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Abstract 

Concept specific lexicons (e.g. diseases, drugs, anat-
omy) are a critical source of background knowledge for 
many medical language-processing systems.  However, 
the rapid pace of biomedical research and the lack of 
constraints on usage ensure that such dictionaries are 
incomplete.  Focusing on disease terminology, we have 
developed an automated, unsupervised, iterative pattern 
learning approach for constructing a comprehensive 
medical dictionary of disease terms from randomized 
clinical trial (RCT) abstracts, and we compared differ-
ent ranking methods for automatically extracting con-
textual patterns and concept terms.  When used to 
identify disease concepts from 100 randomly chosen, 
manually annotated clinical abstracts, our disease dic-
tionary shows significant performance improvement 
(F1 increased by 35-88%) over available, manually 
created disease terminologies. 

1 Introduction 

Dictionary based natural language processing systems 
have been successful in recognizing biomedical con-
cepts from free text. For example, the MetaMap pro-
gram is used to map biomedical text to concepts from 
UMLS Metathesaurus2. It identifies various forms of 
UMLS concepts in text and returns them in a ranked list 
in a five-step process, identifying simple NPs, generat-
ing variants of each phrase, finding matched phrases, 
assigning scores to matched phrases by comparing them 
with the input and composing mappings.  However, its 
performance largely depends on the quality of the un-
derlying UMLS Metathesaurus and the associated Spe-
cialist Lexicon. A recent study has shown that, of the 
disease concepts identified by human subjects, more 
than 40% were not in UMLS8.

Disease concepts are of core importance in medical text 
processing, but their terminology is highly dynamic.  
Individual authors may choose to represent the same 
disease many different ways. New diseases and condi-
tions are also constantly emerging, such as SARS and 
avian influenza.  Even advances in diagnostics and 
treatments can give rise to new disease modifiers such 
as those in ‘HER2 overexpressing breast cancer’ or 
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‘Dexamethasone-responsive hypertension’.  Clearly we 
need to develop techniques to deal with this dynamic 
terminology landscape. 
 
Large quantities of biological text are available in Med-
line’s collection of Randomized Clinical Trial (RCT) 
reports; over 500,000 RCT abstracts are available. RCT 
reports are a critical resource for information about dis-
eases, their treatments, and treatment efficacy. These 
reports have the advantage of being highly redundant (a 
disease is often reported in multiple RCT abstracts), 
medically related, coherent in writing style and implic-
itly or explicitly structured, precise, trustworthy and 
freely available.  
 
We have developed and evaluated an automated, unsu-
pervised, iterative pattern learning approach for con-
structing a comprehensive medical dictionary of 
diseases from RCT abstracts. The algorithm starts with 
a seed pattern P0, which represents typical written text 
about diseases.  The program loops over a procedure, 
which starts by acquiring instances of diseases by 
matching the seed pattern in the parse tree of the sen-
tences in RCT abstract, and discovers new patterns from 
the extracted diseases. The process is stopped when it 
reaches a fixed number of iterations. Diseases and pat-
terns are assigned confidence scores before they are 
stored in a database. Our approach is inspired by the 
framework adopted in several bootstrapping systems in 
learning instances of concepts1,3,4,5. These approaches 
are based on a set of surface patterns introduced by 
Hearst6, which are matched to the text collection and 
used to find instance-concept relations. A similar system 
is that of Snow and colleagues9, which integrates syn-
tactic dependency structure into pattern representation 
and has been applied to the task of learning instance-of 
relations or isa-relations. 
 
All such systems suffer from the inevitable problem of 
spurious patterns and instances introduced in the itera-
tive process.  We have compared three different pattern 
ranking and three different extracted instance ranking 
approaches to address this issue. 
 
2 Data and Methods 
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2.1 Data 
421,471 RCT abstracts published in MEDLINE from 
1965 to 2007 were parsed into 3,982,236 sentences. 
Each sentence was lexically parsed to generate a parse 
tree using the Stanford Parser7. The Stanford Parser is 
an unlexicalized natural language parser, trained on a 
non-medical document collection (Wall Street Journal). 
We used the publicly available information retrieval 
library, Lucene1, to create an index on sentences and 
their corresponding parse trees. 

2.2 Disease Extraction and Pattern Discovery 

The pseudo code below describes the bootstrapping 
algorithm used in learning instances of disease and their 
associated text patterns. The algorithm starts with a seed 
pattern p0, which represents a typical way of writing 
about diseases.  For example, the seed pattern we used 
was “patients with NP” (NP: noun phrase). The program 
repeats a match procedure, which starts by acquiring 
instances of diseases by matching the seed pattern in the 
parse tree, and discover new pattern from the extracted 
diseases. In the disease extraction step, patterns are used 
as search queries to the local search engine. The parse 
trees with given patterns are retrieved and noun phrases 
(instances of diseases) following the pattern are 
matched from the parse trees. In the pattern discovery 
stage, diseases extracted from the previous iteration are 
used as search queries to the local search engine. Corre-
sponding sentences with the diseases are retrieved and 
the bigrams (two words) in front of disease names are 
extracted as patterns.   
 
initialize pattern_list, name_list 
name_list_1 = extract_names(seed_pattern) 
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for each name in name_list{ 
 patterns = extract_patterns(name) 
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 append(pattern_list, patterns) 
}
apply_ranks(pattern_lists, pattern_score_function) 
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for each pattern in pattern_list { 
 names = extract_names(pattern) 
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 append(name_list, names) 
}
apply_ranks(name_list, name_score_function) 
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2.3 Pattern Ranking 

 
1 http://lucene.apache.org/ 
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Since the initial seed pattern is known to be good, the 
new pattern was scored on how similar its output (dis-
ease associated with the pattern) is to the output of the 
initial seed pattern. Intuitively, a reliable pattern is one 
that is both highly precise and general (high recall). 
Using the output diseases from the seed pattern (p0) as a 
comparison, we developed specificity biased, sensitivity 
biased, and balanced algorithms to rank patterns. We 
define diseases(p) to be the set of diseases matched by 
pattern p, and the intersection [diseases(p) ∩ dis-
eases(p0)] as the set of diseases matched by both pattern 
p and p0.

1. Specificity biased rank:  

)diseases(p
)diseases(p )diseases(p =Score1(p) 0∩

The specificity biased ranking method will favor pat-
terns which hold for a few instances (diseases), but it 
may be too specific and may not be associated with any 
other disease. For example, complex patterns such as 
“aetiologically unclarified” precisely extract only one 
disease of interest (ARD).  
 
2. Sensitivity biased rank: 

)diseases(p
)diseases(p )diseases(p =Score2(p)

0

0∩

The sensitivity biased ranking method will favor a gen-
eral pattern, but it may be too general, which can intro-
duce too much noise. For example, patterns containing 
only stop words essentially match every sentence in the 
data collection and thus will have a very high sensitivity 
biased rank. 
 
3. Balanced rank:

Score2(p)Score1(p)
Score2(p)Score1(p)2=Score3(p)

+
⋅⋅

A combination of the specificity biased and the sensitiv-
ity biased evaluation methods is the balanced ranking 
method, which takes into account not only the pattern 
specificity, but also the pattern generality (sensitivity). 
This method will favor general patterns while penaliz-
ing patterns which just hold for a few instances.  

2.4 Disease Ranking 

A reliable disease instance is one that is associated with 
a reliable pattern many times.  We experimented with 3 
ranking algorithms:  
 
1. Abundance-based (document frequency) rank: A
disease instance  (d) that is obtained from multiple, dis-
tinct documents is more likely to be a real disease con-
cept when compared with the one that appeared only 
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once in the corpora.  Also, since the documents in which 
the diseases appear are, in general, independently au-
thored, the confidence of disease extraction increases 
with the number of supporting documents.  We define 
ScoreA(d) as number of documents where a disease 
name,  (d) appears in the RCT abstracts. 
 
2. Pattern-based rank: A disease instance obtained 
from multiple patterns is more likely to be a real disease 
concept when compared with the one that was obtained 
by a single pattern. Ranked by the number of patterns 
that generated the disease (d), score of those patterns, 
and the number of times that disease is associated with 
each of those patterns (Count (p,d)). 

ScoreB(d) =  log(Score3(p) ⋅ Count(p,d) )∑

3. Best-pattern-based rank: A disease instance ob-
tained from highly ranked pattern is more likely to be a 
real disease concept when compared with the one that 
was obtained from a poorly ranked pattern. First the 
patterns are ranked by the best pattern (pb) that gener-
ated the disease (d) and then further ties are broken by 
the number of times the disease is associated with that 
pattern (Count(p,d)) to provide ScoreC(d). 

2.5 Evaluation 

For evaluation and comparison purposes, we extracted 
the disease names from eight widely used sources: 
UMLS Metathesaurus, ClinicalTrials.gov2, Cochrane 
Library3, including Cochrane Review, Cochrane Eco-
nomic Review and Cochrane Technology Assessment, 
OMIM4, and PharmGKB5. Table 1 shows the eight data 
sources and the total number of distinct disease names 
(case sensitivity ignored) in each data source.  We take 
these lists of disease names then to be manually com-
piled term lists, as each comes from a manually curated 
source. 
 
Table 1: Number of disease terms in eight widely 
used disease sources 
Data Source Number of Diseases 
UMLS Metathesaurus 482463 
ClinicaTrial.gov 10372 
Cochrane Review 5155 
Cochrane Other Review 4542 
Cochrane Economic Review 4149 
Cochrane Technology Assess-
ment 

3080 

OMIM 4056 
PharmGKB 338 
Combined 491949 

2 http://clinicaltrials.gov/ 
3 http://www.thecochranelibrary.com/ 
4 http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim 
5 http://www.pharmgkb.org/ 
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Evaluation of Stanford parser in identifying disease 
noun phrase boundary 

Most disease names are noun phrases.  We used the 
disease names from the eight sources as the gold stan-
dard to measure the accuracy of Stanford Parser in iden-
tifying disease boundary. With NPcount(disease) 
defined as number of times that Stanford Parser identi-
fying the disease term as a noun phrase and  
count(disease) as number of times the disease term ap-
pears at all in the RCT abstracts. 

Accuracy = Average NPcount(disease)
count(disease)











Evaluation of the extracted disease dictionary 

We assessed the quality (precision and recall) of our 
dictionary by using it to identify disease concepts in 100 
randomly selected RCT abstracts where disease names 
were manually identified by RX (first author). In addi-
tion, we also compared the performance of our diction-
ary with the eight manually curated disease sources.  
 

3 Results 

3.1 Evaluation of Stanford parser in identifying 
disease noun phrase boundary 

Table 2 shows the accuracies of Stanford Parser in iden-
tifying noun phrase boundary for diseases from the eight 
data sources. The overall accuracy of Stanford Parser in 
identifying disease noun phrase boundaries was 0.95. 
Even though the Stanford Parser is trained on non-
medical data, it is highly accurate in identifying disease 
noun phrase boundaries in the RCT abstracts. 
 
Table 2: Accuracy of Stanford Parser in identifying 
disease noun phrase boundary 
Data Source Precision (%) 
UMLS Metathesaurus 94.7  
ClinicalTrial.gov 95.7 
Cochrane Review 96.1 

Cochrane Other Review 96.3 
Cochrane Economic Review 96.1 
Cochrane Technology  Assessment 96.5  
OMIM 94.7 
PharmGKB 97.8 
Combined 95.5 

3.2 Evaluation of the extracted disease dictionary 

Our derived dictionary consists of 1,922,283 potential 
disease names, each with an accompanying confidence 
score. We evaluated the quality of the dictionary by 
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using it to identify disease concepts in 100 randomly 
selected abstracts where disease names were manually 
annotated by one of the authors, RX. There was an av-
erage of four disease names per test abstract. Table 3 
shows the precision, recall and F1 values using the best-
pattern-based ranks of diseases (ScoreC) as the cutoff 
values. The precision, recall and F1 values at each cut-
off were averaged across the 100 abstracts.  
 
Table 3:  Precision, recall and F1 at 7 cutoff values 
when tested on the 100 abstracts 
Cutoff value Precision Recall F1 
48057 (Top 2.5%) 0.70 0.61 0.61 
96114 (Top 5%) 0.80 0.78 0.81 
144,171 (Top 7.5%) 0.72 0.79 0.72 
199,228 (Top 10%) 0.59 0.81 0.64 
240,285 (Top 12.5%) 0.58 0.81 0.64 
293,250 (Top 15%) 0.58 0.82 0.64 
336,399 (Top 17.5%) 0.58 0.82 0.63 

Table 4 shows the precision, recall, and F1 values when 
disease names from the eight disease sources were used 
to identify disease names in the test dataset. As ex-
pected, for these manually created sources, the precision 
is high with values ranging from 0.68 to 1.0, while the 
recall is low with values ranging from 0.0 to 0.56. The 
recall of 0.0 for OMIM is due to the fact that all the 
diseases from OMIM are (sometimes very rare) genetic 
diseases and no disease names mentioned in the 100 test 
RCT abstracts had overlap with the OMIM vocabulary.  
 
Table 4: Performance of eight disease sources in 
identifying disease names in the test abstracts 
Data Source Precision Recall F1 
UMLS Metathesaurus 0.82 0.39 0.49 
ClinicalTrial.gov 0.71 0.35 0.43 
Cochrane Cochrane Re-
view 

0.68 0.54 0.57 

Cochrane Other Review 0.70 0.56 0.60 
Cochrane Economic 
Review 

0.70 0.53 0.58 

Cochrane Technology 
Assessment 

0.67 0.51 0.55 

OMIM 1.0 0.0 0.0 
PharmGKB 1.0 0.32 0.48 
Combined  0.44 0.68 0.50 

The performance of our dictionary (F1 = 0.81, cutoff = 
top 5%) is a significant improvement over the eight 
widely used disease dictionaries (F1=0.0 to 0.6) and 
their combination (F1 = 0.5). 

3.3 Disease Ranking 

Table 5 shows the top 10 suggested disease names using 
“patients with” as the initial seed pattern. The rank of a 
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disease instance is determined by the different (section 
2.5) ranking methods: abundance, pattern, or best-
pattern based ranking. 
 
Table 5: Top 10 diseases with “patients with” as the 
seed pattern 

Ra
nk 

Abundance 
based rank-
ing 

Pattern based 
ranking 

Best pattern 
based ranking 

1 patients treatment hypertension 
2 treatment patients rheumatoid arthri-

tis 
3 the study placebo depression 
4 this study surgery migraine 
5 surgery therapy asthma 
6 placebo eat duodenal ulcer 
7 both groups children psoriasis 
8 therapy one schizophrenia 
9 baseline time breast cancer 
10 children baseline obesity 

None of the top 10 extracted phrases on the basis of 
abundance (ScoreA) or pattern (ScoreB) are actual dis-
ease names. These commonly used ranking methods 
will assign a high rank to common non-medical words. 
The best-pattern (ScoreC) based ranking method, as is 
evident from the table, correctly identifies diseases, 
mainly because it reduces the likelihood of selecting 
irrelevant patterns. 

3.4 Pattern Ranking 

Table 6 shows the top 10 patterns with “patients with” 
as the initial seed pattern. 
 
Table 6: Top 10 patterns with “patients with” as 
seed pattern 

Rank Specificity 
Biased Rank 

Sensitivity 
Biased 
Rank 

Balanced 
Rank  

1 patients with patients with patients with 
2 cancer reduces treatment of  treatment of 
3 encoding under treatment for diagnosis of 
4 carob as diagnosis of treatment for 
5 optimally regu-

lating 
management 
of 

management 
of 

6 advancement 
throughout 

incidence of suffering from 

7 with rehabilita-
tion 

women with adults with 

8 pulsatile blood presence of women with 
9 neurons retain patients had incidence of 
10 unoprostone or rate of patients with-

out 

The specificity-biased metric assigns high rank scores to 
very specific patterns such as “encoding under". The top 
10 patterns based on the sensitivity-biased (Score2) 
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ranking and balanced (Score3) ranking are more disease 
specific.  
 
When different seed patterns were used, most of the top 
10 patterns were the same.  For example, for the seed 
pattern “treatment of”, 5 out of top 10 balanced-based 
ranked patterns were the same as those from seed pat-
tern “patients with”.  
 

4 Discussion 

 
We have demonstrated an automated, unsupervised, 
iterative pattern learning approach for bootstrapping 
construction of a disease lexicon with comprehensive 
coverage for text related to clinical trials.  We also 
compared different pattern and extracted term ranking 
methods.  We have shown that our automatically gener-
ated lexicon performs much better than lexicons con-
structed from manually compiled sources.  Our 
approach is also potentially applicable to other concept 
categories such as drugs, treatments and gene terminol-
ogies which could then be combined to extract relation-
ships between concepts.  However, there is still 
significant space in which to seek improvement in in-
creasing the coverage of our lexicon and the quality of 
our patterns.   
 
Although useful in demonstrating the proof of concept 
and allowing us to examine different ranking methods, 
focusing on bigrams that preface noun-phrases limited 
the space of patterns that we could potentially examine.  
More complex patterns might involve longer n-grams, 
alternate word orderings (e.g. postfix patterns), using 
contrasting terminologies as filters, dependencies in the 
parse tree, or morphological features of the terms them-
selves. 
 
For example, “Necrotising sarcoid granulomatosis 
(NSG) is a rare disease diagnosed on the basis of patho-
logical features” (PMID: 16264037). There is indeed a 
distinctive pattern following the disease name: “is a rare 
disease”.  Such patterns like “NP is a disease” or “NP is 
a rare disease” are valid patterns to identify diseases.  
 
Another example is “Treatment of the subjects with 
atorvastatin decreased the abundance of IL-12p35 
mRNA in mononuclear cells (PMID 12492458)”.  Si-
multaneously co-training multiple concept terminol-
ogies such as one of drugs, using existing terminologies, 
adding morphological features (e.g. "-oma" suffix of 
diseases) to filter key terms such as "atorvastatin" might 
all improve pattern quality. 
 
Although our dictionary is not complete, as our corpus 
of literature increases, redundancy will increase the like-
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lihood of a disease term being matched by a pattern.   
The rapid growth of biomedical knowledge and litera-
ture, which makes our automatically generated disease 
vocabulary necessary, can also act to increase its cover-
age over time.   
 
All the data and code is available on request from the 
author. 
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