the modeled 
BBN relations. Although a literature review to 
introduce/remove dependencies was performed, 
alternative methods that automatically suggest 
network topology from the data may be of use.

Little research has been done specifically in the area 
of predicting knee OA using probabilistic networks, 
however work does extend to other anatomical areas 
that are affected by arthritis, namely the hip [5]. The 
literature supports the combination of 44 variables 
that were selected in this investigation as strong pre-
dictors of assessing joint damage associated with 
osteoarthritis. However, predicting early disease
presence is limited to indirect metrics: it has been 
suggested that JSN measures are an early predictor of 
oceedings Page - 791



knee OA, but location and joint space narrowing se-
verity were poorly predicted [5]. Other studies de-
scribe data and results that are used to determine oth-
er potential predictors for change or how the variable 
could affect outcome of the patient’s knee health. 
Significant correlations do demonstrate that certain 
biomarkers (e.g., crepitus, joint swelling, knee sur-
gery and knee pain) and demographic data (e.g., pa-
tient age, sex, body mass index) had little or no effect 
on predicting OA outcomes [2].

Continuing work in this project will involve a more 
thorough construction and re-evaluation of expert-
input supplied to the underlying network. Given the 
encouraging results seen from the DBN, further work 
will also refine the DBN given subsequent follow-up 
studies and testing on diverse populations outside of 
the OAI dataset. The rationale for selecting the target 
and qualitative variables defining knee pain, as well 
as the WOMAC composite score, should be exam-
ined further and modeled accordingly. Alternative 
discretizations are being explored including the use 
of accepted categorical scales for mapping the JSN, 
osteophyte and WOMAC values to better suit a vari-
able’s underlying distribution. 
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