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Abstract 

This paper describes an algorithm for identifying 
ICU patients that are likely to become 
hemodynamically unstable. The algorithm 

consists of a set of rules that trigger alerts. 
Unlike most existing ICU alert mechanisms, it 
uses data from multiple sources and is often able 
to identify unstable patients earlier and with 

more accuracy than alerts based on a single 
threshold. The rules were generated using a 
machine learning technique and were tested on 

retrospective data in the MIMIC II ICU 
database, yielding a specificity of approximately 
0.9 and a sensitivity of 0.6. 
Introduction 

The modern intensive care unit (ICU) generates 
large amounts of patient data from an increasing 
number of monitoring devices and laboratory 
tests. These data must be interpreted in a timely 
fashion by ICU clinicians and nurses to provide 
proper patient care. There is a growing body of 
evidence that supports the notion that early 
intervention in the development of certain 
disease processes has a positive impact on 
patient outcome. Recently, such diverse disease 
states as septic shock, stroke, and acute 
myocardial infarction have come to the fore as 
disease entities whose outcome may be 
significantly modified by early goal-directed 
therapies

 1, 2
. Many of the conditions which result 

in critical illness result in hemodynamic 
instability. To aid in the process of early 
detection and initiation of early goal-directed 
therapies, it would be desirable to have 
automated algorithms to aid in the identification 
of patients who are likely to become 
physiologically unstable.  Most alerting 
mechanisms currently available to clinicians  
monitor a single parameter and generate an alert 
if the value crosses a threshold. We postulate that 
by correlating data from multiple sources, better 
determination of the stability of a patient can be 
achieved

3
. 

This paper describes an algorithm for identifying 
ICU patients that are likely to become 
hemodynamically unstable and provides a 
preliminary evaluation using retrospective ICU 
data. A machine learning approach was used 
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with data from the MIMIC II database
4
 collected 

from ICU patients at the Beth Israel Deaconess 
Medical Center, Boston MA. In the first section 
we describe the method for selecting the cases 
used in the machine learning approach, i.e., the 
intervention-based criteria used for 
differentiating stable from unstable. Next we 
describe the rules that constitute the algorithm 
and how they were derived. Then we describe 
two methods used for evaluating the algorithm 
and the results of our evaluation. In the 
conclusion section we suggest areas for further 
refinement of the algorithm. 
Materials and Methods 

Stability/Instability Criteria 

Patient records from the MIMIC II database were 
utilized to create and test the predictive 
algorithms developed in this study.  The MIMIC 
II project is an ongoing effort to capture de-
identified ICU patient records consisting of 
physiologic monitoring and clinical information 
system data

4
. The physiologic data contained in 

the MIMIC II database was obtained from the 
Philips CareVue clinical information system in 
the participating ICUs.  The Philips’ CareVue 
clinical information system includes a relational 
database that contains nurse-charted vital signs, 
laboratory data, continuous medication 
administration, and fluid balance

5
. In the present 

study,   12,695 adult patient records collected 
between 2001 and 2005 were utilized to develop 
and evaluate predictive alerts to indicate 
impending physiologic instability

5
. 

We divided patient records into three major 
categories: (1) those that are stable throughout 
their stay, (2) those that become unstable, and (3) 
those that don’t fit either category – the non-
stable. The criteria are based on therapies given, 
reflecting physicians’ judgment. Patients qualify 
as unstable if they received certain medications 
or procedures that are potentially indicative of 
the treatment of acute hemodynamic instability. 
The medications (any dosage) are Dobutamine, 
Dopamine, Epinephrine, Levophed or 
Neosynephrine. The procedures are (1) Intra-
Aortic Balloon Pump, (2) >= 1100cc of Packed 
Red Blood Cells in 2 hours or (3) >2000cc of 
total IV-in in 1 hour. 
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If a patient meets any one of these criteria, then 
the patient is categorized as unstable. An 
unstable patient’s critical time (ct) is the first 
time that the patient meets one of these criteria. 
Stable patients are those that throughout their 
stay do not meet any of the instability criteria 
and also do not meet any of the non-stability 
criteria. The non-stability criteria are 
interventions that are less severe than those that 
qualify patients as unstable, but severe enough to 
disqualify a patient as stable. These include any 
dosage of Lidocaine, Labetolol, nitroglycerine, 
nitroprusside, amiodarone, milrinone, and 
Esmolol; or the patient receiving >= 750cc of 
Packed Red Blood Cells in 24 hours or > 1500cc 
of total IV-in in 1 hour. Patients who do not meet 
any of the instability criteria but meet at least one 
of the non-stability criteria are categorized as 
non-stable. The non-stable patients were 
eliminated from the rule generation analysis due 
to our inability to decisively declare their 
condition with the available data but were 
included in the test set. Table 1 shows the counts 
of patients in the various categories.  

Table 1. Patient Count 

Category Count 

Total 12695 

Stable   4063 

Unstable   4867 

Non-stable   3280 

Exp/DNR Stable     485 
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The table includes a category that we have not 
mentioned so far:  patients that qualify as stable 
according to our criteria, but who expired or are 
designated as Do-Not-Resuscitate (DNR) or 
Comfort-Measures-Only (CMO) patients. Many 
of these patients are unstable, but do not meet 
our intervention-based criteria either because 
they died before an intervention could be taken 
or a decision was made not to resuscitate.  This 
patient group was removed from the rule 
generation analysis as well. 

Algorithm Development 

The algorithm consists of a set of 15 rules. Each 
rule has a list of conditions that must be satisfied 
in order for it to “fire”. The conditions are 
feature values and thresholds. If all the 
conditions of any rule are satisfied, then an alert 
is issued. The features used in the rules are: BUN 
(blood urea nitrogen), WBC (white blood cell 
count), PTT (partial thromboplastin time), 
hematocrit, HR, systolic BP (arterial if available, 
otherwise noninvasive), and OxI (oxygenation 
index = Fraction of Inspired Oxygen*Mean 
Airway Presssure/PaO2). The rules use the most 
recently measured value of any feature. 
The Rules 

The current version of the algorithm consists of 
the set of 15 rules shown in Table 2: 
Table 2.  Rules 

Rule# BUN HCT PTT WBC SBP OxI HR 

1 >18    <92  >111 

2 >30   >11.5 <81   

3 >56  >28.5   >6.43  

4 >26 <24.3   <89   

5  <29.5  >13.1 <92   

6  <26.4 >32.8  <86   

7  <27.6 >37.3   >6.0  

8   >39.4  <89   

9   >50.6  <92   

10   >45.8   >5.3  

11   >32.8   >9.5  

12   >32.5 >10.5 <104 >6.0  

13     <83 >5.6  

14     <88 >9.0  

15     <60   

BUN= Blood Urea Nitrogen, HCT = Hematocrit, PTT = Partial Thromboplastin Time, WBC = White 
Blood Cell Count, SBP = Systolic Blood Pressure, OxI = Oxygenation Index, HR = Heart Rate 
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Algorithm Development: Feature Selection and 
Rule Discovery 

Algorithm development is a two stage process: 
selection of the features and discovery of the 
rules. We examined over forty features before 
settling on the seven used in the rules. Three 
criteria were used for choosing features. First, 
and most importantly, it needed to have some 
discriminating power, significantly 
differentiating stable from unstable patients.  In 
particular, using either the minimum or 
maximum value, there was a signal-to-noise ratio 
(difference of means divided by sum of standard 
deviations) of at least 0.20. Second, it preferably 
was measured for most patients, i.e., at least two-
thirds of them. Third, the more often it was 
measured for a patient the better. Most of the 
above features have strong discriminating power. 
The weakest is heart rate. It was kept, however, 
because it is measured for most patients and is 
measured often. On the other hand, some of the 
values used for calculating OxI are not available 
for many patients (it can be calculated for only 
about 25% of the stable patients), but OxI was 
selected because of its strong discriminating 
power. 

During the rule discovery phase, we tried a 
number of machine-learning classification 
algorithms including such powerful techniques 
as support vector machines (SVM) and neural 
nets (NN). These techniques produced similar 
results. Since our preference was for techniques 
that produce classifier algorithms that are 
clinically transparent, we ultimately settled for 
one based on a rule learning technique called 
RIPPER (Repeated Incremental Pruning to 
Produce Error Reduction)

6
.  

The classifiers produced were validated using 
standard ten-fold cross-validation. Furthermore, 
we repeated the process several times using 
varying patient data sets. These data sets, 
consisting of several hundred stable and unstable 
patients, differed according to the average length 
of period from which we selected the maximum 
or minimum value (e.g., 12 hours versus 2.5 
days) and where the period ended for unstable 
patients (e.g., up to but not including the critical 
time, or two hours before critical time of the first 
intervention). 
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The rules listed above are based on the results 
from several classifier runs using these different 
data sets. Typically, each run produced a 
classifier consisting of five or six rules. We 
merged these rules, eliminating those with low 
specificity or that were redundant. Merging the 
rules increased sensitivity at the expense of 
specificity. However, since the algorithm tended 
to produce rule sets with high specificity, we 
were still able to achieve our target specificity of 
at least 0.9. Throughout this process, in order to 
avoid over-fitting, we used about half of the 
available stable and unstable patients for 
training/tuning, reserving the other half for 
validation. 

Evaluation of the Algorithm 

We evaluated the algorithm’s performance in 
two different ways. First we wanted to know the 
sensitivity and specificity of the algorithm when 
comparing stable and unstable patients under 
ideal conditions, i.e., for similar lengths of time 
under conditions where all the data are available. 
Second we wanted to know how often there 
would be alerts in an ICU setting, and how these 
rates of alerts compared among different 
categories of patients. Toward this end, we 
computed the rates of alerts per patient-day using 
data from all the patients (stable, unstable and 
non-stable) in our data base of 12,695 patients. 

Results for Stable and Unstable Patients under 
Ideal Conditions 

We first compare stable and unstable patients 
under ideal conditions, calculating the sensitivity 
and specificity. We selected those patients for 
which all the features used in the rules are 
available and for which the length of stay in the 
ICU is at least 12 hours in the case of stable 
patients and 12 hours prior to going unstable in 
the case of the unstable patients. In both cases 
the maximum period examined was 24 hours. 
Table 3 summarizes the patient population and 
the result. The 15-rule algorithm has a sensitivity 
of 0.6067, a specificity of 0.9285, and a positive 
predictive value of 0.7970. Keep in mind that our 
predictive alerts do not replace existing failsafe 
mechanisms (e.g. alarms that sound when blood 
pressure plummets) that have high sensitivity.
Table 3. Results under Ideal Conditions  

Category # of Patients Average Time Analyzed Num/Fraction Positive 

Stable - require all data    769    0.94 days    55    0.0715 (fp) 

Unstable - require all data – 24 
hrs prior critical time 

   356    0.84 days  216    0.6067 (tp) 
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The results for the unstable patients are 
calculated using data up to, but not including, the 
critical time of the first intervention. On average 
the last point measured is about 25 minutes 
before critical time. However, because the 
recorded time typically is a rounded value, these 
times are not very precise. In order to get a better 
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idea of the prediction power of the algorithm, we 
have calculated the sensitivity up to varying 
points of time before the critical time. The results 
are summarized in Figure 1 for 0.25 hours, 0.5 
hours and hourly up to 12 hours before critical 
time. (These are minimum times – the average 
times are 15-25 minutes longer.)  
 

Figure 1. Predictive Power of 15-rule Algorithm
Alert Rates 

Of course, the conditions in an ICU are not as 
ideal as the above analysis assumes. Often some 
of the features used in rules have not been 
measured and the length of the period for which 
data is available can vary considerably. A more 
realistic indicator of performance is to measure 
the alert rates for various categories of patients. 
However, this raises the question of what counts 
as a separate alert. When determining sensitivity 
and specificity, one or more rule firings during 
the period under consideration counted as a 
positive (whether true or false). In order to 
determine the alert rate, we needed to 
differentiate between two different alerts for the 
same patient.  Intuitively, if the conditions that 
triggered rules to fire continue to hold over time, 
then two adjacent rule firings are part of the 
same alert. Therefore we count any two rule 
firings (either the same or different rules) within 
two hours of each other as part of the same alert.
Table 4. Alert Rates 

Category # of patients Ave. length period Alerts/pat-day 

All 12679   5.73 days   0.2757 

Stable   4048   2.51 days   0.1078 

“Stable”: expired/DNR     485   3.50 days   0.2656 

Non-stable   3279   5.18 days   0.1721 

Unstable: full period   4867   9.00 days   0.3815 

Unstable: 24hrs prior to ct   3431   0.33 days   0.8214 

Unstable: beginning to 24hrs 
prior to ct 

    712   4.93 days   0.2010 

Unstable: after ct   4867   8.06 days   0.3894 

Table 4 shows the alert rate per patient day for 
different categories of patients. The unstable 

patients are further divided into three sub-
categories: (1) the 24-hour period prior to going 
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unstable, (2) the period prior to this 24-hour 
period, and (3) the period after the critical time. 
Ideally, the alert rate should be highest during 
the 24-hour period prior to critical time. It should 
also be noted that for the period after the critical 
time, alerts are counted only for the time when 
there is no intervention that qualifies the patient 
as unstable (and the length of period is calculated 
only for the time when there is no intervention). 

As can be seen from the table the alert rate for 
unstable patients during the crucial 24 hour 
period prior to critical time is four times higher 
than for the previous period and about eight 
times higher than for stable patients. The relative 
rates for the other categories seem reasonable. 
For example, the rate for non-stable patients falls 
in between those for stable and unstable patients. 
Similarly, the rate for “stable” patients who died 
or were designated DNR or CMO is about 2.5 
times higher than truly stable patients. 

Discussion 

Our evaluation of the 15-rule hemodynamic 
instability-alert algorithm indicates that the alert 
rate in an ICU setting would be fairly low for 
patients that are not clearly unstable – about one 
alert per 10 patient days on average -- and so 
would not be a nuisance. Furthermore, the results 
indicate that the rate for unstable patients would 
be considerably higher than for stable patients – 
about 8 times higher.  

It should be stressed that the algorithm presented 
here could potentially be improved. With regard 
to feature selection there are several things we 
would like to try in the future that might improve 
the resulting algorithm. First, we would like to 
try substituting mean blood pressure for systolic 
blood pressure. Second, we would like to 
construct an index that combines PTT with PT 
(prothrombin time) or INR (international 
normalized ratio) and use this instead of PTT 
alone. This would help identify cases where PTT 
is high because of the administration of heparin. 
We have examined the cases where high PTT 
values are associated with heparin, and they are 
nearly evenly distributed over stable and 
unstable patients and so do not seem to have 
biased our results. However, using an index that 
combines PTT and PT might be more accurate. 

It should also be noted that the rules used in the 
algorithm have not been fully optimized. One 
possible method of improving the performance 
would be to convert the sharp thresholds to 
“fuzzy” ones. 

This algorithm needs to be validated within other 
ICUs and tuned if necessary. Apart from tuning, 
there are many other ways of enhancing the 
performance of the algorithm. The current 
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algorithm uses “absolute” values rather than 
relative values or deltas or rates of changes. 
Adding rules with conditions that monitor 
relative changes might improve the performance 
of the algorithm. Also the algorithm currently 
does not take into account the effect of 
interventions (other than using them as criteria 
for instability). The fact that a patient has just 
been given a powerful sedative, for example, 
might be incorporated into the conditions of 
some of the rules. Another way of improving the 
algorithm would be to take into account 
demographic data – e.g., adjust heart rate and 
blood pressure thresholds according to the 
patient’s age. These enhancements would make 
the rules more sensitive to a patient’s unique 
conditions, and thus improve performance. 
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