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Abstract

Discretization acts as a variable selection method in 
addition to transforming the continuous values of the 
variable to discrete ones. Machine learning 
algorithms such as Support Vector Machines and 
Random Forests have been used for classification in 
high-dimensional genomic and proteomic data due to 
their robustness to the dimensionality of the data. We 
show that discretization can help improve 
significantly the classification performance of these 
algorithms as well as algorithms like Naïve Bayes 
that are sensitive to the dimensionality of the data. 

Introduction

Discretization is typically used as a pre-processing 
step for machine learning algorithms that handle only 
discrete data. In addition, discretization also acts as a 
variable (feature) selection method that can 
significantly impact the performance of classification 
algorithms used in the analysis of high-dimensional 
biomedical data. This has important implications for 
the analysis of high dimensional genomic and 
proteomic data derived from microarray and mass 
spectroscopy experiments. 

Discretization is the process of transforming a 
continuous-valued variable into a discrete one by 
creating a set of contiguous intervals (or equivalently 
a set of cutpoints) that spans the range of the 
variable’s values. Discretization methods fall into 
two distinct categories: unsupervised, which do not 
use any information in the target variable (e.g., 
disease state), and supervised methods, which do. It 
has been shown that supervised discretization is more 
beneficial to classification than unsupervised 
discretization; hence we focus on the former 
category1. Typically, supervised discretization 
methods will discretize a variable to a single interval 
if the variable has little or no correlation with the 
target variable. This effectively removes the variable 
as an input to the classification algorithm. Liu et al. 
showed that this variable selection feature of 
discretization  is beneficial for classification2.

We show that machine learning classification 
algorithms such as Support Vector Machines (SVM) 
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and Random Forests (RF) that are favored for their 
ability to handle high-dimensional data, benefit from 
discretization in the analysis of genomic and 
proteomic biomedical data. In addition, Naïve Bayes 
(NB), which is a simple probabilistic classification 
algorithm that often performs well in many domains, 
also benefits from discretization when applied to 
biomedical data. 

Methods and Materials 

Biomedical Datasets. The 24 biomedical datasets 
that we used are described in Table 1. All 21 
genomic datasets and 2 proteomic datasets are from 
the domain of cancer, while a third proteomic dataset 
is from the domain of Amyotrophic Lateral Sclerosis 
(ALS). Of the genomic datasets, 14 are diagnostic 
while 7 are prognostic. Out of the 24 datasets, 10 are 
multi-categorical where the target variable has 3 to 
11 classes, while 14 are binary. All datasets except 
Ranganathan et al. were obtained from the sources 
given in3-7. Ranganathan et al. was acquired from the 
Bowser lab at the University of Pittsburgh8. Table 1 
also gives the proportion of the dataset that has the 
commonest target value (M) and the number of 
variables (#V). 

Discretization Method. We used a new 
discretization method called the Efficient Bayesian 
Discretization that we have developed.

Boullé has developed a supervised discretization 
method called the Minimum Optimal Description 
Length (MODL) algorithm based on the minimal 
description length (MDL) principle9. The MODL 
algorithm scores all possible discretization models 
and selects the one with the best score. This 
algorithm is optimal in that it examines all possible 
discretizations of a variable given a dataset of values 
for the variable and the corresponding target variable 
values. The optimal MODL algorithm as described 
by Boullé runs in O(n3) time where n is the number 
of instances in the dataset. We have developed a new 
supervised discretization method called the Efficient 
Bayesian Discretization (EBD) that uses a Bayesian 
score to evaluate a discretization model10. The 
Bayesian score is a generalization of the score used 
in the MODL algorithm. EBD, like MODL, is also an 
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optimal algorithm but runs faster: in O(n2) time 
where n is the number of instances in the dataset. We 
have shown that EBD has better performance than 
the commonly used Fayyad and Irani’s MDLPC 
discretization algorithm. 

Application of Discretization. We applied EBD in 
two ways: 1) selecting those variables that had one or 
more cut points without transforming their 
continuous values, and 2) selecting those variables 
that had one or more cut points and transforming the 
continuous values into the discrete values generated 
by discretization. This led to the creation of three 
datasets for every biomedical dataset analyzed: the 
first was the same as the original dataset, the second 
consisted of variables selected by discretization but 
no transformation, and the third consisted of 
variables selected by discretization with the variables 
taking on discrete values. 

Machine Learning. We applied three machine 
learning algorithms that can handle both discrete 
continuous-valued variables, namely, Support Vector 
Machines (SVM)11 , Random Forests (RF)12,  and 
Naïve Bayes (NB). For each biomedical dataset, we 
performed two runs of 10-fold stratified cross-
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validation for a total of 20 folds. In each fold, we 
generated three versions of the dataset as mentioned 
in the previous section: no variable selection, 
variables selected by discretization but no 
transformation, and variables selected by 
discretization with the continuous values discretized. 
In each run, the discretization cutpoints were learned 
only from the training fold and then applied to the 
training and the corresponding test folds. We 
averaged the results over the 20 runs to calculate the 
performance statistics. 

For our experiments, we used the implementations of 
SVM, RF and NB in the Waikato Environment for 
Knowledge Acquisition (WEKA) version 3.5.6.  For 
SVM, we used the linear kernel and the polynomial 
kernel of degree 2 with WEKA’s default settings. For 
RF, we used the settings as described in Statnikov 
and Aliferis3. Thus, we selected three different RF 
parameters: (500, 1), (1000, 2), and (2000, 2) where 
the first number is the number of trees to be built and 
the second number is the multiplicative factor of the 
default value denoting the number of variables to be 
randomly selected for each tree. For NB with 
continuous variables, we used a kernel method for 
Dataset Dataset name Type P/D # Classes # Samples #V M
1 Alon et al Genomic Diagnostic 2 61 6584 0.651
2 Armstrong et al G D 3 72 12582 0.387
3 Beer et al G Prognostic 2 86 5372 0.795
4 Bhattacharjee et al G D 7 203 12600 0.657
5 Bhattacharjee et al G P 2 69 5372 0.746
6 Golub et al G D 4 72 7129 0.513
7 HedeNAalk et al G D 2 36 7464 0.500
8 Iizuka et al G P 2 60 7129 0.661
9 Khan et al G D 4 83 2308 0.345

10 Nutt et al G D 4 50 12625 0.296
11 Pomeroy et al G D 5 90 7129 0.642
12 Pomeroy et al G P 2 60 7129 0.645
13 Rosenwald et al G P 2 240 7399 0.574
14 Staunton et al G D 9 60 7129 0.145
15 Shipp et al G D 2 77 7129 0.506
16 Singh et al G D 2 102 12599 0.746
17 Su et al G D 11 174 12533 0.150
18 Staunton et al G D 9 60 5726 0.150
19 Veer et al G P 2 78 24481 0.562
20 Welsch et al G D 2 39 7039 0.878
21 Yeoh et al G P 2 249 12625 0.805
22 Petricoin et al Proteomic D 2 322 11003 0.784
23 Pusztai et al P D 3 159 11170 0.364
24 Ranganathan et al P D 2 52 36778 0.556

Table 1. Datasets used in the discretization experiments. In the Type column G stands for genomic and P for 
proteomic. In the P/D column P signifies prognostic and D diagnostic. #V is the number of variables. M is the 
proportion of the dataset that has the commonest target value. 
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the estimation of the distribution which has been 
shown to be superior to Gaussian estimation13.

The abbreviations for the various classification 
algorithms are as follows: SVM-1 is SVM with a 
linear kernel, SVM-2 is SVM with a polynomial 
kernel of degree 2, RF-X-Y is RF with 100*X for the 
number of trees to be built and Y is the multiplicative 
factor. NB is Naive Bayes. 

Classification Performance Measure. We evaluated 
classification performance with Relative Classifier 
Information (RCI). RCI is an entropy-based 
performance measure that quantifies the amount of 
uncertainty of a decision problem that is reduced by a 
classifier relative to classifying using only the prior 
probabilities of each class14. RCI’s minimum value is 
0% denoting the worst performance while the best 
performance is 100%, which signifies perfect 
discrimination. It is similar to the area under the ROC 
curve (though not equivalent) in that it measures the 
discrimination power of the classifier while 
minimizing the effect of the distribution of the 
classes. Both RCI and the area under the ROC curve 
(AUC) are better discriminative measures than 
accuracy; hence we did not use accuracy as an 
evaluation measure. We did not use AUC since there 
are several interpretations and methods to compute 
the AUC when the target variable has more than two 
values.

Statistical Tests. To compare RCI values, we used 
the Wilcoxon paired samples signed rank test and the 
paired samples t-test. The Wilcoxon paired samples 
signed rank test is a non-parametric procedure used 
to test whether there is sufficient evidence that the 
median of two probability distributions differ in 
location. Being a non-parametric test, it does not 
make any assumptions about the form of the 
underlying probability distribution of the sampled 
population.

The paired samples t-test is a parametric procedure 
used to determine whether there is a significant 
difference between the average values of the same 
performance measure for two different algorithms. 
The test assumes that the paired differences are 
independent and identically normally distributed. 
Although the measurements themselves may not be 
normally distributed, the pair wise differences often 
are.

All statistical tests were two-sided and performed at 
the 0.05 significance level. For each machine 
learning algorithm we performed the following 
comparisons: (1) No Variable Selection (NVS) 
versus Discretization Variable Selection and 
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Transformation (DVST), (2) Discretization Variable 
Selection (DVS) versus Discretization Variable 
Selection and Transformation (DVST). To adjust for 
multiple testing, we utilized the Holm-Bonferroni 
method15 which is done as follows. Let there be k
hypotheses to be tested and let the overall type 1 
error rate be . The p-values are ordered and the 
smallest p-value is compared to /k. If the smallest p-
value is less than /k, the null hypothesis is rejected 
and the process is repeated with the same  and the 
remaining k-1 hypotheses. This is continued until the 
hypothesis with the smallest p-value cannot be 
rejected. At that point, all null hypotheses that have 
not been rejected at previous steps are accepted. This 
method is less conservative than the Bonferroni 
method and limits the family-wise error rate to the 
specified .

Results

Application of EBD resulted in a substantial decrease 
in the number of selected variables (Table 2). The 
largest reduction in the number of variables was 98% 
while the average reduction in the number of 
variables over all datasets was 61%. 

The RCI performance of the machine learning 
methods under the conditions of NVS, DVS and 
DVST are given in Table 3. Table 4 gives the results 
of the paired t-test and the Wilcoxon paired samples 
signed rank test that compares the RCI performance 
of DVST with NVS. All the algorithms (for both the 
t-test and the Wilcoxon test) except SVM-2 retain the 
significant improvement of RCI with DVST over 
NVS when corrected for multiple hypothesis testing 
with the Holm-Bonferroni method. 

Table 5 gives the results of the paired t-test and the 
Wilcoxon paired samples signed rank test that 
compares the RCI performance of DVST with DVS. 
All the algorithms (for both the t-test and the 
Wilcoxon test) except the SVMs (both linear and 
polynomial kernels) retain the significant 
improvement of RCI with DVST over DVS when 
corrected for multiple hypothesis testing with the 
Holm-Bonferroni method. 

Discussion

Overall, discretization with EBD with variable 
selection and transformation to discrete values, 
improved the performance of all the algorithms we 
tested: SVM, RF and NB. In addition, using the 
discrete values over continuous values for selected 
variables statistically significantly improved the 
performance of RF and NB but not the performance 
of SVM. Transformation of continuous values to 
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discrete values provided a 2-8% performance gain in 
RCI.

The largest gain in performance was seen with NB. 
This is supported by the observations of Yang and 
Webb who found that NB benefits from the 
smoothing of the parameters that discretization 
provides16. With SVM, there was no improvement in 
performance with discrete values over the use of 
continuous values for the selected variables. One 
possible explanation is that each discrete variable is 
converted to a set of binary variables in WEKA 
before being presented to the SVM learner. In the 
setting of DVST, this results in a large increase in the 
number of variables that may have degraded the 
performance of SVM. 

Dataset # V 
Fraction
Removed Remaining #V 

1 6584 0.67 2173
2 12582 0.31 8682
3 5372 0.85 806
4 12600 0.19 10206
5 5372 0.93 376
6 7129 0.60 2852
7 7464 0.69 2314
8 7129 0.90 713
9 2308 0.35 1500

10 12625 0.22 9848
11 7129 0.01 7058
12 7129 0.38 4420
13 7399 0.91 666
14 7129 0.93 499
15 7129 0.39 4349
16 12599 0.71 3654
17 12533 0.05 11906
18 5726 0.78 1260
19 24481 0.81 4651
20 7039 0.72 1971
21 12625 0.98 253
22 11003 0.71 3191
23 11170 0.85 1676
24 36778 0.80 7356

Average 10376 0.61 4003
Table 2. Effect of discretization by EBD on variable 
selection. #V refers to the total number of variables, 
Fraction Removed is the fraction of variables removed 
by variable selection and Remaining #V is the average 
number of variables left after discretization. The 
results were obtained by averaging over a total of 20 
folds. Greater than 70% reduction is in bold font. 
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Due to redundancy and noise in biomedical data, 
variable selection often improves classification 
performance2, 17. The use of discretization in a pre-
processing step thus improves classification 
performance by performing variable selection. In 
addition, discretization converts continuous values to 

Algorithm NVS DVS DVST
SVM-1 57.66 60.59 60.95
SVM-2 58.29 61.70 60.29
RF-10-2 53.40 55.46 56.07
RF-20-2 52.98 54.41 55.36
RF-5-2 52.98 55.44 56.52
NB 54.37 56.48 57.71
Average 54.95 57.35 57.81

Table 3. Averaged RCI across all the datasets. NVS 
refers to no variable selection, DVS refers to variable 
selection based on EBD but no transformation to 
discrete values, and DVST refers to variable selection 
based on EBD with transformation to discrete values. 
RCI values for DVS or DVST that are significantly 
different from NVS on both statistical tests are shown 
in bold font. 

Algorithm Diff t-test Wilcoxon 
SVM-1 3.49 0.014 0.006
SVM-2 2.14 0.048 0.036
RF-10-2 2.67 0.015 0.020
RF-20-2 3.53 0.007 0.005
RF-5-2 3.34 0.001 0.002
NB 8.42 0.003 < 0.001 

Table 4. Results of the paired t-test and the Wilcoxon 
paired samples signed rank test on comparing the RIC 
performance of DVST with NVS. A positive Diff 
value indicates better performance by DVST. All 
statistically significant results at the 0.05 significance 
level are in bold font. 

Algorithm Diff t-test Wilcoxon 
SVM-1 0.41 0.724 0.546
SVM-2 -1.41 0.091 0.054
RF-10-2 0.61 0.007 0.008
RF-20-2 1.29 0.003 0.001
RF-5-2 1.23 0.013 0.006
NB 2.41 0.007 0.001

Table 5. Results of the paired t-test and the Wilcoxon 
paired samples signed rank test on comparing the RCI 
performance of DVST with DVS. A positive Diff 
value indicates better performance by DVS. All 
statistically significant results at the 0.05 significance 
level are in bold font. 
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discrete ones, which has the potential to further 
improve classification performance.  

In future work, we plan to compare other 
discretization methods with EBD. We also plan to 
compare other variable selection methods with 
discretization.

Conclusion

Discretization is an essential pre-processing step for 
machine learning algorithms that can handle only 
discrete data. However, discretization can also be 
useful for machine learning algorithms that directly 
handle continuous variables. Our results indicate that 
the improvement in classification performance from 
discretization accrues to a large extent from variable 
selection and to a smaller extent from the 
transformation of the variable from continuous to 
discrete.
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